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SUMMARY

Drug-induced liver injury (DILI) is the main cause of drug failure in clinical trials.
The characterization of toxic compounds in terms of chemical structure is impor-
tant because compounds can be metabolized to toxic substances in the liver.
Traditional machine learning approaches have had limited success in predicting
DILI, and emerging deep graph neural network (GNN) models are yet powerful
enough to predict DILI. In this study, we developed a completely different
approach, supervised subgraph mining (SSM), a strategy to mine explicit sub-
graph features by iteratively updating individual graph transitions to maximize
DILI fidelity. Our method outperformed previous methods including state-of-
the-art GNN tools in classifying DILI on two different datasets: DILIst and TDC-
benchmark. We also combined the subgraph features by using SMARTS-based
frequent structural pattern matching and associated them with drugs’ ATC code.

INTRODUCTION

Drug-induced liver injury (DILI) has been the leading cause of drug withdrawal or the discontinuation of

newly approved drugs from the market in the US since 1970.1,2 Only 4.7% of drug candidates progress

from preclinical trials to the clinical stage due to safety concerns.1–3 Thus, DILI is a major hurdle in drug

development. While direct DILI can be detected in preclinical/clinical studies in a dose-related manner,

idiosyncratic DILI is detected only at an incidence rate of 0.1% or below during clinical studies.2,4–6 What

makes DILI identification even more difficult in clinical trials is the low concordance between DILI outcomes

in animal and humanmodels, with 63% and 43% in non-rodents and rodents, respectively.2,7–9 Thus, a num-

ber of research projects have been launched to characterize DILI from multiple perspectives.

Evaluating DILI directly from small-molecule drugs in terms of clinical outcomes is very difficult, and it was

necessary to design new approaches to fill in a large gap in how chemical structures translate to hepato-

toxic risk in humans.10 Thus, additional biochemical experiments are performed to explore the mechanism

of DILI using high-throughput screening or pharmacogenomics11,12 in projects designed to bridge the gap

between structural information and the DILI outcome. Tox21 is a seminal project to broadly define the

chemical toxicity of more than 10,000 chemical compounds.13,14 Tox21 includes 14 major projects de-

signed to improve our understanding of how chemical drugs reflect biochemical mechanisms and affect

downstream pathways, and Tox21 data have been used for further investigation. Wu et al.15 divided

drug modes of action into 17 different assays to investigate whether a drug affects individual targets.

This approach demonstrated how to integrate assay data into DILI prediction to improve our knowledge

of the mechanistic details of DILI. Follow-up methods adopted a similar strategy by leveraging deep

learning (DL) architecture16 or gene expression profiles17 to bridge the gap between chemical structure

and DILI outcome using biological/biochemical measurements.

On the other hand, we also need to understand the toxicity of small-molecule drugs directly from the chem-

ical structure perspective because projects such as Tox21 require careful experimental design and expert

knowledge on how to integrate and interpret the vast amount of experimental data, which is expensive and

time consuming. For more than 90% of orally administered drugs, the liver is the main site of structure-

dependent metabolism. Thus, the detection of DILI at the compound structure level requires the

identification of substructures of toxic drugs. A structural alert (SA) is a substructure of a compound

that contributes to a specific chemical property and determines the metabolic process of a compound.

Examples of SAs include functional groups such as aromatic amines, carboxylic acids, and benzene moi-

eties. Some chemical moieties are reported to be related to chemical toxicity, such as arylacetic acid,
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2-aminothiazole, furan, aniline, and iodobenzene.18–20 Although several SAs for DILI have been reported

and reviewed, they have not yet been extensively utilized in machine learning (ML) models.20 In recent

articles, SAs were compiled for target organs based on the assumption that hepatotoxicity stems from a

specific structure in the compound.21–23

Research problem and motivation

Research problem

In this study, we aim to develop a predictionmethod for DILI using compound structure information only. In

addition, we wish to discover potential SAs or substructures of drugs in terms of DILI. For this goal, themain

challenge is obtaining sufficient data. Hepatotoxicity results are empirically obtained over a long period of

time at the clinical or commercial stage. Thus, the amount of hepatotoxicity data is very small (only 1,279

drugs by the US FDA in Thakkar et al.24) In addition, computational methods need to identify relevant fea-

tures for DILI prediction. However, structural features for DILI are not well known as of now. Thus, the pre-

diction method needs to overcome these challenges, i.e., small amounts of data for training prediction

methods and feature identification for DILI.

Limitations of existing DILI prediction methods

Traditional approaches to DILI prediction mostly rely on pre-computed molecular descriptors or finger-

prints.25 These fingerprints are designed to describe general chemical compounds; thus, they are not

tailored to predict DILI. Because of the weak expressiveness of fingerprints, neither shallow nor deep

ML techniques performed well for DILI prediction (see Section: results and Vall et al.25).

Limitations of deep or graph learning methods

Compounds can be viewed as graphs where atoms are nodes and bonds are edges. Thus, emerging graph

learning methods are well suited for this task. We tested state-of-the-art graph learning methods for use

in DILI prediction: MolHGCN, GraphLOG, and benchmark Graph Isomorphism Network (GIN) ap-

proaches.26–28 MolHGCN alleviates oversmoothing and overfitting problems by flexible modeling of the

complex relationships between the atoms in molecular structures as hypergraphs. GraphLOG is a pre-

training method that uses self-supervised learning to simultaneously reflect the local information of the

graph and the hierarchical and global information between the graphs. GIN is one of the most expressive

graph neural network (GNN) architectures which is well suited for pre-training chemical graphs.28 These

methods were comparable to the previous DILI prediction methods at maximum 0.672 in AUC (see Section:

results). Thus, the current graph learning algorithms are not powerful enough to overcome the challenges

of the limited data for training prediction methods and feature identification for DILI. In fact, this result is

consistent with the findings in a recent study that graph learning methodologies are not powerful enough

to address chemical graphs.29

Our subgraph mining approach

We propose a completely different approach, a supervised subgraph mining (SSM) framework (Figure 1)

where subgraph features are learned by iteratively generating subgraphs for DILI prediction (Figure 2).

Our method achieved improved performance up to 0.720 in AUC compared to the previous state-of-

the-art ML methods including GNNs. In addition, our method is designed to produce subgraph patterns

that are overrepresented in either DILI-positive or DILI-negative chemical drugs and thus can provide struc-

tural insights on drug design.

Subgraph generation is done by using the randomwalk (RW) approach, which has been successfully used in

many fields of ML for graph learning.30–33 Basically, performing RW on a graph to generate subgraphs is

highly dependent on the edge weights. To increase the discrimination power of RW, a supervised version

of RW (supervised random walk; SRW) was introduced for link prediction34 and for identifying significant

mutational clusters to classify cancer types.35 We extended SRW methods to handle a set of chemical

drugs. The novelty of our approach is to iteratively update edge weights on a set of chemical graphs in

a supervised way in the framework of generating, testing, and refining subgraphs.

RESULTS

Performance was evaluated using two independent datasets: DILIst and TDC datasets (see Section: liver

toxicity chemical data).
2 iScience 26, 105677, January 20, 2023



Figure 1. Overview of the proposed method

A set of drugs is transformed into graphs and transitions are prepared. SSM produces subgraphs in a supervised manner with optimization in terms of DILI

labels. Doublet preference is used to supervise the whole process by redefining graph transitions. The final subgraph counts are then used for the

classification of DILI. The proposed pipeline is evaluated on two independent DILI datasets: DILIst and TDC-benchmark (See Section: STAR Methods).
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Liver toxicity chemical data

TheDILI datasets used in this study are listed in Table 1. Thedatasetswere retrieved fromThakkar et al. and24 Xu

et al.37 and used as the same in this study including the data splits provided from the original literature—tem-

poral split (before and after 1997) for DILIst and scaffold split for TDC. To consider a drug as a graph, a chemical

drugwas represented in SMILES and converted to rdkitmol andnetworkx graph objects by setting heavy atoms

as nodes and bonds as undirected edges. When there were multiple graphs clustered with ionic bonds, the

largest connected component (a structure composed of only covalent bonds) was selected as the compound

graph. Salts and ions were removed using rdkit SaltRemover. Thus, the numbers in the datasets are different

from the numbers in the references due to the applicability of our analysis framework.

The two datasets are well balanced in DILI class labels with positive vs. negative ratios. The ratio values of

DILIst dataset were 1.55:1 and 1.51:1 for training and validation datasets, respectively, while 1.17:1, 0.26:1,

and 1.09:1 in TDC training, validation, and test datasets, respectively.
Performance evaluation for DILI classification

In the DILIst and TDC-benchmark datasets, SSM generated 10,459 and 9,683 subgraph features, respec-

tively. Our model was compared to three types of existing works: previously reported DILI prediction tools,

state-of-the-art DNN methods, and random forest (RF) on molecular fingerprints.

Comparison to previous DILI prediction tools

As shown in Table 2, SSM achieved the best DILI prediction performance at 0.691, 0.784, and 0.338 in AUC,

F1-score, and MCC, respectively, outperforming ML methods on Mold2 descriptors as well as state-of-the-

art GNNmethods. For both AUC and F1-score, SSM-RF outperformed with significant margins of 0.032 and

0.029 (more than twice greater than the error values - 0.011 for AUC and 0.008 for F1-score), respectively.

The only previously reported approach evaluated on the same dataset was DeepDILI,38 where the perfor-

mance was 0.659 in AUC. They used an ensemble learning approach on the set of base classifiers (logistic

regression, K-nearest neighbors, XGBoost, random forests, and support vector machine) to improve the

prediction power. They compared three different descriptors: Mold2, Mol2vec, and MACCS. DeepDILI

developed on Mold2 descriptor was reported to perform the best on DILIst dataset. Though Mold2

descriptor was developed to describe general aspects of chemical compounds as a 777-long descriptor,39

it was not sufficient for the descriptor to be used for DILI classification. In the literature, as the other descrip-

tors also showed comparable performance (Mol2vec: 0.654 and MACCS: 0.640 in AUC), this reassures that

our approach was effective in generating data-specific features.
iScience 26, 105677, January 20, 2023 3



Figure 2. Subgraph generation on chemical graphs is illustrated using cholesterol as an example

First, cholesterol compound is represented as a plain graph. For each node, transition probability is assigned and a random walker starts to traverse on the

graph in a Markov chain. Subgraph is retrieved out of the visited nodes and edges. This process is run over all the nodes in the graph to generate the set of

subgraphs. Then, unique subgraph counts are returned for cholesterol compound.
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We also achieved the best AUC at 0.923 using random forest classifier for the TDC dataset (Table S1). How-

ever, the performance of previousmodels reached 0.919 in AUC at best by AttrMask, as reported in the official

TDC publication.36 To provide more concrete comparison, we measure different metrics such as F1-score,

MCC, and accuracy (Table S1). As a result, our SSM model outperformed the other methods in AUC, MCC,

and accuracy values. Among the graph learning methods run in this study, EdgePred was the most effective

in all the performance metrics. We note here that our algorithm was superior to the previous models when

training on DILIst to test on TDC and vice versa (Table S5). For individual prediction results, see Table S6.

Comparison to graph learning methods

As our method uses subgraphs as features, a natural question would be how well the two state-of-the-art

deep graph learning methods perform in DILI prediction. Thus, we compared our model with pre-trained

GINs and two deep graph learning methods, MolHGCN and GraphLOG.26–28 Surprisingly, the perfor-

mance of graph learning methods is similar to that of traditional methods. Among the GNN methods

compared here, GIN-EdgePred was the best performed model at 0.642. We note here that even the

best-performing GNN model (GIN-EdgePred) showed less predictive power than both unsupervised

SSM (AUC: 0.686) and supervised SSM (AUC: 0.691) at the margins of 0.044 and 0.047, respectively.

GraphLOG and MolHGCN achieved 0.577 and in AUC, respectively. Their performance was far behind

even to non-DL methods such as DeepDILI and our unsupervised version. We note here that GraphLOG

predictions were all DILI positive. The two GNN models (GraphLOG and MolHGCN) were also run and

compared on TDC-benchmark dataset. Their performance (GraphLOG: 0.723 and MolHGCN: 0.707) was

far behind even to the best-performed model of our investigation: AttrMask. The main reason why such

powerful graph learning technology does not work for DILI prediction is because the graph learning

methods are not yet powerful enough to handle subgraphs as features and to be trained with insufficient

data. This result is consistent with the findings in a recent research work.29

Comparison to molecular fingerprints

We further checked the prediction power of the refined subgraphs as follows. We first investigated whether

replacing the subgraphs from SSM with widely used molecular fingerprints was effective in DILI prediction.

Most of the existing widely used molecular fingerprints were not effective in DILI prediction with the

highest AUC of 0.631 on DILIst dataset using Avalon40 fingerprints and 0.895 on TDC-benchmark dataset
4 iScience 26, 105677, January 20, 2023



Table 1. DILI datasets used in this study

Source Label Training Validation Test Total

DILIst Pa

N

455

293

148

98

603

391

TDC P

N

175

150

11

43

50

46

236

239

The DILIst dataset was retrieved from Thakkar et al.24 and the TDC benchmark DILI dataset was retrieved from Huang et al.36

aP: DILI-Positive, N: DILI-Negative.
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using klekota-roth41 fingerprints (Table S2). Other fingerprints, such as Morgan,42 Pubchem,43 MACCS,44

and daylight,45 were also ineffective in DILI prediction. As mentioned in Section: research problem and

motivation, such fingerprints are not powerful enough to describe chemical structures although they are

known to be effective for capturing general chemical features. Overall, it is evident that our strategy was

successful in mining subgraph features for liver toxicity and consequently increased the prediction power

of our algorithm.
Performance evaluation of experimental settings and predictions of SSM

Various parameter combinations were tested for performance optimization, such as the length of random

walks ðlÞ, augmentation level ðhÞ, and the rate of updating graph transitions ðaÞ. The number of allowed

random walks ðlÞ varied from 1 to 10 to investigate to how much extent subgraph mining is needed.

Applying l = 1 is equivalent to mining only doublets as subgraphs, where the best model AUC is 0.635.

Allowing higher l gradually improved the performance until l = 7, while there was a decreasing trend af-

terward (Table S3). This is because larger subgraphs tend to occur in a smaller number of times, thus

increasing the sparsity (see Section: discussion). To reduce the sparsity of the subgraph count matrix, we
Table 2. Performance comparison of SSM to previous studies on DILIst dataset was retrieved from24

Model AUC F1-score MCC Accuracy

SSM

SSM - RF (margin

to DeepDILI)

0.691 G 0.011 (+0.032) 0.784 G 0.008 (+0.029) 0.338 G 0.030 (+0.007) 0.687 G 0.005 (�)

SSM - MLP 0.654 G 0.008 0.752 G 0.007 0.240 G 0.019 0.639 G 0.006

SSM - soft voting:

RF & MLP

0.664 G 0.008 0.760 G 0.007 0.264 G 0.020 0.683 G 0.004

Mold2 descriptor

DeepDILI 0.659 0.755 0.331 0.687

XGBoost 0.651 0.015 0.732 G 0.012 0.219 G 0.037 0.642 G 0.016

RF 0.658 G 0.012 0.736 G 0.009 0.225 G 0.030 0.645 G 0.013

SVM 0.645 G 0.009 0.752 G 0.008 0.220 G 0.035 0.646 G 0.013

KNN 0.580 G 0.021 0.657 G 0.020 0.125 G 0.038 0.582 G 0.019

LR 0.628 G 0.009 0.744 G 0.007 0.130 G 0.038 0.617 G 0.011

Deep graph neural network methods

InfoMax 0.624 G 0.009 0.687 G 0.007 0.226 G 0.027 0.627 G 0.011

ContextPred 0.628 G 0.009 0.687 G 0.030 0.242 G 0.029 0.632 G 0.018

EdgePred 0.642 G 0.010 0.690 G 0.021 0.261 G 0.025 0.639 G 0.015

AttrMask 0.608 G 0.009 0.653 G 0.032 0.203 G 0.032 0.606 G 0.022

MolHGCN 0.541 G 0.024 0.669 G 0.023 0.087 G 0.051 0.576 G 0.025

GraphLOG 0.577 G 0.017 0.751 0.000 0.602

Standard error of DeepDILI was not provided from the original article.

Performance without errors in GraphLOG indicates that all predicted values were DILI-positive.

The performance values of the previous models on DILIst data were built on Mold2 descriptor. Performance comparison on

TDC-benchmark DILI dataset36 is provided in Table S1.

iScience 26, 105677, January 20, 2023 5
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Figure 3. Doublet preference used from mined subgraph features

(A) Spectrum of commonly present doublets with probability of each class label.

(B) Doublet preference over iteration of OS and NO. At the initial state (unsupervised), the difference between DILI-

positive and DILI-negative drugs to use of the two bonds was marginal. However, after several steps, the preference was

reinforced to favor the either of the DILI labels.
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applied augmented random walk that independently generates more subgraphs on each of the nodes in a

graph. As a result, generating more subgraphs was effective than generating single subgraphs for each

node when comparing h = 1 and h = 3 (Table S4). However, increasing the level of augmentation resulted

in a steady decrease in performance. Varying a did not show a significant difference in performance.

Testing on both the a = 0:1 and a = 0:5, the AUC values were 0.684 and 0.690, respectively.

Doublet preference: Indicators to reflect the difference in DILI labels

As doublets are the most basic unit to build chemistry, doublet preference was first explored for DILI-pos-

itive/negative drugs. The spectrum of the doublet preference is shown in Figure 3A. Aromatic bonds (C:O

and C:S) are found to be more preferred by DILI-positive drugs to DILI-negative drugs (89.3% and 70.8%

DILI-positive preference, respectively). It was also interesting that C-F bond is prevalent in subgraph

features of DILI-positive drugs, while C-Cl bond is the opposite even though both F and Cl are in the

same halogens. When the halogen is changed to iodine, DILI-negative compounds are found to be

prevalent at 82.0%. Thus, it is found that the larger the halogen element bonded to aliphatic carbon

(C-F > C-Cl > C-I), the less liver toxicity is likely to be found in chemical compounds. We note here that

N-N and O=S bonds are also found to be strong toxic alert candidates in the previous literature.46

To investigate howdoublet preference changesover iterations, bothOSandNOwere chosen as examples (Fig-

ure 3B). Both of the doublets are more frequently found and used by DILI-positive drugs at the first step (SSM

without supervision). As supervision applied, the preference of both doublets to DILI-positive drugs increased.

Convergence of transitions

We first investigated how fast each of the transition matrices converges over iterations. Figure S2 shows the

convergence of the drugs in DILIst dataset. All the transition matrices converge dramatically at the begin-

ning of the iteration. After several iterations, there are subtle fluctuations at later iterations. The top 3

convergent drugs are AMANTADINE (CID: 2130), TERBUTALINE (CID: 5403), and PROPOFOL (CID:

4943) and the least 3 convergent drugs are FOSFOMYCIN (CID: 446987), CID: 16682735, and CID: 5255827.

When we ranked the drugs in terms of the convergence rate of the corresponding transition matrix, there

was a no statistically significant difference in the rate of convergence between DILI-positive and DILI-nega-

tive drugs as shown in Figure S3 (p = 0.3148; Kolmogorov-Smirnov test). To investigate whether such

differencewas not correlatedwith chemical properties, the convergence rankwas comparedwithmolecular

weight, logP, the number of rings, and the number of aromatic rings (Figure S4). No significant correlation

was observed between the convergence rate and either ofmolecular weight and logP. However, there was a

slight correlation between convergence and the number of ring systems. There was a steady decrease in

convergence as the number of rings starts from 0 to 6 (third panel of Figure S4). However, gradual increase

in the convergence rate was observed in growing number of aromatic rings (fourth panel of Figure S4).
6 iScience 26, 105677, January 20, 2023



Table 3. Twenty-nine subgraphs with feature importance > 0.001 and entropy < 0.5

SMILES

Support (Train) Support (Valid)
Importance

x (1e-2)F_NT F_T F_NT F_T

CCNN 0.34 2.86 1.02 – 0.094

C[C@](C)(C)C 0.34 3.08 – – 0.064

cNc(c)c – 1.98 – 2.03 0.057

C[C@H](C)CO – 2.20 4.08 0.68 0.048

nncS – 1.76 – – 0.044

cSccc – 2.42 – 0.68 0.042

NNC=O – 2.20 – 1.35 0.042

cScc 0.34 2.86 – 0.68 0.040

cncc[nH] – 1.54 – 0.68 0.030

CCOCn – 1.10 2.04 – 0.022

CC(=C)N – 1.98 1.02 0.68 0.021

cc(c)o – 1.76 – 1.35 0.020

C=CN – 1.31 2.04 0.68 0.019

CCC=CN – 1.10 – 0.68 0.018

cccBr – 1.54 – 1.35 0.018

ccScc – 1.76 – 1.35 0.018

ccCNCCNC – 1.32 – 1.35 0.017

cccCNCCCC – 1.10 1.02 2.03 0.017

CC(N)=CC – 1.32 1.02 – 0.016

Coc – 1.10 – 0.68 0.011

cc(N)cS – 1.32 – – 0.011

cCNCC = O – 1.10 1.02 – 0.011

C[C@@H](C)CO – 1.98 4.08 2.70 0.011

C/C(c)=N – 1.10 – 0.68 0.010

C=C[C@H](C)C – 1.10 – – 0.010

C1=CCCCC1 – 1.10 1.02 0.68 0.010

C=C/CO – 1.54 3.06 – 0.010

NC=CCS – 1.10 – – 0.010

C[C@@H](C)CCCC – 1.10 – 1.35 0.010

CNCC=O – 1.10 – 0.68 0.010

cccSC – 1.10 – 0.68 0.010
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DISCUSSION

To train ML models from data, features need to be well defined, and the amount of data needs to be suf-

ficient. Often, both data and features are well defined in ML model development. However, the amount

of data in the case of DILI prediction is very small (Table 1). Widely used features such as molecular finger-

prints have limitations in discovering important features of chemical compounds for DILI (Table S2). In addi-

tion, it is important that DILI features are constructed in a way that allows chemical interpretation. Thus, we

used subgraphs as DILI features. A natural question arises here—what subgraphs are important in terms of

DILI? Thus, we discuss our results in terms of the enrichment of the subgraphs for DILI.
Evaluation of SA potentials of single subgraphs

Doublets are too small in size to reflect the mechanistic diversity in chemistry of various sizes and compo-

sitions. In fact, DILI prediction using l = 1 (using doublets as features) had 0.667 in AUC at best, far behind

the optimized performance (Table S3). Thus, we tried to represent important features using subgraphs. To

understand the behavior of our model on the chemistry side, the SA potentials of single subgraphs were
iScience 26, 105677, January 20, 2023 7



A cNc(c)c

C NNC=O

F CCC=CN

E ccCNCCNC

D cccBr

B cSccc

Figure 4. Examples of single SA identification

(A) cNc(c)c, (B) cSccc, (C) NNC=O, (D) cccBr, (E) ccCNCCNC, and (F) CCC=CN. For each SA, matched patterns in each of the drugs are highlighted. All the

drugs here are labeled as DILI-positive.
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investigated using the feature importance of the trained RF model. For DILIst dataset, our model gener-

ated 10,459 subgraphs, of which 5,233, 2,736, and 2,490 subgraphs were present in DILI-positive-only,

both, and DILI-negative-only drugs, respectively.

The 762 subgraphs were considered important with entropy < 0.5 and feature importance > 0.0001 in clas-

sifying DILI compounds (Table S7). Entropy was measured on each subgraph by comparing the support

between DILI-positive and DILI-negative drugs. Feature importance was calculated from random forests

classifier. Among the subgraphs, 29 subgraphs of greater support in DILI-positive drugs than in DILI-nega-

tive drugs with more than 1% support in DILI-positive drugs were considered as single-subgraph SAs in

this study (Table 3). Among them, sixteen subgraphs (red-colored in Table 3) showed high fidelity to
8 iScience 26, 105677, January 20, 2023



Table 4. DiSCs enriched to ATC code

ATC Description DiSC

Total Drugs Matched Drugs

p-value CoverageDILIp DILIn DILIp DILIn

2-subgraph DiSCs

A03 Drugs for functional gastrointestinal disorders C=O.COccO 5 4 0 1 7.72e-3 0.11

A10 Drugs used in diabetes CCCCCCNC.CCc 1 11 0 3 9.78e03 0.25

C01 Cardiac therapy cCCN.cO 9 10 5 1 1.77e-3 0.32

C03 Diuretics CCC.ccccS 4 8 2 1 8.04e-3 0.25

C07 Beta blocking agents CCCNC.cc(c)C=O 7 6 0 3 3.80e-3 0.23

C08 Calcium channel blockers CCC.cC(C)CC 4 10 2 2 6.85e-3 0.29

C09 Agents acting on the renin–angiotensin system CCCCCCNC.CCc 2 12 0 4 7.31e-3 0.29

C10 Lipid modifying agents cC=O.cOCC 2 9 1 1 6.14e-3 0.18

J01 Antibacterials for systemic use Cccc.O=CCNC=O 11 39 5 16 4.21e-5 0.42

J05 Antivirals for systemic use CCC.cc(n)N 4 7 2 0 5.01e-3 0.18

L01 Antineoplastic agents CN.cCCO 11 29 6 6 6.18e-6 0.30

M01 Anti-inflammatory and antirheumatic products Ccc.cc(c)c 2 11 1 2 5.30e-3 0.23

M03 Muscle relaxants, directly acting agents C=O.CC[N&+](C)C 5 7 3 0 5.57e-3 0.25

N01 Anesthetics C1CCNCC1.Cc(c)ccc 5 7 2 1 8.94e-3 0.25

N02 Analgesics CC.cC(C)CC 13 6 9 0 7.61e-3 0.47

N03 Antiepileptics CN.cC(C)CC 2 10 1 2 9.05e-3 0.25

N05 Psycholeptics CCC.ccccS 18 28 2 8 9.98e-8 0.22

N06 Psychoanaleptics ccccN.cn 5 22 0 4 9.74e-6 0.15

P01 Antiprotozoals C1CCNCC1.Cc(c)ccc 3 8 0 2 6.71e-3 0.18

R06 Antihistamines for systemic use CO.C1CCNCC1 8 6 3 1 7.35e-3 0.29

3-subgraph DiSCs

A03 Drugs for functional gastrointestinal disorders C=O.COccO.CNCC 5 4 0 1 7.72e-3 0.11

A10 Drugs used in diabetes ccC.cccCCN.CC 1 11 0 2 4.17e-3 0.17

C01 Cardiac therapy ccO.cCCN.cO 9 10 5 0 6.39e-4 0.26

C07 Beta blocking agents CC(C)N.cOC.CCCcc 7 6 3 0 4.29e-3 0.23

C08 Calcium channel blockers CC.cC(C)CC.CCN(C)CC 4 10 0 2 1.37e-3 0.14

C09 Agents acting on the renin–angiotensin system cCC.ccCCCN.CC 2 12 1 3 7.41e-3 0.29

C10 Lipid modifying agents cC.ccc(c)c.c1ccccc1 2 9 0 2 6.94e-3 0.18

J01 Antibacterials for systemic use Cccc.CCSCC.O=CCNC=O 11 39 4 15 1.21e-5 0.38

J05 Antivirals for systemic use CCC.cc(n)N.cn 4 7 2 0 5.01e-3 0.18

L01 Antineoplastic agents CCC.cCCO.cO 11 29 5 4 6.63e-7 0.23

M03 Muscle relaxants, directly acting agents CCC.OccO.C=O 5 7 2 1 8.94e-3 0.25

N01 Anesthetics C=O.C1CCNCC1.Cc(c)ccc 5 7 2 1 8.94e-3 0.25

N02 Analgesics CCCO.cCCN.Cccccc 13 6 9 0 7.61e-3 0.47

N05 Psycholeptics cccN.cccS.CCN(C)C 18 28 2 7 4.70e-8 0.20

N06 Psychoanaleptics CC.COccO.CNCC 5 22 2 7 4.06e-6 0.11

P01 Antiprotozoals cc.cccccc.Cc(c)ccc 3 8 0 2 6.71e-3 0.18

R06 Antihistamines for systemic use CO.C1CCNCC1.Cc1ccccc1 8 6 3 1 7.35e-3 0.29

The subgraph patterns were retrieved for those of p-value less than 0.01 and the coverage on the corresponding ATC code more than 10%. In this table, only 20

and 17 representative patterns with the maximum coverage for each ATC code are displayed for 2-subgraph and 3-subgraph patterns, respectively. ATC code

(level 2) was matched to each drug for upon availability. Full list of DiSCs, matched CIDs, and SMILES information is provided in Table S8. (p-values were calcu-

lated by chi-square test).

ll
OPEN ACCESS

iScience 26, 105677, January 20, 2023 9

iScience
Article



Figure 5. ‘‘ccccN.cn’’ enriched to ATC code: N06 (Psychoanaleptics)

The matched drugs are displayed along with subgraph pattern as highlighted.
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DILI-positive drugs in both training and test datasets. For example, cNc(c)c was exclusively present in 1.98%

of DILI-positive drugs. This pattern was similarly observed in the test data with 2.03% coverage for DILI-

positive drugs. For selected subgraphs (cNc(c)c, cSccc, NNC=O, cccBr, ccCNCCNC, and CCC=CN),

matched drugs are displayed in Figure 4. We were able to observe that there are commonly present sub-

structures within the subgraph-matched drugs of each panel in Figure 4. For example, in case of cNc(c)c

(Figure 4A), seven out of nine drugs (piperacetazine, chlorpromazine, cyamemazine, perphenazine, trime-

prezine, phenothiazine, and promethazine) share phenothiazine moiety as common backbone structure.

They are all categorized as tricyclic antidepressants. This was also the case in cSccc-matched drugs (Fig-

ure 4B) as nine out of eleven drugs are of phenothiazine-based tricyclic antidepressants. We note that

none of the subgraphs displayed in Figures 4A–2F were found in DILI-negative drugs. Thus, we were

able to observe that these subgraphs are single-subgraph SAs.

Discriminative subgraph combinations of DILI with respect to the drugs’ ATC code

A set of subgraphs is mixed up in a single compound, and they co-occur at different positions with varying

inter-distances. We want to discover a set of subgraphs that are overrepresented in DILI-positive/negative

compounds. Thus, a set of these subgraphs is referred to as discriminative subgraph combinations (DiSC)

and further considered as potential SAs for DILI-positive drugs. We used SMILES arbitrary target specifica-

tion (SMARTS) language47 to combine individual subgraphs where ‘‘.’’ notation denotes a combined string

representation of subgraphs. There are 500 and 368 subgraphs for DiSC identification in DILIst and TDC-

benchmark datasets, respectively. We experimented on 2-subgraph and 3-subgraph combinations in this

study. Detailed methods are described in Discriminative Subgraph Combinations.

We investigate whether subgraph combinations are enriched according to Anatomical Therapeutic Chem-

ical Classification System (ATC) code of the matched drugs (See Discriminative Subgraph Combinations

and Table 4). There are 68 and 44 DiSCs of 2-subgraph and 3-subgraph combinations in DILIst dataset,

respectively. (Table 4).
10 iScience 26, 105677, January 20, 2023



Figure 6. ‘‘Cccc.C=CCNC=O’’ enriched to ATC code: J01 (Antibacterials for systemic use)

The matched drugs are displayed along with subgraph pattern as highlighted.
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Among the 2-subgraph DiSCs, drugs with ‘‘ccccN.cn’’ on ATC:N06 (psychoanaleptics) and

‘‘Cccc.O=CCNC=O’’ on ATC:J01 (antibacterials for systemic use) are displayed in Figures 5 and 6, respec-

tively. Drugs matched with ‘‘ccccN.cn’’ on ATC:N06 were mirtazapine, tacrine, nefazodone, and trazodone.

Both nefazodone and trazodone share the common backbone structure that is not found in any of DILI-pos-

itive drugs without the pattern. There are 16 out of 39 DILI-positive drugs matched with ‘‘Cccc.O=CCNC=O’’

on ATC:J01 drugs (Figure 6). Among the 3-subgraph DiSCs, drugs with ‘‘cccN.cccS.CCN(C)C’’ on ATC:N05

(psycholeptics) and ‘‘CC.cC(C)CC.CCN(C)CC’’ on ATC:C08 (calcium channel blockers) are displayed in

Figures 7 and 8.
iScience 26, 105677, January 20, 2023 11



Figure 7. ‘‘cccN.cccS.CCN(C)C’’ enriched to ATC code: N05 (Psycholeptics)

The matched drugs are displayed along with subgraph pattern as highlighted.
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Limitations of the study

There are two limitations when using individual subgraphs as SA candidates. First, there is a trade-off

between coverage and specificity. A small-sized subgraph is likely to be found in a significant

number of drugs, resulting in many false positives. In contrast, with a large subgraph, the coverage for

DILI-positive/negative drugs is decreased. Among the exclusively present SAs, only six (C[C@](C)(C)C,

CCNN, cScc, cSccc, NNC=O, and C[C@H](C)CO) exceeded 2% fidelity to DILI-positive drugs in the

training data. Second, single subgraphs cannot account for the variations derived from bioisosteres.48

Partial modifications outside the core structure of the toxic motifs can lead to similar toxicity mecha-

nisms.49 Thus, we extended our approach to ‘‘structured SAs’’ to suggest extended SAs with both specific

and meaningful coverage against DILI-positive drugs.

Besides, as mentioned in Results that DL methods suffer from the lack of data in DILI classification,

our method can also be improved by incorporatingmore DILI information. Recent studies in graph learning

extensively use pre-training strategies using a large-scale non-labeled chemical database (e.g. Zinc lead
12 iScience 26, 105677, January 20, 2023



Figure 8. ‘‘CC.cC(C)CC.CCN(C)CC’’ enriched to ATC code: C08 (Calcium channel blockers)

The matched drugs are displayed along with subgraph pattern as highlighted.
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compounds) to build an embedding of chemical compounds with rich structural diversity. Future methods

can be directed to leverage non-labeled chemical structures in building subgraph features.

Finally, potential SAs need to be experimentally verified, which is costly and time consuming. An effective

strategy would be to prospectively examine the presence of these DILI-alert and DILI-safe subgraphs in

newly reported toxic drugs. On the computational side, our algorithm does not guarantee the discovery

of all subgraphs overrepresented in toxic drugs. The main reason is that subgraph generation using

SRW does not enumerate all possible subgraph set, although the iterated supervision on doublet proba-

bilities has shown good convergence behavior. Another important graph mining issue is that subgraphs

from DILI datasets may not be sufficient to estimate the true distribution of chemical compound space

in terms of DILI. DL-based link prediction methods can be extended for this purpose, but the technology

is not yet powerful enough to overcome problems of insufficient data.

Conclusion

Our work explicitly uses subgraphs as features to classify the liver toxicity of chemical drugs. To the best of

our knowledge, our approach is the first subgraph mining approach for DILI prediction. Our contributions

can be summarized as follows. First, the prediction accuracy of chemical toxicity outperforms the previous

tools and state-of-the-art GNNmethods. Second, subgraphs with high/extreme fidelity to DILI were exten-

sively searched for by iterative supervision on graph transitions. Thus, the subgraph population can be

directly used to catalog structural characteristics and to infer mechanism of DILI. We compiled 762

potential single SAs and 68 DiSCs enriched to either DILI label. Finally, our report can be extended as a

computational guidance to structure-based drug design, as both DILI-alert and DILI-safe subgraph sets

are prepared against many disease targets (ATC codes).
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Sun Kim (sunkim.bioinfo@snu.ac.kr).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d DILIst data set can be found in Li et al.38 and TDC benchmark data set can be found in https://

tdcommons.ai/single_pred_tasks/tox/#dili-drug-induced-liver-injury.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. The

DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

An overview of the proposed method is illustrated in Figure 1. Each part is explained in detail as follows.

� Preliminaries

� Generate candidate subgraphs by supervised random walks

� Updating Graph Transitions

� Experiments for Performance Evaluation

� Structural Alert Mining from Subgraph Features
Preliminaries

A chemical compound is transformed into an undirected and unweighted graph g = CVðgÞ;EðgÞD that

consists of a set VðgÞ of nodes (heavy atoms) and a set EðgÞ of edges (bonds). The degree and adjacency

matrices of g are denoted as Dg and Ag, respectively. The transition matrix of g is defined as Tg = D� 1
g Ag.

For a set S of graphs that are labeled DILI-positive or DILI-negative, the doublet preference FS denotes the

frequency table with counts of both labels for each distinct doublet found in S (Figure S1). In addition, a is a
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hyperparameter for updating graph transitionmatrix Tg; k denotes the number of iterations; l is the number

of allowed walks; h is the number of subgraphs for the augmentation.

Supervised subgraph mining algorithm

The workflow of our subgraph mining algorithm is illustrated in Figure 1 and Algorithm 1. Subgraphs are

generated using a supervised RW-based approach so that subgraphs are overrepresented in either

DILI-positive or DILI-negative class labels, not both. The final subgraphs set S is stored and used for the

next iteration. This process is iteratively executed by updating the graph transitions ðTgÞ of each chemical

graph g using the doublet preference ðFSÞ. From the subgraph sets stored as a result of each iteration, the

subgraph set with the highest accuracy is selected as the final feature for the DILI prediction model. The

whole procedure is described more formally in Algorithm 1.
Algorithm 1. Overall procedure of supervised subgraph mining
Generate candidate subgraphs by supervised random walks

As in Algorithm 1, subgraphs are generated for each of the nodes in a chemical graph ðgÞ. For each node in

VðgÞ, a random walker selects one of its direct neighbors based on transition probabilities in Tg. The selec-

tion of nodes and edges by the walker is recorded for a preset number of randomwalks ðlÞ in aMarkov chain

model. Then, the final sets of two node and edge lists are used to mine a subgraph. We allowed multiple

subgraphs to be generated from each node by setting up h augmentation so that they independently
iScience 26, 105677, January 20, 2023 17
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traverse the compound graph, generating h
P

gjVðgÞj subgraphs. The final subgraph information of g is

then translated into a frequency table.

As an example, in Figure 2, cholesterol is transformed into an undirected and unweighted graph where the

nodes are heavy atoms and the edges are bonds between the atoms. Then, for carbon numbered 2, a walker

traverses the cholesterol graph with ten walks allowed (l = 10) producing the list of visited nodes (blue-colored

numbers from 1 to 10). The subgraph retrieved using the graph traversal information is CCC[C@H](C)C (in

SMARTS). This process is applied to all the nodes in the cholesterol graph to generate subgraphs. There

are 28 subgraphs with h = 1. The subgraphs are summarized by which and how many subgraphs are gener-

ated. Thus, the final frequency table of cholesterol is {CCCC:6, CC(C)C:3, CCC[C@H](C)C: 2, .}.

Updating graph transitions

Subgraphs set S as a result of each iteration is used to update the graph transitions for the next iteration. For

this process, all subgraphs in S are decomposed into doublets, and the doublets are counted for each class of

origin. This means that the subgraph outcome is translated into a doublet-based class preference regarding

howmany timedoublets are used in both class labels. The counts are then normalized to probabilities for each

doublet to calculate the doublet preference ðFSÞ. In Figure S1, there are selected subgraphs from two example

drugs fromboth class labels. These subgraphs are decomposed into doublets, resulting in 13 unique doublets

as a union set. Then, subgraphs are counted for each class of origin. There are 2 and 1 C-C subgraphs in the

DILI-positive and DILI-negative classes, corresponding to 0.67 and 0.33 probability values, respectively.

Finally, the transition matrix Tg of each compound graph g is updated using the doublet preference FS de-

pending on the given class label of a compound. Given an adjacency matrix Ag = ½aij� and a doublet pref-

erence FS of a compound graph, the temporary transition matrix is built as T 0
g = ½t0ij �, where t0ij = SupP

ij =

ðSupP
ij + SupN

ij Þ if aij = 1 and the doublet consisting of vertices (=heavy atoms) i, j and their connecting

edge (=bond) exists in FS ; otherwise, t
0
ij = 0. SupP

ij and SupN
ij are the DILI-positive and DILI-negative fre-

quencies of the doublet in FS , respectively. Subsequently, T
0
g is row-wise normalized (

P
jtij = 1). As there

are k iterations, Tk
g is updated using T 0

g at iteration k with parameter a to calculate Tk + 1
g , where varying

the hyperparameter a controls the rate of supervision (Equation 1).

Tk + 1
g = aTk

g + ð1 � aÞT 0k
g (Equation 1)

Experiments for performance evaluation

DILI prediction was performed by the ensemble of both random forest (RF) and multi-layer perceptron

(MLP) classifiers of the sklearn library (version 0.23.2) of Python 3.7.7 on the subgraph count matrix

from SSM. We chose the best performed model by combining both of the classifiers. For the RF classifier,

the number of base trees was 100. For the MLP classifier, two layers were stacked with 1024 and 128 neu-

rons for the first and second layer, respectively. Other parameters were set default unless mentioned

elsewhere. Area under the ROC Curve (ROC-AUC) was used as a metric of performance. The results

from the previous DILI prediction tools were retrieved from37,38 and directly compared in this study.

Also, selected state-of-the-art GNN methods (GraphLOG,27 MolHGCN and GIN36) are directly run on

the same DILI data sets in this study. For supervised subgraph generation, we tested all parameter com-

binations for l = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, a = f0:1; 0:5g, and h = f1; 3; 5; 10; 20g.
Structural alert mining from subgraph features

Single-subgraph SAs

Subgraphs that are mined by our SSM algorithm are overrepresented in either DILI-positive or DILI-negative

drugs. In addition, individual subgraphs are tested for their predictive power for DILI with independent data

sets. We chose important subgraphs with feature importance > 0.0001 (greater than random importance)

from the random forests model and entropy < 0.5 at the individual subgraph level as single-subgraph SAs.

Discriminative subgraph combinations

A potential SA is a set of subgraphs that co-occur in many toxic compounds but not necessarily at consec-

utive positions of a compound. Thus, we name this set of subgraphs as Discriminative Subgraph Combina-

tions (DiSCs).
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However, there are twomajor challenges for mining potential SAs by combining subgraphs. First, there are

small subgraphs with many overlapping parts due to their similar chemical composition: as we can see in

the DILIst data that the average numbers of nodes and edges in the subgraphs are 6.11G 1.25 and 5.16G

1.27, respectively. Thus, we need to effectively combine them to increase the coverage of subgraphs in

toxic drugs. Second, it is computationally infeasible to enumerate all possible subgraph combinations.

Our SSM produced 10,459 subgraphs (see Section: results). Combining two of the 10,459 subgraphs

from SSM requires to consider

�
10; 459

2

�
= 54,690,111 combinations. In general, these would require

considering
P10;459

k = 2

�
10; 459

k

�
combinations. Thus, a strategy to combine all subgraphs would result in

many false-positive SAs, although we did investigate whether subgraph combinations are overrepresented

in toxic compounds.

We tackle the problem of characterizing DiSCs as follows: (1) mining non-overlapping subgraphs by utiliz-

ing SMARTS based pattern matching (2) iterative extension upon promising DiSC candidates. To cope with

the exponentially large search space, we utilized a branch-and-bound like search tree pruning.

In this study, we restricted the template subgraphs to be combined into SMARTS pattern at 2% minimum

support against the whole data drugs. This is because the individual subgraphs are sufficiently large

enough to be matched against compound graphs, thus, combining more than three subgraphs hardly pro-

duces informative SAs, rather produces highly sparse SAs. Moreover, considering all possible N combina-

tions of subgraphs requires exponential computational cost, which is not feasible. As we have selected the

individual subgraphs for DiSC as those with more than 2% support, there are 500 and 368 subgraphs used

for DILIst and TDC-benchmark data sets, respectively.

1. Among the found subgraphs s˛ S, those with support less than 2% are dropped. For the remaining

ones, if s and s0 have same support (occurs in the same set of compounds) while s0 is a subgraph of s,

s0 is again dropped.

2. Remaining subgraphs are considered as 1-mer SAs ðC1Þ; we repeat the following step to find k-mer

SAs ðCkÞ for 1k >.
(a) For c ˛Ck� 1 and subgraph s˛S � Ck� 1, we generate the SMARTS pattern for c0 = cWfsg to Ck� 1

by using grouping operator ‘.’.

(b) Match the generated pattern to the set of compounds to find support on DILI-positive ðSupPÞ and
support on DILI-negative ðSupNÞ drugs, and compute entropy-based significance score of the sup-

port values to see whether this k-mer is a potential SA. The significance is computed as:

1 � Entropy
�
SupP ;SupN

�
(c)If the significance or support is below the predefined criteria (resp. 0.1 and 0.02), we define this to be

(resp.) insignificant/infrequent and discard from further enumeration. Otherwise, we add c0 to Ck .

As the potential SA pattern grows in size, support does monotonically decrease, but in general entropy

does not. Nevertheless, to explore the vast search space effectively, our approach can be interpreted as

growing the promising SAs. We note that for initial C1, entropy cutoff is not applied, due to small generic

backbone subgraphs such as short carbon chains appearing universally among both toxic and nontoxic

compounds. Application of entropy cutoff toC1 can lead to a premature termination of the search, ignoring

meaningful combination of small motifs that can be informative in identifying toxic compounds.

To make our results interesting, DiSCs were investigated against ATC code of the data set drugs.
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