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Abstract: Aluminum (Al) solubilizes into trivalent ions (Al3+) on acidic soils, inhibiting root growth.
Since about 13% of global rice cultivation is grown on acidic soils, improving Al tolerance in rice may
significantly increase yields. In the present study, metabolome analysis under Al toxicity between
the Al-tolerant variety Nipponbare and the Al-sensitive variety H570 were performed. There were
45 and 83 differential metabolites which were specifically detected in Nipponbare and H570 under
Al toxicity, respectively. Furthermore, the results showed that 16 lipids out of 45 total metabolites
were down-regulated, and 7 phenolic acids as well as 4 alkaloids of 45 metabolites were up-regulated
in Nipponbare, while 12 amino acids and their derivatives were specifically detected in H570, of
which 11 amino acids increased, including L-homoserine and L-methionine, which are involved
in cysteine synthesis, L-ornithine and L-proline, which are associated with putrescine synthesis,
and 1-aminocyclopropane-1-carboxylate, which is associated with ethylene synthesis. The contents
of cysteine and s-(methyl) glutathione, which were reported to be related to Al detoxification in
rice, decreased significantly. Meanwhile, putrescine was accumulated in H570, while there was no
significant change in Nipponbare, so we speculated that it might be an intermediate product of Al
detoxification in rice. The differential metabolites detected between Al-tolerant and -sensitive rice
variants in the present study might play important roles in Al tolerance. These results provide new
insights in the mechanisms of Al tolerance in rice.

Keywords: rice (Oryza sativa L.); aluminum toxicity; metabolome analysis; lipids; phenolic acids;
cysteine; putrescine

1. Introduction

About 40% of the world’s total land area is acidic, and over 50% of arable land is
distributed in acidic soil areas [1]. Moreover, about 13% of global rice cultivation is grown
on acidic soils. Aluminum (Al) is the most abundant metal in the earth’s crust; it is dissolved
from soil and released into the rice rhizosphere in the form of soluble Al3+ under pH values
lower than 5.0 [2]. A high concentration of Al3+ can damage root systems, and inhibit the
uptake of water as well as mineral nutrients, resulting in reduced rice yield [3–6]. Therefore,
Al toxicity is considered a major limiting factor for rice production in acidic soils.

The response to Al toxicity in plants is an inducible process. There are two mechanisms
of Al resistance in plants, i.e., internal and external Al detoxification [7,8]. In previous
studies, it was found that organic ligands such as organic acids [9–12], proteins [13] and
other phenols [14] could form stable complexes with Al3+ in the cell wall or membrane, so
Al3+ could be transported into the vacuole, out of plasma membrane or fixed in cell walls
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for the completion of internal detoxification [7,8,15]. Furthermore, the release of phenolic
compounds [14], the formation of an adhesive layer [16], and the exudation of organic
acids [11], as well as the secretion of phosphate [17], can form a non-toxic complex with
metal ions in the extracellular area, preventing Al from entering cells [15]. The Al-activated
malate transporter (ALMT) releases malate anions [18–21], which, together with multidrug
and toxic compound extrusion (MATE)-secreting organic acids [22,23], are the two major
mechanisms against Al toxicity in external Al detoxification.

In rice (Oryza sativa L.), the genes associated with Al tolerance identified by molec-
ular and genetic studies can be roughly grouped into the following categories [15]: the
ALMT family (regulating malic acid exudation) [18–21], MATE family (mediating citric
acid exudation) [22,23], ABC family membrane transporters (responsible for intracellu-
lar Al redistribution) [24–27], and the natural resistance-associated macrophage protein
(Nramp family, involved in ion transport) [28,29]. Moreover, the transcription factors
ART1 [30], ASR5 [31] and OsWRKY22 [32] were reported to be involved in regulating the
mechanism of Al detoxification in rice [2,33,34]. Several genes related to Al tolerance in
rice have been cloned, including OsMGT1 (magnesium transporter) [35], OsCDT3 (Al3+

binding protein) [30], STAR1 and STAR2 (bacterial ABC transporter) [25], OsALS1 (ABC
transporter) [24] and OsEXPA10 (cell wall relaxation protein) [36], OsFRDL2 (MATE family,
compound excretion gene) [37], OsFRDL4 (MATE family, citrate transporter) [38], and Nrat1
(Nramp family, Al specific transporter gene) [28]. These studies suggest that Al tolerance
in rice is regulated by multiple genes and is pretty complicated. Therefore, the mechanism
of Al tolerance in rice still needs to be further studied and improved.

In recent years, omics techniques, e.g., genomics, proteomics, and metabolomics,
have been applied to dissect the code of complex traits in plants. Based on qualitative
and quantitative analysis of metabolites, metabolomics can be used to analyze metabolic
pathways and networks, as well as the response mechanism of metabolites under stress.
In the present study, we aimed to study the differences in metabolism level between
Al-tolerant and -sensitive rice varieties through metabolome analysis and analyze the
changes of metabolites before and after Al toxicity treatment, as well as supply some useful
information for uncovering the mechanism of Al tolerance in rice.

2. Results
2.1. Identifying Al Tolerance of H570

The RREs (relative root elongation) of Nipponbare, H570, and Kasalath under Al
toxicity were evaluated. The Al tolerance of Nipponbare and Kasalath was identical to that
in previous studies, and the RRE of H570 was 0.27, which showed H570 to be Al-sensitive
(Figure 1).
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2.2. Qualitative and Quantitative Analysis of Metabolites

In the present study, log2 FC (fold change) was used to demonstrate regulatory levels of
metabolites. The positive value of log2 FC showed that the metabolites were up-regulated,
while the negative value showed that they were down-regulated.

The values of log2 FC and VIP (variable importance in projection) values of the OPLS-
DA (orthogonal partial least squares discriminant analysis) models were combined to
screen differential metabolites. The above 611 metabolites were screened according to the
following criteria: (1) metabolites with absolute log2 FC ≥ 1 were selected. (2) based on the
above, metabolites with VIP ≥ 1 were selected.

A total of 611 metabolites were detected based on a UPLC-MS/MS (high-performance
liquid chromatography–tandem mass spectrometry) detection platform and self-built
database (Table S1). According to the classification of the first group of substances, these
metabolites can be divided into nine groups (Figure 2).
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2.3. Multivariate Analysis of Metabolites

Principal component analysis (PCA) was performed on all samples (including QC
(quality control) samples) to determine the separation trend of metabolites between groups
and whether there were differences in metabolites within groups. The analysis showed
little difference in the inter-group metabolome between the different varieties, while there
was a clear separation trend between Nipponbare and H570 (Figure 3A). At the same time,
we also carried out a cluster hierarchical analysis, which showed, intuitively, the differential
metabolome between the two varieties (Figure 3B). The PCA and cluster analysis showed
that the two varieties had different metabolic profiles and indicated high repeatability
within all samples. Moreover, we found that the R2 (PCC (Pearson correlation coefficients))
ranged from 0.774 to 0.959, which indicated a high correlation among the three biological
replications (Figure 3C).
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Figure 3. PCA, cluster analysis, and correlation coefficients among three biological replications.
(A) PCA. PC1 represents the first principal component, PC2 represents the second principal com-
ponent; (B) Cluster analysis. The horizontals are sample names, the verticals are the metabolite
information, different colors are the values obtained after the standardization of relative content
(red represents high content, green represents low content); (C) The correlation coefficients. CK
represents Nipponbare without Al toxicity, H570 represents H570 without Al toxicity, CK-1 represents
Nipponbare with Al toxicity, H570-1 represents H570 with Al toxicity, and mix represents quality
control samples. The sample numbers in all of the following figures are the same.

2.4. Analysis of Differential Metabolites with and without Al Toxicity Treatment

There were 135 differential metabolites screened from Nipponbare, among which
69 metabolites decreased and 66 metabolites increased under Al toxicity (Figure 4A,
Table S2). Additionally, 173 differential metabolites were detected from H570, among which
51 decreased and 122 increased under Al toxicity (Figure 4B, Table S3). The inter-group
distribution of these differential metabolites is shown as Z-score plots (Figures S1 and S2).
To detect the rule of changing metabolites under Al toxicity, a cluster hierarchical analy-
sis was conducted on metabolites with significantly increased or decreased levels. The
profile of metabolism between Nipponbare and H570 before Al treatment was not quite
common, i.e., the contents of many metabolites, e.g., phenolic acids, alkaloids, organic
acids, amino acids and their derivatives, flavonoids, nucleotides and their derivatives,
lignans and coumarins, tannins and quinones, were different (Figure S3A). However, it
was interestingly found that there was no significant change in the content of lipids in the
two varieties before Al toxicity treatment (Figure S3A), but the contents of lipids in H570
were obviously higher than that of Nipponbare after Al toxicity treatment (Figure S3B).
Furthermore, it could be summarized that the metabolism level between Nipponbare and
H570 after Al treatment versus without Al treatment were quite differential (Figure 5). As
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can be seen in Figure 5, increased metabolites in H570 were more than those in Nipponbare.
After nine days under Al toxicity, the contents of most phenolic acids, alkaloids, organic
acids, and other metabolites increased in H570 and Nipponbare, while the contents of lipids
decreased in both varieties (Figure 5).
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Figure 4. Volcano plot of differential metabolites. Each point in the volcano plot represents a
metabolite, and the horizontal coordinate represents the log value of the quantitative difference
multiple of a certain metabolite in two samples. The vertical axis represents the VIP value. (A) Volcano
plot of differential metabolites in Nipponbare; (B) Volcano plot of differential metabolites in H570.
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Figure 5. Cluster heat map of differential metabolites. The horizontal is the sample name, the
vertical is the information of differential metabolites, the clustering tree on the left of the figure is the
clustering tree of differential metabolites, and different colors are the values obtained after standardized
treatment of relative content (red represents high content, green represents low content), Group is
the experimental group, and Class is the categories of different substances. (A) Cluster heat map of
differential metabolites in Nipponbare; (B) Cluster heat map of differential metabolites in H570.

According to log2 FC and VIP values of the differential metabolites, seven metabolites
ranked in the top 20 in Nipponbare were found, including three phenolic acids, two
alkaloids, one lipid and one other (Table 1). In H570, 11 metabolites with two values
ranked in the top 20 were found, including three lipids, two alkaloids, one amino acid
and derivatives, one phenolic acid, one flavonoid and three others; the corresponding
information is shown in Table 2.
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Table 1. The differential metabolites of Nipponbare with |Log2 FC| values and VIP values ranked in the top 20.

Index Compounds Class I Class II
Peak Area Peak Area VIP

Value
Fold_Change Log2 FC p Value

t-Test
TypeCK-1 CK-2 CK-3 CK-1-1 CK-1-2 CK-1-3

Zmhn002334 6-O-Feruloyl-glucose * phenolic acids phenolic acids 9 9 9 227,960 221,680 228,460 1.47 25,114.81481 14.62 4.65 × 10−5 up

pmn001672 Furanofructosyl-α-D-(3-
mustard acyl)glucoside phenolic acids phenolic acids 9 9 9 98,538 123,170 127,000 1.47 12,915.11111 13.66 2.92 × 10−3 up

pmn001671 Furanofructosyl-α-D-(6-
mustard acyl)glucoside phenolic acids phenolic acids 9 9 9 145,410 72,407 65,020 1.47 10,475.44444 13.35 3.33 × 10−2 up

mws1080 Galactinol * others saccharides
and alcohols 88,625 90,779 68,725 442,690 367,210 463,140 1.46 5.130557089 2.36 5.06 × 10−3 up

pmb1096 Indole alkaloids plumerane 409,440 386,920 498,240 1,951,300 1,486,000 1,498,600 1.45 3.812683454 1.93 9.15 × 10−3 up
pmb0490 p-Coum–aroylputrescine alkaloids phenolamine 591,020 477,430 636,660 3526,500 2,265,100 3,138,100 1.44 5.237022831 2.39 9.38 × 10−3 up

Lmhp009890 LysoPC 20:3 lipids LPC 6,123,600 2,431,100 2,568,200 145,090 131,420 243,260 1.43 0.04672972 −4.42 5.08 × 10−2 down

Note: “*” represents that this compound is a isomer which can not be distinguished through mass spectrometry.

Table 2. The differential metabolites of H570 with |Log2 FC| values and VIP values ranked in the top 20.

Index Compounds Class I Class II
PEAK Area Peak Area VIP

Value
Fold_Change Log2 FC p Value

t-Test
TypeH570-1 H570-2 H570-3 H570-1-1 H570-1-2 H570-1-3

pmb0500 N-p-Coumaroyl-N’-
feruloylputrescine alkaloids phenolamine 9 9 9 32,722 20,015 30,617 1.33 3087.185185 11.59 9.73 × 10−3 up

XMP3554 HMBOA alkaloids alkaloids 9 9 9 53,112 22,603 18,683 1.33 3496.222222 11.77 5.09 × 10−2 up

mws1080 Galactinol * others saccharides
and alcohols 165,860 145,240 128,560 1,472,600 1,185,600 1,061,500 1.32 8.460401219 3.08 5.08 × 10−3 up

pme0195 L-Cysteine amino acids
and derivatives

amino acids
and derivatives 1,709,400 1,631,000 1,297,400 115,090 200,150 167,530 1.32 0.104094614 −3.26 4.75 × 10−3 down

Lmhp009802 LysoPE 20:3(2
n isomer) * lipids LPE 408,080 371,710 367,370 54,441 45,010 39,522 1.32 0.121145263 −3.04 3.42 × 10−4 down

Lmhp009890 LysoPC 20:3 lipids LPC 2,757,700 3,972,800 2,445,600 314,980 236,130 210,140 1.31 0.082960081 −3.59 1.34 × 10−2 down

pme0519 D-(+)-Sucrose * others saccharides
and alcohols 169,900 183,510 139,150 1,163,900 866,320 843,040 1.31 5.833319799 2.54 7.82 × 10−3 up

ML10181668 CYCLOLEUCINE others others 58,114 68,032 75,667 576,960 336,390 317,700 1.30 6.099953918 2.61 3.01 × 10−2 up

pmd0146 LysoPC 20:2(2
n isomer) * lipids LPC 483,220 774,760 456,840 93,220 124,720 123,530 1.30 0.199128772 −2.33 2.12 × 10−2 down

Hmbn005951 1,3-O-Di-p-
Coumaroylglycerol phenolic acids phenolic acids 48,318 30,843 36,720 315,380 254,790 179,330 1.30 6.46784201 2.69 1.42 × 10−2 up

pmp000804 Isobavachalcone D flavonoids chalcones 37,408 22,536 22,904 223,310 221,930 157,150 1.30 7.271026458 2.86 6.44 × 10−3 up

Note: “*” represents that this compound is a isomer which can not be distinguished through mass spectrometry.
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2.5. Venn Analysis of Differential Metabolites

The relationship between different metabolites in Al-tolerant and -sensitive varieties
is demonstrated in the form of a Venn diagram. There were 90 common differential
metabolites between Nipponbare and H570. Except for one metabolite i.e., pmn001378
(terpineol mono-glucoside is belonging to lignans) had different regulatory levels; the
remaining 89 differential metabolites maintained the identical regulatory levels. More
than half (48/89, most of which were phenolic acids, alkaloids and organic acids) were up-
regulated, while most of the lipids (35/37) and all of the tannins (3) were down-regulated
in two varieties (Figure 6 and Table S4).
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Figure 6. Venn diagram showing the numbers of differential metabolites between Nipponbare and
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the comparison groups, and the number in the non-overlapped parts represents the number of unique
differential metabolites in the comparison group.

Besides, more than half (27/45, most of which were lipids) of Nipponbare-specific
metabolites were down-regulated, while most H570-specific metabolites were up-regulated
after Al toxicity treatment. Moreover, 18 Nipponbare-specific metabolites were up-regulated
(most of which were phenolic acids and alkaloids) under Al toxicity. After Al toxicity, phe-
nolic acids, amino acids, nucleotides and their derivatives, organic acids, alkaloids and
some free fatty acids were accumulated in Al-sensitive variety, H570 (Figure 6 and Table S4).
However, cysteine, alanylleucine and s-(methyl) glutathione, which have been reported to
be related to Al detoxification in rice [39–41], were significantly down-regulated.

2.6. K-Means Clustering Analysis of Differential Metabolites

We conducted a k-means clustering analysis to study the changing trend of the relative
content of metabolites in Nipponbare and H570. A total of nine clusters were obtained. It
can be seen in Figure 7 that the changing trend of the corresponding differential metabolites
in the Sub-classes 1, 2, 4, 5, 6 and 9 before and after Al toxicity were common between
Nipponbare and H570. Besides, the relative contents of the differential metabolites in
the Sub-classes 1, 4 and 6 increased under Al toxicity, while the metabolites in Sub-class
5 decreased. The 41 metabolites in Sub-class 2 clusters were down-regulated in Nipponbare
under Al toxicity, but significant changes of these metabolites were not detected in H570.
Furthermore, it was discovered that most of the above 41 metabolites were alkaloids,
organic acids, and phenolic acids. In Sub-class 9 clusters, there was no significant change in
the relative contents of 44 metabolites before and after Al toxicity in Nipponbare, while
the expression of 44 metabolites in Sub-class 9 was up-regulated under Al toxicity in H570,
and most of them were phenolic acids and flavonoids (Figure 7 and Table S5).
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The changing trend of the metabolites in the remaining three clusters differed greatly
between Nipponbare and H570 under Al toxicity. Most of the relative contents of the
35 metabolites in Sub-class 3 were common between Nipponbare and H570 before Al
toxicity. However, the contents in Nipponbare increased a little under Al toxicity, while
the contents in H570 increased greatly. Phenolic acids accounted for a large proportion
of these up-regulated metabolites. The relative contents of the 26 differential metabolites
in Sub-class 7 showed no significant change between Nipponbare and H570 before Al
toxicity, but they showed an obvious rise after Al toxicity, especially for H570. Although
the relative content of 58 metabolites in Sub-class 8 decreased in both varieties under
Al toxicity, the trend of change was not consistent. The relative content of H570 was
lower than that of Nipponbare before Al toxicity but higher than that of Nipponbare after
Al toxicity. Meanwhile, it should be noted that nearly 83% of these metabolites were
lipids; lysophosphatidylcholine (LPC, 20/48), lysophosphatidylethanolamine (LPE, 16/48),
glyceride (10/48) and free fatty acid (2/48) were included (Figure 7 and Table S5).

2.7. KEGG Functional Annotation and Enrichment Analysis of Differential Metabolites

In the contrast experimental group of Nipponbare, there were 32 metabolites annotated
by KEGG (Kyoto encyclopedia of genes and genomes) with significant changes, distributed
into 39 pathways (Figure 8A). Of these metabolites, 83% were involved in metabolic
pathways and 44% in galactose metabolism (Ko00052, p = 0.014); starch and sucrose
metabolism (Ko00500, p = 0.019) were significantly enriched compared with other pathways
(Figure 8B). The former is involved in the regulation of galactose, saccharose, sucrose
and fructose 6-phosphate, while the latter regulates fructose 6-phosphate, sucrose and
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trehalose. Moreover, the contents of polysaccharides except for fructose 6-phosphate were
up-regulated under Al toxicity. There were 55 differential metabolites annotated by KEGG
and 54 pathways were associated with H570 (Figure 9A). The differential metabolites
accounted for 81.82 and 47.27%, and were annotated in metabolic pathways and the
biosynthesis of secondary metabolites, respectively. In addition, 14 differential metabolites,
annotated as ABC transporters, accounted for 25.45% in this group, and this pathway was
the most significantly enriched with a value of p = 0.0107 (Figure 9B). Information related
to all of the above metabolic pathways is shown in Tables S6–S9.
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Figure 8. Enrichment analysis of differential metabolites on KEGG metabolic pathway in Nipponbare.
(A) KEGG classification map of differential metabolites. The ordinate is the name of KEGG metabolic
pathway, and the abscissa is the number of metabolites annotated to one pathway and their proportion
to the total number of metabolites annotated; (B) KEGG enrichment map of differential metabolites.
The abscissa represents the Rich factor corresponding to each pathway, the ordinate represents the
pathway name, and the point with different color is p-value.

Under Al toxicity stress, amino acids and their derivatives were one of the most differ-
ential metabolites between Nipponbare and H570. L-cysteine, s-(methyl) glutathione,
alanyl-leucine, other amino acids and their derivatives (L-homoserine, L-methionine,
L-histidine, L-ornithine, L-proline, histamine, L-asparagine, pipecolic acid, N-acetylglycine,
N-acetyl-L-leucine, 3-hydroxy-3-methylpentane-1,5-dioic acid) were up-regulated under
Al toxicity in H570, while only pipecolic acid was screened in Nipponbare with the same
regulation level. The metabolic pathways associated with above metabolites are shown in
Figure 10.
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3. Discussion

Nipponbare, a widely recognized variety with strong Al tolerance, was used as a
positive control, and Kasalath, a reported variety with sensitivity to Al toxicity, was used
as a negative control to study the RRE after treatment with 150 µM Al toxicity (pH = 4.0)
for 1 day. The RRE values of Nipponbare, H570 and Kasalath were 0.78, 0.27 and 0.32,
respectively, which indicates that H570 was sensitive to Al toxicity.

Al3+ with a high concentration could damage root systems, and inhibit the uptake of
water as well as mineral nutrients. Al tolerance in plants is a complex process including
changes of “Biological process”, “Cellular component” and “Molecular function”, which
might be mediated by various factors including metabolites. Moreover, many metabolites
in other plants have been proven that they are helpful to detoxify the threat from Al. Thus,
we speculated that rice could alleviate the harm from Al by modulating its metabolome
under Al toxicity. In the present study, the Al-sensitive variety H570 and Al-tolerant variety
Nipponbare were used as materials to identify their differential metabolites. A total of
135 and 173 differential metabolites were screened by metabonomics analysis of Nipponbare
and H570, respectively. Among these metabolites, 89 metabolites were detected in both
varieties with the same regulatory level. We speculated that these metabolites might be
the basic metabolites for rice growth and not be affected by Al toxicity. There were 45 and
83 differential metabolites specifically screened in Nipponbare and H570, respectively;
these metabolites and their metabolic pathways might be involved in the regulation of
Al-tolerant phenotypes. We also found that 73 out of 83 different metabolites in H570
were up-regulated under Al toxicity. This phenomenon of the high accumulation and
low decomposition of metabolites in root tip cells might be one of the reasons why H570
showed Al-sensitivity when it was exposed to Al toxicity.

Al tolerance of rice is achieved through the elimination of Al from the root tip, and
polysaccharides in the cell wall might play an important role in the specific elimination
of Al from the root tip of rice [42]. Above study proved that the lower the content of
polysaccharides in the cell wall is, the higher the degree of methylation would be, and the
lower the content of carboxyl is, the lower the binding degree of Al to the cell wall would
be. In the present study, it was found that some sugars and sugar alcohols in Nipponbare
and H570 were up-regulated under Al toxicity, but the change in H570 was significantly
higher than that in Nipponbare. Meanwhile, Al can increase the permeability of the plasma
membrane when combined with the negative potential of the plasma membrane surface
of rice root cells [43]. The negative charge on the plasma membrane surface is mainly
caused by phospholipids. Therefore, the ratio of phospholipids in the plasma membrane
is closely related to the Al tolerance of rice. Reducing the ratio of phospholipids in the
substrate can improve the Al tolerance of rice. In the present study, lipid substances in both
Al-tolerant and Al-sensitive varieties were down-regulated, but the relative lipid content of
H570 under Al toxicity was higher than that of Nipponbare, which might be a factor for
the inhibition of H570 by Al toxicity.

Previous studies have suggested that cysteine is a key substrate for glutathione (GSH)
biosynthesis, and it is a major factor limiting the production of GSH in plants [39]. Glu-
tathione s-transferase (GST) catalyzes the transfer of GSH to a co-substrate containing a
reactive electrophilic center to form a polar s-glutathione reaction product [40]. It helps cells
in removing Al-induced reactive oxygen species (ROS) which had been proved to be related
to Al tolerance [41] and toxins [44]. Cysteine is also a precursor to s-adenosylmethionine
(SAM) biosynthesis, which is a subsequent substrate to 1-aminocyclopropane-1-carboxylate
(ACC) biosynthesis, which is then converted to ethylene (ethylene associating with Al
tolerance in rice was reported in a previous study [41] by the means of the ACC oxidase,
thereby inhibiting tap root elongation [40]). In H570, the relative contents of cysteine and
s-(methyl) glutathione decreased after Al toxicity treatment, while the content of ACC
increased, which might be related to the reduction of RREs after Al toxicity treatment.
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Yu et al. [45–47] showed that putrescine could alleviate Al-induced oxidative stress in
wheat roots by reducing Al-induced hydrogen peroxide accumulation in wheat root tips
and by inhibiting NADPH oxidase in the plasma membrane of Al-stressed wheat. The Al
inhibition on wheat seedling roots was alleviated by the addition of putrescine through
decreasing the content of polysaccharides in the cell wall and increasing the methylation
degree of pectin in the cell wall [42]; thus, putrescine could reduce the accumulation of Al in
the cell wall of root tip in wheat. In the present study, we found that there was no significant
change of putrescine in Nipponbare before and after Al toxicity treatment. However, the
relative content of putrescine was up-regulated under Al toxicity in H570, which was
different from the results of Yu et al. Therefore, we hypothesized that putrescine might
be an intermediate product that enhances Al resistance in rice, and that its subsequent
metabolic pathway is normal in Nipponbare, but inhibited in H570.

In addition to alkaloids, amino acids and their derivatives, phenolic acids, and saccha-
rides as well as alcohols, some novel metabolites contributing to Al tolerance in rice might
be dissected in many classes of metabolites such as free fatty acids, lignans, nucleotides, as
well as organic acids (Table S4), which showed many different trends between Nipponbare
and H570, and these were not reported in previous studies. There are many groups with
negative charges in lignans, which have a strong affinity to metal ions in the soil. In the
present study, the contents of five lignans in H570 were specifically detected to increase un-
der Al toxicity. Interestingly, terpineol mono-glucoside (pmn001378), which is supposed to
be one of the lignans, was up-regulated in H570, but it was down-regulated in Nipponbare.
We speculated that the above five lignans which might carry negative charges had a strong
affinity to Al3+, which increased the amount of Al3+ absorbed into cells through the cell
wall and inhibited the root growth of H570.

This study revealed the difference in metabolic regulation between H570 and Nippon-
bare under Al toxicity and analyzed the process of the Al-induced metabolome change of
the Al-sensitive variety H570. The large accumulation of phenolic acids, alkaloids, organic
acids and flavones in H570 might be one of the factors that make H570 greatly Al-sensitive
under Al toxicity. In addition, the contents of some lipids and sugars which have been
reported to be related to rice Al tolerance in our transcripomics study [48] in H570 were
higher than those in Nipponbare, which might increase the binding ability of the cell wall
to Al3+ and affect the scavenging ability of the cell wall to Al3+. The decrease in cysteine
content in H570 repressed the synthesis of GSH, and then reduced S-(methyl) glutathione
content; an increased ACC content might improve the ethylene content of H570 and inhibit
taproot elongation. Interestingly, the content of putrescine increased significantly in H570,
which might influence its alleviating effect on oxidative stress and its promotion of the
metabolism of cell wall polysaccharides and the degree of pectin methylation.

4. Conclusions

Through the metabolomics analysis, it is speculated that the lower polysaccharide
and lysophospholipids material can improve the resistance of rice to Al. The metabolism
promotes the transformation of L-serine to cysteine, methionine to s-(methyl)glutathione,
the decomposition of L-ornithine and L-proline, and the decomposition of putrescine in glu-
tathione metabolism, which might also improve the Al tolerance of rice. Moreover, through
down-regulating the lipids and up-regulating the phenolic acids as well as alkaloids, which
were specifically detected in Nipponbare, this might improve the Al tolerance of rice.

5. Materials and Methods
5.1. Plant Material

Relative root elongation, RRE was used to evaluate the Al tolerance of one rice variety;
please see more details in our previous study [49]. It is referenced that one rice variety is
supposed to be Al-sensitive if the RRE is less than 0.50 in the seedling stage [50].
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Nipponbare, which is commonly considered as one Al-tolerant variety, and one Al-
sensitive variety H570, which is one of the parents of the super hybrid rice Zhongzheyou
1, were chosen for metabolome analysis. Besides, Kasalath, which has been proven to
be Al-sensitive (RRE = 0.32) [25,30,51], was selected as a negative control for identifying
Al-sensitive varieties.

5.2. Sample Preparation and Extraction

In the present study, the seeds firstly were sterilized with 1% H2 O2 solution for 30 min,
and then washed with deionized water three times. We spread the sterilized seeds on
Petri dishes, then added deionized water to soak them overnight in a 30 ◦C incubator (full
intelligent artificial climate plant box, HP1500 GS-B). We then transferred the Petri dishes to
a dark incubator for seeds, germinating them for two days, and selected uniform seeds and
transferred them into a 96-well plate in a 1 L plastic container with the conditions of 14 h
light (30 ◦C, 70.5%RH, 20,000 Lx)/10 h darkness (28 ◦C, 70.5%RH, 0 Lx). Rice seedlings were
cultured with 0.5 mM CaCl2 solution (pH 4.0) as a control, while seedlings were treated with
0.5 mM CaCl2 and 150 µM AlCl3 solution (pH 4.0). Three replications were performed and
the root length of 20 seedlings in each treatment was measured with a ruler before and after
treatments (24 h). Roots were collected and immediately freeze-dried with liquid nitrogen
on the 9th day of culture. The freeze-dried root of rice was treated, extracted and filtered
according to the method described in the study of Zou et al. [52], before UPLC-MS/MS
(high performance liquid chromatography-tandem mass spectrometry) analysis.

5.3. UPLC-ESI-Q TRAP-MS/MS Analysis

The samples were analyzed by a UPLC-ESI-MS/MS system (UPLC, Shim-pack UFLC
SHIMADZU CBM30 A system, www.shimadzu.com.cn/, accessed on 20 May 2020; MS,
Applied Biosystems 4500 Q TRAP, www.appliedbiosystems.com.cn/, accessed on 20 May
2020). The analytical conditions and sample measurements gradient program were fol-
lowed as described by Zou et al. [52]. The UPLC effluent was alternatively connected to an
ESI-triple quadrupole-linear ion trap (QTRAP)-MS (equipped with an ESI Turbo Ion-Spray
interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 soft-
ware). The ESI source operation parameters were referred to in the study of Chen et al. [53].
The MWDB (Metware database, http://www.metware.cn/) and MRM (multiple reaction
monitoring) were used for qualitative and quantitative analysis of metabolites, respectively,
following their standard metabolic operating procedures [54].

5.4. Statical Analysis

PCA and supervised multivariate OPLS-DA were performed on metabolite data using
statistical functions in R software [55]. VIP values were extracted from the OPLS-DA
result and were generated using the R package MetaboAnalyst [56]. The significantly
regulated metabolites between groups were determined by VIP ≥1 and absolute log2 FC
(fold change) ≥1 [57].

Heat maps were drawn by PheatMap software in the R package, and HCA (hierarchi-
cal cluster analysis) was conducted on the accumulation patterns of metabolites among
different samples. The PCCs (Pearson correlation coefficients) between samples were
calculated by the cor function in the R package and presented by the heatmap drawn by
PheatMap software of the R package.

The metabolites detected were labeled through the KEGG (Kyoto encyclopedia of
genes and genomes) compound database (http://www.kegg.jp/kegg/compound/, ac-
cessed on 25 May 2020), and the annotated metabolites were mapped into the KEGG path-
way database (http://www.kegg.jp/kegg/pathway.html, accessed on 5 June 2020). Addi-
tionally, pathways that significantly regulated metabolites were fed into MSEA (metabolite
sets enrichment analysis), and their significance was determined by p-values of hypergeo-
metric tests.

www.shimadzu.com.cn/
www.appliedbiosystems.com.cn/
http://www.metware.cn/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11131717/s1, Figure S1: Z-score plot of differential metabo-
lites in Al-tolerant varieties Nipponbare; Figure S2: Z-score plot of differential metabolites in Al-
sensitive varieties H570; Figure S3: Cluster heat map of differential metabolites. Horizontal is the
sample name, vertical is the information of differential metabolites, the clustering tree on the left of
the figure is the clustering tree of differential metabolites, different colors are the values obtained
after standardized treatment of relative content (red represents high content, green represents low
content), Group is the experimental group, and Class is different substance categories. A. Cluster heat
map of differential metabolites between Nipponbare and H570 before Al treatment; B. Cluster heat
map of differential metabolites between Nipponbare and H570 after Al treatment. Table S1: The list
of 611 metabolites detected in the present study; Table S2: Differential accumulation of metabolites
between Nipponbare without Al toxicity and Nipponbare with Al toxicity; Table S3: Differential accu-
mulation of metabolites between H570 without Al toxicity and H570 with Al toxicity; Table S4: Venn
diagram distribution table of differential metabolites of Al-tolerant and -sensitive varieties before
and after Al treatment; Table S5: K-means clustering information of differential metabolites in the
present study; Table S6: KEGG enrichment statistics of Al-tolerant varieties Nipponbare; Table S7: Sta-
tistical analysis of KEGG differential enrichment classification of Al-tolerant varieties Nipponbare;
Table S8: KEGG enrichment statistics of Al-sensitive varieties H570; Table S9: Statistical analysis of
KEGG differential enrichment classification of Al-sensitive varieties H570.
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