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Abstract: A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and
used within a single laboratory. The holistic metabolomic LDT integrating the currently available data
on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds
in the human blood during diseases and other conditions, and their prevalent location in the body
was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease
diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this
study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks
available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such
diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of
overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Addi-
tionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds
in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT
approach as a screening tool can be used for the further widespread testing for other diseases, since
‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.

Keywords: diagnostics; laboratory-developed test; Parkinson’s disease; metabolomics; mass spec-
trometry; blood plasma; metabolite identification; biologic context; putatively annotated metabolites;
metabolite sets; overrepresentation analysis

1. Introduction

Metabolomics studies have demonstrated the possibility of using the identification of
metabolites for the successful diagnosis of many diseases [1]. These data give hope for the
successful application of metabolomics methods in medicine. Therefore, researchers are
trying to create such omics tests for disease diagnosis, risk assessment of their development,
and determination of the patient’s response to treatment [2]. However, omics tests use
in clinical practice is very challenging due to the complexity of most omics technologies,
thus making their standardization for acceptance in clinics extremely difficult [3]. Con-
sequently, considering omics tests as in-house laboratory-developed tests (LDTs) is the
most evident solution to this problem. An LDT is a type of in vitro diagnostic test that is
developed and used within the same laboratory [4] and is used to measure a wide range of
substances, including nucleic acids, proteins, and low-molecular-weight compounds in dif-
ferent biological samples. To date, numerous LDTs have been developed for the diagnosis
of various diseases, including cancers, infections, genetic disorders, and other patholo-
gies [5–11]. In this work, an LDT comprising the latest advancements in metabolomics was
developed.

Recently, we established an LDT that can reveal overrepresentation of pathways,
providing a basis for diagnosis [12]. The LDT workflow included blood sample prepa-
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ration, high-resolution mass spectrometry, pre-processing of mass spectra, a compound
annotation algorithm, and a statistical model testing the retrieved metabolic data against
human pathways. The diagnostic performance of this LDT was demonstrated for the diag-
nosis of Parkinson’s disease (PD). Herein, the LDT was further developed by introducing
information about metabolites, such as their known connection with diseases, conditions
of the body, and location in the body. This improvement completes the development of
the LDT, making it a holistic metabolomic test whereby the currently available data in the
human metabolome database (HMDB [13]) are applied through panoramic measurement
of metabolites in the biomaterial. This updated LDT uses disease-associated metabolite
sets (631 diseases), pathway-associated metabolite sets (808 human metabolic pathways),
metabolite sets associated with abnormal concentrations of metabolites (352 conditions),
and location-based metabolite sets (110 sets based on their location in organs, tissues,
and subcellular localization). Updated LDT was also tested as a diagnostic method for
early-stage PD.

PD is a widespread neurodegenerative disease. Its incidence has increased dramat-
ically in recent years due to the aging population. Due to the etiologic and pathogenic
heterogeneity of PD [14,15], the discovery of biomarkers for diagnosis of PD is complicated
and has not yet been successful [16]. Metabolomics technologies that make it possible to
measure the entire collection of low-molecular-weight compounds of a sample may help in
this situation. Thus, it is reasonable to test the updated LDT on early-stage PD. In addition,
the success of such diagnostics can more clearly confirm the validity of the metabolomic
LDT.

2. Results
2.1. Mass Spectrometric Analysis of Compounds in Blood

Mass spectrometric analysis, as the first analytical block of the LDT (Figure 1), gener-
ated high-resolution spectra of approximately 10,000 mass peaks of low-molecular-weight
compounds in the blood plasma samples. The measured masses were submitted to the
bioinformatic treatment block of the LDT that resulted in the annotation of 709 compounds
(Table 1).

Table 1. Variables associated with this study.

Parameter Value

Detection mass range (m/z) 45–900
Detected compound mass peaks (mean ± s.d.) 9664 ± 620 1

Masses submitted to metabolite search block 14,857
‘Mass peak/metabolite name’ pairs submitted to the annotation algorithm 31,724

Mass peaks with annotated compound(s) 2741
Unique compound annotations 709

1 average ± standard deviation.
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Figure 1. The laboratory-developed test (LDT) workflow. Blood plasma samples (or dried blood
spots) are collected (A) and transported to the laboratory. In the laboratory, after sample preparation
(B) and high-resolution direct mass spectrometry (C), the mass spectra of the blood plasma samples
are obtained. The obtained masses of compounds after preprocessing (D) are submitted to the
metabolite search block (E) to find metabolite identifiers from Kyoto Encyclopedia of Genes and
Genomes database (KEGG) database matching the m/z values. Matched KEGG IDs is submitted
to a compound annotation algorithm (F) [17], and the retrieved results are used for the overrepre-
sented metabolite set analysis (G). Finally, overrepresented metabolite sets from an individual are
visualized as a metabolite set names cloud, where the font size corresponds to the representation
value (score) (H).

2.2. Metabolite Set Overrepresentation Patterns in the LDT Output

A case-control comparison revealed patterns of PD in the LDT output. The LDT output
was generated as a metabolite set names cloud for the controls and cases. Among the
top overrepresented disease-associated metabolite sets, the diseases semantically similar
to PD were presented (Alzheimer’s disease, Lewy body disease, and frontotemporal
dementia; Figure 1a). The PD-relevant patterns were also found in the pathway-associated
metabolite sets (Figure 2b) and the metabolite sets associated with abnormal concentrations
of metabolites (Figure 2c). With the use of the location-based metabolite sets, excluding
a neuron-associated set, it was difficult to associate the top overrepresented sets with PD
directly (Figure 2d).
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Figure 2. LDT output for the ‘case-control’ study of Parkinson’s disease (PD). The output is presented for disease-associated
metabolite sets (a), pathway-associated metabolite sets (b), metabolite sets associated with abnormal concentrations of
metabolites (c), and location-based metabolite sets (d). The top five overrepresented metabolite sets are colored in red.

The metabolite set representation scores for the control samples, samples from PD
patients, and the top 20 overrepresented metabolite sets for the PD patients are listed in
Table 2.

Table 2. Criteria for laboratory-developed test diagnostics for Parkinson’s disease.

Metabolite Set
Representation Score Over-

Representation
Diagnostic Performance

Controls Cases Sensitivity Specificity Accuracy

Disease-associated metabolite sets
Alzheimer’s disease 21.9 53.8 31.9 75.0 71.4 73.2

Frontotemporal dementia 24.4 53.0 28.6 75.0 67.9 71.4
Lewy body disease 24.4 53.0 28.6 75.0 67.9 71.4
Early preeclampsia 15.0 42.5 27.5 67.9 71.4 69.6

Autosomal dominant
polycystic kidney disease 12.6 40.1 27.4 60.7 78.6 69.6

Pregnancy 16.8 43.6 26.8 75.0 67.9 71.4
Ulcerative colitis 27.5 53.0 25.5 78.6 60.7 69.6
Colorectal cancer 26.8 52.0 25.1 89.3 57.1 73.2

Periodontal disease 20.8 45.8 25.0 60.7 78.6 69.6



Metabolites 2021, 11, 14 5 of 16

Table 2. Cont.

Metabolite Set
Representation Score Over-

Representation
Diagnostic Performance

Controls Cases Sensitivity Specificity Accuracy

Pancreatic cancer 23.2 47.7 24.5 64.3 71.4 67.9
Late-onset preeclampsia 12.1 36.7 24.5 60.7 75.0 67.9

Crohn’s disease 25.9 50.0 24.2 71.4 64.3 67.9
Schizophrenia 25.0 48.3 23.2 64.3 71.4 67.9

Eosinophilic esophagitis 28.5 51.1 22.6 64.3 71.4 67.9
Lipoyltransferase 1 deficiency 10.2 32.7 22.5 71.4 67.9 69.6

Leukemia 9.0 31.3 22.3 75.0 75.0 75.0
Maple syrup urine disease 16.3 37.5 21.1 67.9 67.9 67.9

Perillyl alcohol administration
for cancer treatment 12.9 33.9 21.1 67.9 71.4 69.6

Heart failure 3.3 24.0 20.7 53.6 85.7 69.6
Rheumatoid arthritis 1.6 20.8 19.2 46.4 89.3 67.9

Parameters for the whole group of metabolite sets: 78.6 60.7 69.6

Pathway-associated metabolite sets

Transcription/translation 17.4 43.2 25.7 71.4 71.4 71.4
Dopa-responsive dystonia 13.4 34.8 21.4 46.4 82.1 64.3

Fatty acid elongation in
mitochondria 13.4 34.8 21.4 46.4 82.1 64.3

Hyperphenylalaniemia due to
guanosine triphosphate

cyclohydrolase deficiency
13.4 34.8 21.4 46.4 82.1 64.3

Hyperphenylalaninemia due
to 6-pyruvoyltetrahydropterin

synthase deficiency (PTPS)
13.4 34.8 21.4 46.4 82.1 64.3

Hyperphenylalaninemia due
to DHPR-deficiency 13.4 34.8 21.4 46.4 82.1 64.3

Long-chain-3-hydroxyacyl-
coa dehydrogenase deficiency

(LCHAD)
13.4 34.8 21.4 46.4 82.1 64.3

Pterine biosynthesis 13.4 34.8 21.4 46.4 82.1 64.3
Segawa syndrome 13.4 34.8 21.4 46.4 82.1 64.3

Sepiapterin reductase
deficiency 13.4 34.8 21.4 46.4 82.1 64.3

Glutaminolysis and cancer 4.1 22.0 17.8 57.1 75.0 66.1
Ubiquinone biosynthesis 0.1 16.1 16.0 28.6 92.9 60.7

Aspartate metabolism 4.2 19.4 15.2 57.1 78.6 67.9
Canavan disease 4.2 19.4 15.2 57.1 78.6 67.9

Hypoacetylaspartia 4.2 19.4 15.2 57.1 78.6 67.9
2-Hydroxyglutric aciduria (D

and L Form) 1.0 16.1 15.1 25.0 100.0 62.5

4-Hydroxybutyric
Aciduria/succinic

semialdehyde Dehydrogenase
deficiency

1.0 16.1 15.1 25.0 100.0 62.5

Glutamate metabolism 1.0 16.1 15.1 25.0 100.0 62.5
Homocarnosinosis 1.0 16.1 15.1 25.0 100.0 62.5
Hyperinsulinism-
hyperammonemia

syndrome
1.0 16.1 15.1 25.0 100.0 62.5

Parameters for the whole group of metabolite sets: 82.1 64.3 73.2
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Table 2. Cont.

Metabolite Set
Representation Score Over-

Representation
Diagnostic Performance

Controls Cases Sensitivity Specificity Accuracy

Abnormal concentration-associated metabolite sets

Schizophrenia 10.9 33.6 22.7 64.3 75.0 69.6
Alcohol intoxication 2.7 24.1 21.4 32.1 96.4 64.3

Drunk driver 2.7 24.1 21.4 32.1 96.4 64.3
Pellagra 13.4 34.8 21.4 46.4 82.1 64.3

Heart failure 3.3 24.0 20.6 53.6 89.3 71.4
Fabry disease 8.0 18.8 10.7 25.0 89.3 57.1

Epilepsy 0.5 6.8 6.3 21.4 92.9 57.1
Heart transplant 5.0 11.0 6.0 50.0 67.9 58.9

Lesch-Nyhan syndrome 0.7 5.8 5.1 75.0 57.1 66.1
Dimethylglycinuria 4.7 9.8 5.1 32.1 85.7 58.9

Menstrual cycle (follicular
phase) 0.0 2.7 2.7 42.9 82.1 62.5

Menstrual cycle (luteal phase) 0.0 2.7 2.7 42.9 82.1 62.5
Menstrual cycle (midcycle) 0.0 2.7 2.7 42.9 82.1 62.5
ACTH deficiency, isolated 0.0 2.7 2.7 39.3 85.7 62.5
Small intestinal bacterial

overgrowth 0.0 2.7 2.7 28.6 89.3 58.9

Crohn’s disease 0.0 2.7 2.7 28.6 89.3 58.9
HIV and diarrhea 0.0 2.7 2.7 28.6 89.3 58.9

Glucocorticoid resistance 0.0 2.7 2.7 35.7 89.3 62.5
Tic disorder 0.0 2.7 2.7 35.7 89.3 62.5

Thymidine phosphorylase
deficiency 0.0 2.7 2.7 39.3 82.1 60.7

Parameters for the whole group of metabolite sets: 82.1 64.3 73.2

Location-based metabolite sets

Testes 11.0 39.4 28.4 57.1 85.7 71.4
Prostate 22.8 51.2 28.4 67.9 75.0 71.4
Kidney 15.8 44.1 28.3 67.9 75.0 71.4

Fibroblasts 19.5 47.8 28.2 78.6 67.9 73.2
Placenta 14.6 42.1 27.5 64.3 78.6 71.4
Spleen 12.8 40.1 27.3 60.7 82.1 71.4

Intestine 19.7 46.4 26.7 67.9 71.4 69.6
Bladder 16.4 42.7 26.4 71.4 75.0 73.2
Neuron 11.1 36.8 25.6 78.6 71.4 75.0
Pancreas 15.5 40.6 25.1 71.4 71.4 71.4

Gut 8.2 31.6 23.4 60.7 78.6 69.6
Platelet 7.0 27.6 20.5 60.7 75.0 67.9
Liver 15.9 35.7 19.8 64.3 71.4 67.9

Muscle 13.4 32.8 19.4 71.4 78.6 75.0
Skeletal muscle 10.8 28.0 17.2 60.7 75.0 67.9

All tissues 13.6 30.4 16.8 75.0 60.7 67.9
Skin 3.5 20.1 16.6 64.3 64.3 64.3

Myelin 5.3 18.4 13.1 60.7 85.7 73.2
Adipose tissue 5.9 17.7 11.8 64.3 71.4 67.9

Stratum corneum 1.1 12.5 11.4 50.0 89.3 69.6
Parameters for the whole group of metabolite sets: 71.4 71.4 71.4

Parameters for the whole groups of metabolite sets: 89.3 57.1 73.2

2.3. Diagnostic Performance of the LDT

Using the LDT, the diagnosis of PD based on diagnostic score reached an accuracy of
73% (Table 2). It is noteworthy that the high diagnostic performance practically did not
depend on the type of metabolite sets used, that is, whether the disease-associated sets,
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pathway-associated sets, abnormal concentration sets, or localization-based sets were used
did not matter. This is explained by the fact that the same metabolites, indicating PD, were
applied to these groups.

Upon analysis of the diagnostic performance based on overrepresented metabolite
sets, it was noted that a neurodegenerative disease of the central nervous system could be
suspected in patients. Thus, the metabolite sets of Alzheimer’s disease, Lewy body disease,
and frontotemporal dementia were overrepresented. Almost all of the overrepresented
pathways (Table 2) were also relevant to PD. Thus, dysregulation of transcription and
translation is described in PD [18,19]. Moreover, it is a known fact that dopamine level is
connected with PD [20]. The role of lipid metabolism and mitochondria is also described
for PD [21]. Furthermore, overrepresented pterin synthesis is directly connected with
neurotransmitters; Segawa syndrome together with guanosine triphosphate cyclohydro-
lase deficiency is related to Dopa-responsive dystonia; and 6-pyruvoyltetrahydropterin
synthase deficiency is a neurodegenerative disease that, similar to dihydropteridine re-
ductase (DHPR) deficiency, is treated by levodopa. Overexpression was also observed
in sets of metabolites associated with internal organs, for example, high overexpression
in a set of metabolites associated with colorectal cancer. Synucleinopathy can explain
such overexpression. Synucleinopathy develops in various parts of the nervous system at
PD and leads to denervation of the heart, disturbances in the large intestine, esophagus,
kidneys, etc. A metabolite set associated directly with PD was not presented in the top list
of overrepresented disease-related sets. Perhaps this is due to the lack of such a set that is
applicable to the LDT.

The overrepresented metabolite sets associated with abnormal concentrations also
contributed to the diagnostic performance of the LDT. Regarding the top overexpressed
sets (schizophrenia, alcohol intoxication and drunk driver, pellagra, etc.; see Table 2), it is
known that dopamine and dopaminergic neurons play an important role in schizophrenia,
as well as in PD [22,23]. Moreover, it has been argued that a functional excess of dopamine
or oversensitivity of certain dopamine receptors is one of the causal factors in schizophre-
nia. In schizophrenia, the antipsychotic effects of traditional ‘neuroleptic’ drugs, such as
chlorpromazine, are highly correlated with their ability to block dopamine receptors and
reduce the effects of dopamine. The overrepresentation of alcohol intoxication and drunk
driver sets may be explained by the fact that alcohol has a powerful effect on dopamine
activity in the brain, which has been revealed in animals [24] and human studies [25].
Pellagra is due to a diet that does not contain enough niacin and tryptophan, which, in turn,
can be converted into serotonin and are altered in PD [26].

2.4. Diagnosis of PD by the LDT

Figure 3 shows the metabolite set representation scores for each participant in this
study. This figure shows that diagnostics based on the metabolite set representation score is
possible. Unlike analysis of the case-control sets, which reveals the common group patterns,
personal data analysis is more complicated. Aged patients have a whole range of diseases
leading to the overrepresentation of different metabolite sets, thus making diagnosis very
difficult. However, for some individuals, it is quite possible. Figure 4 presents the LDT
output as a metabolite set names cloud for one person.
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The overrepresentation of metabolite sets associated with neurodegenerative diseases
(Figure 4a), together with the overrepresentation of the Dopa-responsive dystonia pathway
(Figure 4b), which is a movement disorder characterized by muscle tone and Parkinso-
nian features, the change in the concentration of substances matching alcohol intoxication
(Figure 4c), and priority localization of such metabolites (Figure 4c) with an abnormal
concentration in neurons, would allow health professionals to suspect neurodegenerative
disease and motivate them to go deeper and to obtain additional support for a PD diagnosis.
An overrepresentation of the metabolic sets associated with Fabry disease [27], pellagra,
which, as mentioned above, has a connection with PD, as well as many Dopa-related path-
ways (Segawa syndrome, pterine biosynthesis, sepiapterin reductase deficiency, guanosine
triphosphate cyclohydrolase deficiency, 6-pyruvoyltetrahydropterin synthase deficiency
(PTPS), and DHPR-deficiency) was observed. In other words, the LDT indicates which
direction to search, thus helping the clinician to select of confirmatory, targeted tests. For
this patient, an appointment for a single-photon emission computerized tomography scan
is fully justified, and PD will be diagnosed.

2.5. LDT Output for a ‘Healthy’ Individual

In the control group, there were individuals for whom the LDT did not reveal any
overrepresentation in the metabolite sets. Thus, from the point of view of metabolic
processes, these people can be considered ‘healthy,’ since the composition of low-molecular-
weight compounds in their blood corresponds to the age norm. An example of the LDT
results for such a person is presented in Figure 5.
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abnormal concentrations (c), and location-based metabolite sets (d). No overrepresented metabolite sets were detected, thus
confirming that the individual does not have any deviation in the metabolite composition of their blood. [[X]] is a marker
corresponding to a representation score of 50.

3. Discussion

The Food and Drug Administration (USA) considers LDTs as tests that are designed,
manufactured, and used inside the same laboratory [4]. It simplifies the implementation
of metabolomics-based tests, bringing protocols and standardization activities to single
laboratory routines. The developed LDT is based on direct mass spectrometry of blood
plasma, which has been widely used in metabolomics and, in particular, in the laboratory
where LDTs were developed for the study of cancers [28–32], diabetes [33], and PD [34].
This type of mass spectrometry is characterized by a high processing speed and a relatively
high reproducibility [35–37], which are important for the use of mass spectrometry in the
clinic. The mass spectrometry data processing, like peak alignment and data standardiza-
tion, was specially developed for high-resolution mass spectra and successfully used for
many years in studies of blood plasma [29,38] and now is implemented in the LDT.

Generally, mass spectrometry allows the detection of hundreds of compounds in
metabolomics studies, which is crucial for obtaining biochemical information [39]. Un-
fortunately, the vast majority of compounds in the sample remain unknown [40]; current
annotation methods require a clear mass spectrometric picture of compounds or its frag-



Metabolites 2021, 11, 14 11 of 16

ments, which can be obtained only for well-separated and abundant metabolites. In the
LDT described in this study, a recently developed biochemical context-driven annotation is
realized for annotation of compounds, which uses the knowledge of their biotransforma-
tion in metabolic pathways. This approach was introduced by Rogers and coworkers [41]
and further updated by Silva and coworkers [42]. Later, the suitability of this approach
for blood plasma samples was also demonstrated [17]. This updated algorithm was imple-
mented in the LDT, which allowed the annotation of more than 700 metabolites per sample.
The obtained metabolite annotations were classified as putatively annotated compounds
(level 2 of metabolite identification), according to the Metabolomics Standards Initiative
standard [43], because two independent orthogonal features of each metabolite were used
for annotation (accurate mass tag and biochemical context). Thus, annotation results do not
include the most robust identifications at level 1, which is acceptable for medical purposes
and requires a chemical standard for identification. Obviously, for big data, to which the
metabolomics data relates, a level 1 often is impossible, thus making it reasonable to use
the described approach as a screening technology, which helps the clinician to optimize the
selection of confirmatory, secondary tests [44].

The selection of PD to test this LDT was not an accident. Previously, it has been
shown that an LDT can reveal the pathway overrepresentation efficient for the diagnosis of
PD [12], thus making it reasonable to complete LDT development by introducing metabolic
data about diseases, different organism conditions, and metabolite location. Figure 3 shows
the representation scores for each participant in this study and each metabolite set. This
figure confirms that each metabolite set contributes to diagnostics, and the accuracy of such
kind diagnostics is 73% (Table 3). It should be noted, the early laboratory diagnosis of PD
is currently unavailable and urgently needed for effective therapy [45–47]. However, the
multifactorial nature of PD complicates the development of conventional biomarker-based
tests. The clinical application of ‘panoramic’ methods, to which metabolomic methods
are related, have the complex workflow that makes their standardization and following
registration illusive. The usage of the LDT in such a situation overcomes this obstacle
because all of the LDT-related routines are located in a single laboratory.

The developed LDT uses currently available data on the concentrations of metabolites
in humans and uses them to analyze panoramically measured blood composition data.
Along with the use of modern data processing algorithms, it can be argued that the LDT is
an omics test that demonstrates the current diagnostic capabilities of metabolomics, the
most obvious of which are as follows:

• Confirmation of a person’s healthy state. This option of the LDT is the most obvious;
the output of the LDT in this case is self-explanatory and comprehensively confirms
human health at the molecular level. The LDT shows that the detected deviations in
the blood composition do not form any patterns specific to a disease or pathology. So,
the LDT is ready for use to determine wellness and longevity. It is expected that the
healthy state can be confirmed by the LDT and that any abnormalities that will appear
at the molecular level can be detected in a timely manner, which lays the foundation
for a long and quality life.

• Score-based diagnostics. Score-based diagnostics requires control samples and sam-
ples from a cohort of patients with disease. The advantage of such diagnostics is the
absence of human error in diagnosis and possible full automation.

• Disease diagnosis based on metabolite set overrepresentation (i.e., without diag-
nostic scoring). This option of the LDT is ready to use (i.e., cohorts are not required)
for the diagnosis of a wide diversity of diseases. The metabolite set names cloud al-
lows visualization of the LDT output data that a physician can interpret. An example
of this is demonstrated in this paper for the diagnosis of PD, although, among the
LDT outputs, there were also results that were difficult to interpret. It is possible that
the effectiveness of the LDT output interpretation will increase as further LDT output
data are accumulated. Most importantly, the LDT is panoramic in terms of measuring
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substances and untargeted in terms of diagnosing diseases, which in the end makes it
especially valuable.

The main disadvantage of the LDT is its complexity, which leads to the lack of strictly
standardized protocols and direct dependence on the equipment used and the experience of
the staff working on it. In general, therefore, the LDT is implemented in a single laboratory
and, as a rule, is not translated to other laboratories. But this problem can be substantially
ignored by the compatibility of the mass spectrometric measurement in the LDT with a
dried blood spot [48] because a dried blood spot can be obtained without assistance at
home and transported on a blood sample card at room temperature by mail, thus making
the LDT available almost everywhere. It seems that such a type of laboratory diagnostic
method that does not require direct contact with people during blood sampling will be
relevant in light of the pandemic that has swept the world.

4. Materials and Methods
4.1. Mass Spectra of Blood Plasma

Samples of blood plasma used in this study were taken from the previously published
study [34]. Table 3 presents the clinical characteristics of the cohort.

Table 3. Study cohort characteristics.

Characteristics
Values

Subjects with PD Control Subjects

Number 28 28
Gender (male/female) 14/14 14/14

Age (years; mean ± s.d. (range)) 62.6 ± 8.6 (37–77) 62.8 ± 8.7 (45–77)
PD stages (1/1.5/2/2.5) 1 6/6/12/4 -

1 PD stages are according to Hoehn and Yahr scale [49].

Samples were analyzed with a maXis hybrid quadrupole time-of-flight mass spec-
trometer with an electrospray ionization source as described in the previously published
study [12]. Normalization of mass peak intensities was performed as described previ-
ously [38]. The alignment of the m/z values of the mass peaks to the different mass spectra
was performed as described previously [29]. The resulting m/z values with a nonzero
mass peak intensity for more than nine samples (removes noise and suspect data) were
submitted to the metabolite search block of the in-house software.

4.2. Compound Annotation

The search for correspondence of each mass peak to metabolite identifiers was done
by the metabolite search block of the in-house software as described in the previous
publication [12]. The HMDB (www.hmdb.ca) was used as the source of the m/z values
and identifiers from the Kyoto Encyclopedia of Genes and Genomes database (KEGG IDs).
A compound annotation algorithm was recently developed and described in detail [42].
This algorithm uses metabolic pathway data and allows for the effective annotation of
low-molecular-weight blood components (metabolome) with relatively high speed. In
the list of compound names, many candidates, on average, were associated with one
mass. The main task of the algorithm is to compare the obtained experimental data, i.e.,
mass spectra, with the available information on biochemical pathways and to decline all
false candidates. It is known that the concentrations of compounds involved in the same
pathways correlate [50]. Thus, if mass spectrometry data for a set of samples are available,
the correlation between the mass of interest and other mass peaks can be found. The masses
of these correlating peaks can also be associated with a set of compounds in which their
locations in the metabolic pathway must be bunched around the compound with the true
annotation. The details of the application of this algorithm for blood plasma samples have
been described previously [17]. The next release of this algorithm with updated source

www.hmdb.ca
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code to make it more suitable for blood samples was recently used in the LDT [12] and
applied in this work.

4.3. Metabolite Set Overrepresentation Analysis

Analyzed HMDB data were used to compile metabolite sets: disease-associated
metabolite sets (631 diseases), pathway-associated metabolite sets (808 human metabolic
pathways), metabolite sets associated with the abnormal concentrations of metabolites
(352 conditions), and location-based metabolite sets (110 sets based on location in organs,
tissues, and subcellular localization). Selected metabolites in the case-control or individual
sample studies were projected on these metabolite sets, and the obtained results were
compared with the projections, which were performed 30,000 times with the same number
of randomly selected metabolites. The obtained results were normalized to produce
a metabolite set representation score for each set as described previously [12]. This score
also was used to visualize the results as a metabolite set names cloud in which the font size
is related. The scores for the top 20 overrepresented metabolite sets were summarized to
produce the final diagnostic score for each person who participated in the study.

To reveal the PD-associated pattern in metabolite sets, the mean value for representa-
tion scores for cases were compared with those of the controls.

To estimate diagnostic performance of LDT, as well as to estimate the metabolic data
projection on the separate metabolite sets, the perfcurve function of the MATLAB program
was used. This function presents the accuracy, sensitivity, and specificity for each point of
receiver operating characteristic (ROC) curve and selects the optimal values.

4.4. Analysis of Individual Samples by the LDT

To reveal mass peaks belonged to metabolites with abnormal concentration, the Z-
score calculation and the leave-one-out approach were applied for mass peak intensities
as described previously [51]. This method involves the one-by-one removal of each data
point (sample) from the dataset and recalculation of the model parameters based on the
remaining data. The model is then tested by the excluded sample.

The LDT workflow used to analyze blood plasma samples is presented in Figure 1.
The in-house software, as a part of the LDT, was implemented in MATLAB and was used for
data pre-processing, database searching, and overrepresentation analysis. To perform all
calculations, a Lenovo (Intel® Xeon® E-2176M CPU 2.70 GHz, Windows 10 Pro) computer
was used.

5. Conclusions

LDTs or, more familiarly, ‘home brew’ tests, have been around for decades. Tradi-
tionally, their scope is small for low-risk diagnostic applications. Today, more complex
LDTs can be used. Being a ‘direct-to-customer’ test, LDTs provide clinical results to a wide
range of customers: physicians and their patients, researchers, citizen scientists, and simply
educated people. While the current work demonstrated a metabolomic LDT for supporting
the diagnosis of PD, the omics nature of the LDT suggests that it can be used for a variety
of diseases. Information, in the name cloud form, in the LDT output about the state of the
organism can be easy and quick to read by a wide range of customers although such an
output is formed by metabolic big data. Diagnostics through the use of the metabolomic
LDT for a wide variety of diseases on a single dried blood spot obtained at home lays the
groundwork for improvements in terms of accessibility, price, and versatility of laboratory
diagnostics, which can lead to an improvement in people’s living standards.
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