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Abstract: As a direct consequence of the interplay between the superposition principle of quantum
mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational
and experimental exploration of the quantum realm. Decoherence is intimately related to infor-
mation leakage of open systems and is usually formulated in the setup of “system + environment”
as information acquisition of the environment (observer) from the system. As such, it has been
mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement).
Decoherence combined with redundant proliferation of the system information to multiple fragments
of environment yields the scenario of quantum Darwinism, which is now a widely recognized frame-
work for addressing the quantum-to-classical transition: the emergence of the apparent classical
reality from the enigmatic quantum substrate. Despite the half-century development of the notion of
decoherence, there are still many aspects awaiting investigations. In this work, we introduce two
quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them
to quantify decoherence from an information-theoretic perspective. As a comparison, we also study
the influence of the system on the environment.

Keywords: decoherence; classicality; channel; open system; interference

1. Introduction

A fundamental hallmark of quantum mechanics is the superposition principle [1,2],
which leads naturally to coherence and interference [3]. Although reduced coherence (e.g.,
Landau’s study of wave damping [4]) and suppression of interference (e.g., Mott’s analysis
of α-particle tracking [5]) have featured early studies ever since the beginning of quantum
mechanics, the modern conceptualization of the idea of decoherence as a subject in its
own right started only in the 1970s, as initiated by Zeh and Zurek [6–10]. The influential
and seminal work of Zurek has led further to the development of quantum Darwinism.
Nowadays, decoherence has been a subject of many studies after surprising neglect at
the initial stage and has gained increasingly importance with the deep investigations of
quantum measurement and the emergence of quantum information.

Decoherence provides an elegant mechanism for exploring the boundary between
classical and quantum behaviors and imposes technological limits for quantum devices. An
ultimate goal of quantum information science is to construct quantum computers, which
are notoriously fragile and prone to decoherence, and they call for combating decoherence
for quantum information processing [11]. Decoherence also plays a significant role in
designing error correction codes, as the notion of decoherence-free schemes (subspace)
indicates. Of course, decoherence actually has many more applications to quantum science
than to quantum computing per se.

Formally, decoherence usually refers to the decay of the off-diagonal entries of the
system density matrix (in the basis of the pointer observable) caused by evolution of the
combined “system + environment”. Alternatively, it is also characterized as the establishing
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of correlations between the system and the environment, which causes the system to behave
in a classical manner. In this context, the environment effectively measures (monitors)
the system. This relational scenario indicates that decoherence is a relative concept and
has to be characterized with respect to a reference basis and an environment. In a more
pedantic and rigorous fashion, when we talk about decoherence, we should bear in mind
(explicitly/implicitly) three ingredients:

(1) Decoherence of which (state)?
(2) Decoherence relative to which (basis, or more generally, channel)?
(3) Decoherence caused by which (environment or observation)?

Decoherence is intimately related to a range of fundamental quantum issues such
as the measurement problem [12–17], entanglement and nonlocality [18], irreversibility
(the arrow of time) [19], and the quantum-to-classical transition [8–10,12–18]. The later
seeks an explanation of the apparent transition from the quantum realm to the classical
realm (i.e., the emergence of a classical objective reality from the quantum substrate)
as described by quantum Darwinism [20–30]. Decoherence serves as a natural arena
for the interplay among wave–particle duality [31–36], wave-packet collapse [8,9,37,38],
information transferring [39–41], state broadcasting [42–47], and quantum correlations
(quantum discord) [48–54]. Decoherence is also employed in the theory of decoherent
histories (consistent histories) approach to quantum mechanics [55–59].

Coherence and decoherence are complementary to each other, or, phrased alternatively,
they are the two sides of the same coin: decoherence is just loss of coherence. Coherence
arises from the superposition principle and means that a state is in superposition of
several states operating together in a coherent way, and decoherence means the loss of
this behavior or, more precisely, the loss of definite phase relation between the constituent
states for the superposition and thus results in classical mixture of states. Coherence
and decoherence play a pivotal role in studying the theoretical issue of the quantum-to-
classical transition and in investigating the practical issue concerning physical realization
of quantum information processing.

Decoherence is intimately related to loss of quantumness or, put alternatively, an
increase in classicality. The quantumness of states and ensembles were studied from various
perspectives [60–72]. In particular, the use of non-commutativity as a quantumness witness
for a single system was proposed and experimentally confirmed in Refs. [64–67]. An explicit
relation between the Jordan product of operators and quantumness was discussed in [70].
A method for measuring quantumness in interferometric setups was presented in [72].

In this work, motivated by previous studies, and following quantitative investigations
of coherence and superposition [73–84], we aimed at quantifying decoherence induced by
the environment, which may be helpful for quantitatively characterizing certain features of
the quantum-to-classical transition and quantum Darwinism.

The remainder of the article is arranged as follows. In Section 2, we present some
preliminary results. In particular, we introduce two quantifiers of classicality in terms of
operator anti-commutators (symmetric and the Jordan product of operators) and a modified
variance in a general setup, which, apart from their use in quantifying decoherence, may
be of independent interest. Two inequalities for monotonicity of classicality are established.
In Section 3, we introduce two quantifiers of decoherence by exploiting the monotonicity
of classicality and reveal their basic features. In Section 4, we discuss the influence on the
environment caused by the system, which stands in contrast to decoherence of the system
induced by the environment. In Section 5, we illustrate the quantifiers of decoherence in a
two-path interferometer. Finally, we summarize the results and present some discussions
in Section 6. For simplicity, we consider only finite dimensional systems, although it seems
that many results can be readily extended to infinite dimensional cases.

2. Preliminaries

In this section, we consider a general setup of state–channel interaction and discuss
two quantifiers of classicality, which will be used to quantify decoherence in the next section.
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The first quantifier involves the Jordan product of operators and is intimately connected to
the Wigner–Yanase skew information [84]. The second is defined via variance of a state,
which stands in some sense dual to the conventional variance of an observable [85,86].

Decoherence is sometimes also called dephasing, dynamical decoherence, or
environment-induced decoherence. Here, we emphasize the role of the environment
in inducing decoherence. In the conventional approach, decoherence is often read from
the off-diagonal entries of the reduced system density matrix after it interacts with the
environment, which provide a rather complete picture of the effect of decoherence. How-
ever, since all these off-diagonal entries still constitute a matrix with vanishing diagonals,
one may be interested in summarizing decoherence by a single numerical quantity, just
like although a quantum state provides a complete description of a system, one still seeks
certain functionals of the state, such as the von Neumann entropy and purity, to capture
some essential features of the state.

Decoherence is usually studied in the context of an open system, which is coupled
with the environment. When we focus on the system and ignore the environment, the
dynamics of a state ρ of a d-dimensional quantum system is mathematically described by a
quantum channel (here we only consider the case with the same input and output system)
in the Kraus representation form [11,87]

K(ρ) = ∑
i

KiρK†
i , (1)

where Ki are the Kraus operators (effects) satisfying ∑i K†
i Ki = 1 (the identity operator),

which ensures trace-preservation of the channel K. If moreover ∑i KiK†
i = 1, then the

channel is called unital: it leaves the maximally mixed state (proportional to the identity
operator) invariant. We remark that in Equation (1) if we replace ρ by any operator X, the
above operation still makes sense as a map. This channel will serve as a reference channel
when we talk about decoherence (with respect to K) and actually may be regarded as
a generalization of an orthonormal basis, which induces a von Neumann measurement.
Consequently, a general notion of decoherence goes beyond that based on an orthonormal
basis (pointer observable).

2.1. Classicality in Terms of the Jordan Product

In order to establish notation and to motivate our approach to decoherence, we first
recall certain information-theoretical features of state–channel interaction [84]. For the
channel determined by Equation (1), let

J(ρ,K) = 1
2 ∑

i
tr
(
{√ρ, Ki}{

√
ρ, Ki}†), (2)

which will be interpreted as a kind of measure of classicality for the state–channel inter-
action (or as the classicality of the state with respect to the channel), as will be elucidated
later. Here,

{X, Y} = XY + YX

denotes the anti-commutator (the Jordan product or the symmetric product) of operators
X and Y acting on the system Hilbert space. This commutative product indicates certain
features of classicality. Indeed, decoherence is intimately related to the appearance or
increasing of classicality, and the symmetric Jordan product, as a commutative operation,
is also intimately related to classicality. Consequently, it is plausible and reasonable that
decoherence may be quantified via the Jordan product of states and observables, just like
that quantumness of states can be characterized via the Jordan product of observables [70].
After simple manipulation, we have

J(ρ,K) = 1
2

tr
(
K(ρ) +K†(ρ) + 2

√
ρK†(

√
ρ)
)
, (3)
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where
K†(X) = ∑

i
K†

i XKi

is the dual channel of K. We notice that tr(
√

ρK†(
√

ρ)) = tr(K†(
√

ρ)
√

ρ) = tr(
√

ρK(√ρ)).
It is well known that the Kraus operators for the operator-sum representation in

Equation (1) are not unique, and the question arises as to whether the defining Equation (2)
for the classicality quantifier J(ρ,K) is well defined. Indeed, the Kraus operators Ki for
different representations of the channel K are related by unitary transformations (the
unitary freedom in the operator-sum representation of a channel) [11], and it can be
readily shown that J(ρ,K) is independent of the choice of the Kraus operators and is thus
unambiguously defined.

For comparison, we also introduce

I(ρ,K) = 1
2 ∑

i
tr
(
[
√

ρ, Ki][
√

ρ, Ki]
†), (4)

where
[X, Y] = XY−YX

denotes the commutator (the Lie product or the anti-symmetric product) of the operators
X and Y. Clearly,

I(ρ,K) = 1
2

tr
(
K(ρ) +K†(ρ)− 2

√
ρK†(

√
ρ)
)
. (5)

It is remarkable that if Ki is a Hermitian operator, then the summand

1
2

tr
(
[
√

ρ, Ki][
√

ρ, Ki]
†) = −1

2
tr
(
[
√

ρ, Ki]
2)

in Equation (4) is precisely the celebrated Wigner–Yanase skew information

I(ρ, Ki) = −
1
2

tr
(
[
√

ρ, Ki]
2) (6)

of ρ (with Ki serving as a conserved observable) [88], which is now playing an increasingly
interesting and important role in quantum theory [89–97]. In particular, the Wigner–Yanase
skew information is monotone in the sense that [98,99]

I(Φ(ρ), K) ≤ I(ρ, K) (7)

for any channel Φ that does not disturb the observable K (i.e., Φ†(K) = K, Φ†(K2) = K2).
This will be used to establish Proposition 1.

It is well recognized that the Wigner–Yanase skew information is a particular version
of quantum Fisher information [90], which is quite different from the quantum (von
Neumann) entropy. Actually, the original motivation for Wigner and Yanase introducing
the skew information was to seek an alternative quantity for quantifying information
contents of quantum states in the presence of conserved observables.

By Equations (3) and (5) and the fact that trρ = 1, if the channel K is unital in the sense
that K(1) = 1 (equivalently, ∑i KiK†

i = 1), then

J(ρ,K) + I(ρ,K) = 2, (8)

which shows that J(ρ,K) (involving the symmetric Jordan product) and I(ρ,K) (involving
the anti-symmetric Lie product) are complementary to each other. Moreover,

2 ≥ J(ρ,K) ≥ 1 ≥ I(ρ,K) ≥ 0.

We first list some basic properties of J(ρ,K).
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(a) 1 ≤ J(ρ,K) ≤ 2. Moreover, J(ρ,K) = 2 if and only if [
√

ρ, Ki] = 0 for all i.
(b) J(ρ,K) is concave in ρ.
(c) J(ρ,K) is covariant in the sense that

J(UρU†,K) = J(ρ, U†KU)

for any unitary operator U on the system Hilbert space. Here U†KU(ρ) = ∑i(U†KiU)
ρ(U†KiU)†.

Item (a) is apparent from the definition, and item (b) follows from Equation (3) and
the celebrated Lieb concavity [100,101], which states that the functional tr(ρsXρ1−sX†) is
concave in the state ρ for any s ∈ (0, 1) and any operator X. Here we only used the case
s = 1/2. Item (c) can be readily checked.

Recall that the dual of the channel Φ(ρ) = ∑i KiρK†
i is defined as Φ†(X) = ∑i K†

i XKi
for any operator X. The following monotonicity of J(ρ,K) under certain channels Φ plays
a crucial role in our approach to decoherence.

Proposition 1. Let Φ be a unital channel that does not disturb the Kraus operators of the reference
channel K defined by Equation (1) in the sense that Φ†(Ki) = Ki and Φ†(KiK†

i ) = KiK†
i for all i,

then
J(ρ,K) ≤ J(Φ(ρ),K). (9)

Noting the complementarity relation (8), the above monotonicity may be directly
derived from the corresponding property of the Wigner–Yanase skew information, as
described in Equation (7).

In view of the above increasing behavior (under certain channels) and the properties
specified by items (a)–(c), we may interpret J(ρ,K) as a quantifier of classicality of the state
ρ (with reference to the channel K). Indeed, a reasonable measure of classicality should be
concave in the state ρ (classical mixing of states should not decrease classicality on average),
which is in accordance with item (b). Operations on the state that leave the reference channel
undisturbed also should not decrease classicality, which is guaranteed by inequality (9).
In contrast, I(ρ,K) may be regarded as a quantity of coherence or quantumness of ρ
(with reference to K). This is consistent with Equation (8), which may be regarded as an
information-theoretic manifestation of the Bohr complementarity from the perspective
of the asymmetry–symmetry trade-off [84]: I(ρ,K) characterizes the asymmetry (of ρ
with respect to K) and can be related to the path feature in an interferometric setup, while
J(ρ,K) characterizes the symmetry (of ρ with respect to K) and can be related to fringe
visibility.

2.2. Classicality in Terms of Uncertainty

Although the quantity J(ρ,K) has nice information-theoretic features, it involves the
square root of a state and thus may be difficult to calculate. For simplicity and comparison,
we also introduce an alternative measure of classicality without the square root, which is
directly based on a modification of the ubiquitous notion of variance (uncertainty).

Recall that any state, as a Hermitian operator, can also be formally regarded as an
observable, and thus one may consider its variance with respect to another state (or, more
generally, any operator) [85,86]. Following this consideration, we introduce the variance of
a state ρ in a channel K defined by Equation (1) as

VK(ρ) = ∑
i

VKi (ρ), (10)

where
VK(ρ) = tr

(
(ρ− tr(ρK†K))2K†K

)
(11)
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is the generalized variance of ρ (considered as an observable) in K (not necessarily a
Hermitian operator). It turns out that

VK(ρ) = tr
(
ρ2K†K

)
−
(
tr(ρK†K)

)2(2− tr(K†K)
)

(12)

and in particular, if tr(K†K) = 1,, then

VK(ρ) = tr
(
ρ2K†K

)
−
(
tr(ρK†K)

)2.

In a d-dimensional system, the variance of ρ in K is upper bounded as

VK(ρ) = tr(ρ2)−∑
i

(
tr(ρK†

i Ki)
)2(2− tr(K†

i Ki)
)

(13)

≤ tr(ρ2)−∑
i

(
tr(ρK†

i Ki)
)2
(2− d)

≤ 1 + (d− 2)∑
i

(
tr(ρK†

i Ki)
)2

≤ 1 + (d− 2)

= d− 1.

Furthermore, if tr(K†
i Ki) = 1 for all i, then we actually have

VK(ρ) = tr(ρ2)−∑
i
(tr
(
ρK†

i Ki)
)2 ≤ 1. (14)

For some applications and intuitions of the above quantities, see Refs. [85,86]. In
Equation (10), we have put K in the subscript, i.e., with the notation VK(ρ) rather than
V(ρ, K); we are emphasizing that the above variance is quite different from the conventional
variance V(ρ, K) = tr(ρ(K− trρK)2) of the observable K (in the state ρ). Indeed, VK(ρ) is
convex in ρ, while V(ρ, K) is concave in ρ.

To introduce an alternative quantifier of classicality, noting that VK(ρ) ≤ d− 1, we
define

C(ρ,K) = d− 1−VK(ρ) = S2(ρ) + ∑
i

(
tr(ρK†

i Ki)
)2(2− tr(K†

i Ki)
)
+ d− 2, (15)

where
S2(ρ) = 1− tr(ρ2)

is the Tsallis 2-entropy. The quantity C(ρ,K) has the following properties.

(a) 0 ≤ C(ρ,K) ≤ d− 1.
(b) C(ρ,K) is concave in ρ.
(c) C(ρ,K) is covariant in the sense that

C(UρU†,K) = C(ρ, U†KU)

for any unitary operator U on the system Hilbert space. Here the channel U†KU is
defined as U†KU(ρ) = ∑i(U†KiU)ρ(U†KiU)†.

Similar to J(ρ,K), we have the following monotonicity property.

Proposition 2. Let Φ be a unital channel that does not disturb the Kraus operators of the reference
channel K defined by Equation (1) in the sense that Φ†(K†

i Ki) = K†
i Ki for all i, then

C(ρ,K) ≤ C(Φ(ρ),K). (16)
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In order to prove the above statement and to characterize the effect of the channel
Φ, we first recall the notion of majorization for vectors [102–104]. For any real vector
x = (x1, x2, · · · , xd) ∈ Rd, let x↓ = (x↓1 , x↓2 , · · · , x↓d) be the vector obtained by rearranging
the components of x in a non-increasing order. The weak majorization relation x 4w y (i.e.,
x is weakly majorized by y, or y weakly majorizes x) means that [103]

k

∑
i=1

x↓i ≤
k

∑
i=1

y↓i , k = 1, 2, · · · , d.

If furthermore ∑d
i=1 x↓i = ∑d

i=1 y↓i (which is always satisfied for probability vectors), then it
is said that x is majorized by y, denoted as x 4 y. Intuitively, x 4 y means that x is more
chaotic (more flat, more uniform, more mixed, and more spread out) than y. For example,(1

d
,

1
d

, · · · ,
1
d

)
4 (x1, x2, · · · , xd) 4 (1, 0, · · · , 0)

for any xi ≥ 0, ∑d
i=1 xi = 1. It is well known that x 4 y if and only if x = My for some

doubly stochastic matrix M (i.e., square matrix with non-negative entries and all row and
column sums equal to 1) [102]. We will be only concerned with probability vectors arising
from eigenvalues of a quantum state (density matrix).

Now, by the condition Φ†(K†
i Ki) = K†

i Ki we obtain

tr
(
Φ(ρ)K†

i Ki
)
= tr

(
ρΦ†(K†

i Ki)
)
= tr

(
ρK†

i Ki
)
.

Consequently, under the above condition, inequality (16) is equivalent to

tr(Φ(ρ)2) ≤ tr(ρ2),

which is true for any unital channel.

3. Quantifying Decoherence of System Induced by Environment

With the above preparation, which is a rather general setup, we now proceed to
quantify decoherence of system induced by environment. In order to obtain more concrete
and explicit results, we have to specify the system-environment coupling. For simplicity,
we study the important case when the reference channel K is induced by a von Neumann
measurement Π = {Πi = |i〉〈i| : i = 1, 2, · · · , d} in a d-dimensional system with {|i〉 : i =
1, 2, · · · , d} being an orthonormal basis of the system Hilbert space. In this case, we write
the corresponding reference channel as

Π(ρ) =
d

∑
i=1

ΠiρΠi =
d

∑
i=1
〈i|ρ|i〉|i〉〈i|.

By specifying K to Π and noting Equation (3), we have

J(ρ, Π) = 1 + tr
(√

ρΠ†(
√

ρ)
)
= 1 +

d

∑
i=1
〈i|√ρ|i〉2. (17)

Consider a quantum system with a d-dimensional Hilbert space HS, which interacts
with an environment consisting of d parts described by the Hilbert space HE = HE1 ⊗
HE2 ⊗ · · · ⊗ HEd through the controlled unitary operation

ΠU = Π1 ⊗UE1 + Π2 ⊗UE2 + · · ·+ Πd ⊗UEd (18)

on the combined system

HS ⊗ HE = HS ⊗ (HE1 ⊗ HE2 ⊗ · · · ⊗ HEd).
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Here U = {UEi : i = 1, 2, · · · , d} denotes the collection of unitary operators on the various
sub-environments, with UEi acting only on HEi . This scenario is schematically depicted in
Figure 1, and will be further discussed in the next section. In this context, one may wonder
why the dimension of the quantum system is the same as the number of environments.
This arises naturally in a multi-path interferometer, in which we are only concerned with
the path degree of freedoms, and thus the associated system Hilbert space is spanned by
the path basis. Consequently, the system is d-dimensional when we have d paths. In order
to study the decoherence of the system (consisting of the d paths as an orthonormal basis),
we attach a detector to each path, and thus we have d sub-environments (corresponding to
the d detectors).

Figure 1. Schematic illustration of decoherence of the system (initially in the state ρS) induced by the
environment consisting of d sub-environments (initially in the state ρE = ρE1 ⊗ ρE2 ⊗ · · · ⊗ ρEd ). The
combined initial system–environment state is ρSE = ρS ⊗ ρE. The system and environment is coupled
via the combined unitary operator ΠU = ∑d

i=1 Πi ⊗UEi , and the final combined system–environment
state is ρ′SE = ΠU ρSEΠ†

U with final system state ρ′S = trρ′SE. The decoherence of ρS (with respect to Π)
induced by the environment is quantified by D(ρS|Π, U) = J(ρ′S, Π)− J(ρS, Π) (see Equation (27))
and F(ρS|Π, U) = C(ρ′S, Π) − C(ρS, Π) (see Equation (31)), both of which may be interpreted as
increases in classicality of the system caused by the environment.

The initial combined system–environment state is

ρSE = ρS ⊗ ρE,

where ρS is the initial system state, and ρE = ρE1 ⊗ ρE2 ⊗ · · · ⊗ ρEd is the initial environ-
ment state. When expressed as a density matrix with respect to the orthonormal basis
{|i〉 : i = 1, 2, · · · , d}, the initial system state ρS has the matrix form

ρS =
(
〈i|ρS|j〉

)
=


〈1|ρS|1〉 〈1|ρS|2〉 · · · 〈1|ρS|d〉
〈2|ρS|1〉 〈2|ρS|2〉 · · · 〈2|ρS|d〉

...
...

. . .
...

〈d|ρS|1〉 〈d|ρS|2〉 · · · 〈d|ρS|d〉

. (19)

After the system–environment interaction through the unitary operation (18), the final
state of the combined system is

ρ′SE = ΠU ρSEΠ†
U

= (Π1 ⊗UE1 + · · ·+ Πd ⊗UEd)(ρS ⊗ ρE)(Π1 ⊗UE1 + · · ·+ Πd ⊗UEd)
†

=
d

∑
i,j=1

(ΠiρSΠj)⊗ (UEi ρEU†
Ej
). (20)

Here we emphasize that UEi acts only nontrivially on HEi . From the above expression, we
obtain the final (reduced) system state

ρ′S = trEρ′SE =
d

∑
i,j=1

tr(UEi ρEU†
Ej
) ·ΠiρSΠj (21)
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after the interaction, which can be represented as the d× d matrix (noting that Πi = |i〉〈i|)

ρ′S =
(
〈i|ρS|j〉ωij

)
=


〈1|ρS|1〉 〈1|ρS|2〉ω12 · · · 〈1|ρS|d〉ω1d
〈2|ρS|1〉ω21 〈2|ρS|2〉 · · · 〈2|ρS|d〉ω2d

...
...

. . .
...

〈d|ρS|1〉ωd1 〈d|ρS|2〉ωd2 · · · 〈d|ρS|d〉

 = ρS ◦Ω (22)

with respect to the orthonormal basis {|i〉 : i = 1, 2, · · · , d}. Here the symbol ◦ denotes the
Hadamard product (also called the Schur product or the entry-wise product) of matrices
defined as (aij) ◦ (bij) = (aijbij), and Ω = (ωij) with

ωij = tr(UEi ρEU†
Ej
)

being a correlation matrix, i.e., a non-negative definite matrix with diagonal entries all
equal to 1. By casting ωij as

ωij = tr(UEi ρEU†
Ej
) = tr(XiX†

j ),

with Xi = UEi

√
ρE, we readily see that the matrix Ω = (ωij) is a Gram matrix of the family

of operators {Xi : i = 1, 2, · · · , d} as vectors in the Hilbert space consisting of operators
(with the Hilbert–Schmidt product) acting on the environment. Moreover,

ωij =

{
1, i = j
ωiω

∗
j , i 6= j

with ωi = tr(UEi ρEi ), and ω∗j denotes the complex conjugation of the complex number ωj.
Since Ω is a non-negative definite matrix, it has a square root, which may be symbolically
expressed as

√
Ω =

(
αij

)
=


〈α1|
〈α2|

...
〈αd|

 = (|α1〉, |α2〉, · · · , |αd〉), (23)

where the bra 〈αi| = ∑d
j=1 αij〈j| is identified with the row vector (αi1, αi2, · · · , αid), while

the corresponding adjoint vector (ket) |αi〉 = ∑d
j=1 α∗ij|j〉 = ∑d

j=1 αji|j〉 is identified with the

column vector (α∗i1, α∗i2, · · · , α∗id)
T = (α1i, α2i, · · · , αdi)

T . Consequently, Ω can be expressed
as the following Gram matrix

Ω =


〈α1|
〈α2|

...
〈αd|

(|α1〉, |α2〉, · · · , |αd〉) =
(
〈αi|αj〉

)
, (24)

which will be used later.
We write the operation determined by Equation (22) as the channel

ΦS(ρS) = ρ′S = ρS ◦Ω, (25)

which may be called a Hadamard channel due to the involvement of the Hadamard product.
This channel has some nice properties.

(a) The dual of the channel ΦS(ρS) = ρS ◦Ω is Φ†
S(X) = X ◦ΩT , where ΩT denotes

the transposition of the matrix Ω. In particular, if Ω is a real symmetric matrix and thus
ΩT = Ω∗ = Ω, then the corresponding channel ΦS(ρS) is self-dual. Here Ω∗ denotes
complex conjugation of each entry of the matrix Ω.
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(b) The channel ΦS(ρS) = ρS ◦Ω can be expressed as the Kraus operator-sum form

ΦS(ρS) =
d

∑
j=1

ΩjρSΩ†
j (26)

with the diagonal matrices (Kraus operators)

Ωj = diag{α1j, α2j, · · · , αdj} =


α1j 0 · · · 0
0 α2j · · · 0
...

...
. . .

...
0 0 · · · αdj


with αij determined by Equation (23).

(c) If |ωij| < 1 for i 6= j, then the repeated iteration of the channel ΦS tends to the
completely decohering channel in the sense that limn→∞ Φn

S(ρS) = diag(ρS). Here the
convergence is for any norm on the operator space of a finite dimensional Hilbert space.

All the above properties can be directly verified.
Compared with the initial system state ρS given by Equation (19), the off-diagonal

entries of the final system state ρ′S = ΦS(ρS) in Equation (22) is multiplied by ωij. This
is the conventional meaning of decoherence as decaying of off-diagonal entries of the
density matrix. In order to use a single numerical quantity to summarize certain amount of
decoherence, we introduce the following quantity

D(ρS|Π, U) = J(ρ′S, Π)− J(ρS, Π), (27)

which is our first key character for quantifying decoherence induced by the environment.
The above quantifier of decoherence can be more explicitly expressed as

D(ρS|Π, U) =
d

∑
i=1

(
〈i|
√

ρ′S|i〉
2 − 〈i|√ρS|i〉2

)
.

The physical intuition of the above quantity is the increase in classicality caused by the
interaction with the environment (the channel ΦS). This notation indicates clearly and
precisely that we are talking about the decoherence of the initial system state ρS (with
respect to Π) induced by the environment (symbolized by the collection U = {UEi : i =
1, 2, · · · , d} of unitary operators acting on the environment).

The quantifier of decoherence D(ρS|Π, U) possesses the following properties.

Proposition 3. 0 ≤ D(ρS|Π, U) ≤ 1. Moreover, D(ρS|Π, U) = 0 if UEi = ci1Ei (proportional
to the identity operator on the i-th sub-environment for all i).

We conjecture that D(ρS|Π, U) is convex in ρ. It seems that a proof may require some deep
mathematics.

To prove Proposition 3, first noting that Φ†
S(ρS) = ρS ◦ΩT , it is easy to verify Φ†

S(Πi) =
Πi. Now, from Π2

i = Πi and inequality (9) in Proposition 1, we conclude that

J(ρ′S, Π) = J(ΦS(ρS), Π) ≤ J(ρS, Π), (28)

which implies the desired inequality 0 ≤ D(ρS|Π, U). The upper bound D(ρS|Π, U) ≤ 1
follows readily from the property of J(ρ, Π).

For the decoherence channel ΦS, we have

λ(ΦS(ρS)) 4 λ(ρS), (29)
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where λ(ρS) is the probability vector consisting of the eigenvalues (spectrum, in any order)
of the quantum state ρS. The heuristic and intuitive meaning of the above inequality is that
the decoherence renders the state flatter in the sense that the probability vector consisting
of the eigenvalues of the final state is more uniform (more mixing, more spread out) than
that of the initial system state, as mathematically defined by the majorization relation of
probability vectors.

Recall that a unitarily invariant norm || · || is an operator norm with the unitary
invariance ||X|| = ||UXW|| for all X and all unitary operators U and W. Prototypical
examples of such norms include the trace norm ,the Frobenius norm, the p-norm (with
p ≥ 1), and the Ky Fan norm [104]. Equation (29) implies that

||ΦS(ρS)|| ≥ ||ρS|| (30)

for any unitarily invariant norm || · ||. In particular, if ΦS is the completely decohering
channel in the sense that Ω = (ωij) = 1, that is

ΦS(ρS) =


〈1|ρS|1〉 0 · · · 0

0 〈2|ρS|2〉 · · · 0
...

...
. . .

...
0 0 · · · 〈d|ρS|d〉

 = diag(ρS),

then we come to the well-known fact that the vector formed by the diagonal entries
of a density matrix is majorized by the vector formed by the eigenvalues of the ma-
trix [102], that is, λ(diag(ρs)) 4 λ(ρS). By taking the trace norm of the logarithm of
the states, we obtain Πd

i=1〈i|ρS|i〉 ≥ det(ρS) = Πd
i=1λi(ρS), which is precisely the cele-

brated Hadamard determinant inequality [105]. Here λi(ρS) are eigenvalues of ρS, and
λ(ρS) = (λ1(ρS), λ2(ρS), · · · , λd(ρS)).

In terms of classicality defined via variance of states, we introduce an alternative
quantifier for decoherence as

F(ρS|Π, U) = C(ρ′S, Π)− C(ρS, Π), (31)

which can be explicitly expressed as

F(ρS|Π, U) = tr(ρ2
S)− tr(ρ′2S ) =

d

∑
i=1

(
〈i|ρ2

S|i〉 − 〈i|ρ′2S |i〉
)
. (32)

The intuition of the above measure is similar to that of D(ρS|Π, U): The increase in clas-
sicality of the system caused by the environment captures some essential features of
decoherence.

Proposition 4.

(a) 0 ≤ F(ρS|Π, U) ≤ 1. Moreover, F(ρS|Π, U) = 0 if UEi = ci1Ei (proportional to the
identity operator on the i-th sub-environment for all i).

(b) F(ρS|Π, U) is convex in ρ.

For item (a), the non-negativity of F(ρS|Π, U) follows from inequality (16) in Proposi-
tion 2. The upper bound is evident in view of inequality (32).

For item (b), let c ∈ [0, 1], ρS and σS be two states with ρ′S = ΦS(ρS), σ′S = ΦS(σS).
Straightforward manipulation yields

cF(ρS|Π, U) + (1− c)F(σS|Π, U)− F(cρS + (1− c)σS|Π, U)

= c(1− c)
(
tr((ρS − σS)

2)− tr((ρ′S − σ′S)
2)
)

≥ 0.
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The last inequality follows from

λ(ρ′S − σ′S)) 4 λ(ρS − σS).

We see that, on the one hand, D(ρS|Π, U) and F(ρS|Π, U) share some similar prop-
erties, and, on the other hand, they have different advantages and disadvantages. This is
reminiscent of the comparison between the conventional variance and Fisher information.

4. Influence on Environment Caused by System

The interaction between the system and the environment is mutual. While we are
focusing on the decoherence of the system caused by the environment, it may also be useful
to investigate the influence on the environment caused by the system. In a formal fashion,
this may also be interpreted as the decoherence of the environment caused by the system.
Due to the asymmetry of the system–environment interaction, there are subtle differences
between the influence on the environment caused by the system and that on the system
caused by the environment.

From Equation (20), we obtain the final environment state

ρ′E = trSρ′SE =
d

∑
i=1

tr(ΠiρS)UEi ρEU†
Ei
=

d

∑
i=1

piUEi ρEU†
Ei

after the system–environment interaction. Here pi = tr(ρSΠi) = 〈i|ρS|i〉. We denote the
above operation as

ΦE(ρE) = ρ′E =
d

∑
i=1

piUEi ρEU†
Ei

,

which is a random unitary channel with Kraus operators
√

piUEi . Moreover, noting that
ρE = ρE1 ⊗ ρE2 ⊗ · · · ⊗ ρEd , we have

J(ρE, ΦE) = 1 + tr
(√

ρEΦ†
E(
√

ρE)
)
= 1 +

d

∑
i=1

pitr(
√

ρEU†
Ei

√
ρEUEi )

= 1 +
d

∑
i=1

pitr(
√

ρEi U
†
Ei

√
ρEi UEi ) (33)

and

J(ρ′E, ΦE) = 1 + tr
(√

ρ′EΦ†
E(
√

ρ′E)
)
= 1 +

d

∑
i=1

pitr
(√

ρ′EU†
Ei

√
ρ′EUEi

)
The final state of the i-th sub-environment reads

ρ′Ei
= trÊi

ρ′E = trÊi

( d

∑
i=1

piUEi ρEU†
Ei

)
= piUEi ρEi U

†
Ei
+ (1− pi)ρEi ,

where the notation trÊi
denotes the partial trace over all sub-environments except for Ei.

We denote the corresponding operation as the channel

ΦEi (ρEi ) = ρ′Ei
= piUEi ρEi U

†
Ei
+ (1− pi)ρEi ,

which is also a random unitary channel. The classicality of the environment can be
evaluated as

J(ρEi , ΦEi ) = 1 + tr
(√

ρEi Φ
†
Ei
(
√

ρEi )
)
= 2− pi + pitr(

√
ρEi U

†
Ei

√
ρEi UEi ) (34)

and

J(ρ′Ei
, ΦEi ) = 1 + tr

(√
ρ′Ei

Φ†
Ei
(
√

ρ′Ei
)
)
= 2− pi + pitr

(√
ρ′Ei

U†
Ei

√
ρ′Ei

UEi

)
.
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Comparing Equations (33) and (34), we get

2− J(ρE, ΦE) =
d

∑
i=1

(
2− J(ρEi , ΦEi )

)
,

or equivalently,

I(ρE, ΦE) =
d

∑
i=1

I(ρEi , ΦEi ),

which shows a kind of additivity property, as intuitively expected since the initial environ-
ment is in a product state ρE = ρE1 ⊗ ρE2 ⊗ · · · ⊗ ρEd .

In terms of the classicality J(ρE, ΦE) of the environment, we define the influence on
the total environment caused by the system as

D(ρE|U, Π) = J(ρ′E, ΦE)− J(ρE, ΦE) (35)

and the influence on the i-th sub-environment caused by the system as

D(ρEi |U, Π) = J(ρ′Ei
, ΦEi )− J(ρEi , ΦEi ), (36)

respectively. Compared with Equation (27), we have deliberately swapped the place of U
and Π to indicate the difference of the reference channels. The influence on the environment
caused by the system can be explicitly evaluated as

D(ρE|U, Π) =
d

∑
i=1

pitr
(√

ρ′EU†
Ei

√
ρ′EUEi −

√
ρEU†

Ei

√
ρEUEi

)
.

Similarly,

D(ρEi |U, Π) = pitr
(√

ρ′Ei
U†

Ei

√
ρ′Ei

UEi −
√

ρEi U
†
Ei

√
ρEi UEi

)
.

If we use the alternative quantifier of classicality C(ρ,K), then the classicality of the
initial and final environment states with respect to the reduced environment channel can
be evaluated as

C(ρE, ΦE) = 1− tr(ρ2
E) +

d

∑
i=1

p2
i (2− pidi) + d− 2

C(ρ′E, ΦE) = 1− tr(ρ′2E ) +
d

∑
i=1

p2
i (2− pidi) + d− 2.

where di is the dimension of the i-th sub-environment. In terms of the classicality of
the environment C(ρE, ΦE), we have an alternative measure of influence on the total
environment caused by the system as

F(ρE|U, Π) = C(ρ′E, ΦE)− C(ρE, ΦE)

and the influence on the i-th environment caused by the system as

F(ρEi |U, Π) = C(ρ′Ei
, ΦEi )− C(ρEi , ΦEi ),

respectively. It turns out that

F(ρE|U, Π) = tr(ρ2
E)− tr(ρ′2E )

F(ρEi |U, Π) = tr(ρ2
Ei
)− tr(ρ′2Ei

).
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These quantities of influence on the environment (caused by the system) may be
compared with the quantifiers of decoherence of the system (caused by the environment),
and they should be correlated due to the system-environment coupling.

5. Illustrating Decoherence in Interferometry

We illustrate the effectiveness of the quantifiers proposed in the preceding section
with a two-path interferometer, as depicted in Figure 2. The system Hilbert space of interest
here is effectively a qubit space with the two paths labeled as Π1 = |0〉〈0| and Π2 = |1〉〈1|.
Let the initial system state (the path degree part of the physical state) be

ρS =
1
2

(
1 +

3

∑
i=1

rjσj

)
=

1
2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
(37)

with the Bloch vector r = (r1, r2, r3) ∈ R3 satisfying |r| =
√

r2
1 + r2

2 + r2
3 ≤ 1 and σj being

the Pauli spin matrices. The eigenvalues of ρS are (1± |r|)/2. It can be directly evaluated
that

√
ρS =

1
2
√

γ

(
γ + r3 r1 − ir2

r1 + ir2 γ− r3

)
with

γ = 1 +
√

1− |r|2. (38)

Path 

Path 

Figure 2. Schematic illustration of decoherence induced by the array of path detectors U = {UEi :
i = 1, 2} (serving as the environment of the system state ρS) attached to the collection of path
Π = {Πi : i = 1, 2}. Each path Πi is probed by a detector UEi . The initial system state is ρS, while
the initial array of detector state is ρE = ρE1 ⊗ ρE2 . The combined initial state is ρSE = ρS ⊗ ρE. The
system–detector coupling is via the combined unitary operator ΠU = ∑2

i=1 Πi ⊗UEi , and the final
combined system is ρ′SE = ΠU ρSEΠ†

U with final system state ρ′S = trρ′SE. The decoherence of ρS (with
respect to Π) induced by the path detectors are quantified by D(ρS|Π, U) = J(ρ′S, Π)− J(ρS, Π) and
F(ρS|Π, U) = C(ρ′S, Π)− C(ρS, Π), which are the increasing amount of classicality of the system
state caused by the path detectors.

For a two-path interferometer with a detector attached to each path, let ρEi be the initial
detector state attached to path i; the system and detector evolve under the controlled-U
operation

ΠU = Π1 ⊗UE1 + Π2 ⊗UE2 . (39)

From an information-theoretic point of view, this controlled-U operation correlates the
quantum system and the detector and leads to the combined final state

ρ′SE = ΠU(ρS ⊗ ρE)Π†
U

= (Π1ρSΠ1)⊗ (UE1 ρEU†
E1
) + (Π1ρSΠ2)⊗ (UE1 ρEU†

E2
)

+ (Π2ρSΠ1)⊗ (UE2 ρEU†
E1
) + (Π2ρSΠ2)⊗ (UE2 ρEU†

E2
). (40)
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The final system state can be obtained by taking the partial trace over the detector as

ρ′S = trEρ′SE

= Π1ρSΠ1 + Π1ρSΠ2tr(UE1 ρEU†
E2
) + Π2ρSΠ1tr(UE2 ρEU†

E1
) + Π2ρSΠ2

=
1
2

(
1 + r3 (r1 − ir2)V∗

(r1 + ir2)V 1− r3

)
.

with
V = tr(UE2 ρEU†

E1
) = tr(UE2 ρE2) · tr(ρE1U†

E1
)

being a complex number. By the Cauchy–Schwarz inequality, we have

|V|2 =
∣∣tr((UE2

√
ρE)(UE1

√
ρE)

†)∣∣2
≤ tr

(
(UE2

√
ρE)(UE2

√
ρE)

†) · tr((UE1

√
ρE)(UE1

√
ρE)

†)
= 1.

The eigenvalues of ρ′S = ΦS(ρS) are

λ1(ρ
′
S) =

1
2

(
1 +

√
r2

3 + (r2
1 + r2

2)|V|2)
)

(41)

λ2(ρ
′
S) =

1
2

(
1−

√
r2

3 + (r2
1 + r2

2)|V|2
)

. (42)

Consequently, we see that
λ(ρ′S) 4 λ(ρS),

as it should be by Proposition 2.
Noting that √

ρ′S =
1

2
√

γ′

(
γ′ + r3 (r1 − ir2)V∗

(r1 + ir2)V γ′ − r3

)
,

where
γ′ = 1 +

√
1− (r2

1 + r2
2)|V|2 − r2

3, (43)

we obtain

D(ρS|Π, U) = J(ρ′S, Π)− J(ρS, Π)

=
(γ′ + r3

2
√

γ′

)2
+
(γ′ − r3

2
√

γ′

)2
−
(γ + r3

2
√

γ

)2
−
(γ− r3

2
√

γ

)2

=
1
2
(γ′ − γ)

(
1−

r2
3

γ′γ

)
. (44)

Since γ′ ≥ γ, γ ≥ 1 ≥ r3, we see readily that the above quantity is non-negative. Moreover,
because γ′ is a decreasing function of |V|2, from Equation (44) we see that D(ρS|Π, U) is a
decreasing function of |V|2.

Similarly, we can evaluate

C(ρ′S, Π) = 1− 1
4
(
(1 + r3)

2 + (r2
1 + r2

2)|V|2 + (1− r3)
2 + (r2

1 + r2
2)|V|2

)
+

1
4
(
(1 + r3)

2 + (1− r3)
2)

= 1− 1
2
(r2

1 + r2
2)|V|2,
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from which we obtain

F(ρS|Π, U) = C(ρ′S, Π)− C(ρS, Π) =
1
2
(r2

1 + r2
2)(1− |V|2), (45)

which is also apparently a decreasing function of |V|.
It can be easily verified that both the decoherence quantifiers D(ρS|Π, U) and

F(ρS|Π, U) are decreasing functions of |V|, and achieve the minimal value 0 when |V| = 1,
which corresponds to the situation when the detector does not obtain the path information.
In this case, coherence is preserved, and there is no decoherence. This is consistent with
our intuition since decoherence can be regarded as the washing out of interference, while
D(ρS|Π, U) and F(ρS|Π, U) can be regarded as measures of path information leakage to
the detectors (classical path information). The detectors, from which we can obtain the
path information of the quantum system, would inevitably reduce the interference ability
of the quantum system.

The quantity V = tr(UE2 ρEU†
E1
) arises naturally in at least two other contexts:

(a) If we take UE1 = 1 and UE2 = U, then we come to the setup of Englert [34], in
which |V| is the fringe visibility in the complementarity relation

|V|2 +D2 ≤ 1,

with D = 1
2 tr|UρEU† − ρE| being the quantitative measure of distinguishability. In this

context, V is also called the interference function.
(b) If we define the generalized variance of measuring any operator X in state σ as

V(σ, X) = tr
(
σ(X− tr(σX))(X− tr(σX))†),

and consider the unitary operator U†
E1

UE2 = U†
E1
⊗UE2 , then we have

V(ρE, U†
E1

UE2) = tr
(
ρE(U†

E1
UE2 − tr(ρEU†

E1
UE2))(U

†
E1

UE2 − tr(ρEU†
E1

UE2))
†)

= 1− |tr(UE2 ρEU†
E1
)|2

= 1− |V|2,

which is a kind of measure of path detecting capability. The above relation immediately
leads to

V(ρE, U†
E1

UE2) + |V|
2 = 1,

which is apparently a complementary relation between the path information and fringe
visibility. Furthermore, combined with Equation (45), we have

F(ρS|Π, U) =
1
2
(r2

1 + r2
2)V(ρE, U†

E1
UE2),

which relates the decoherence directly with the path-detecting information. This is con-
sistent with our intuitive understanding of decoherence as the information leakage to the
detectors (environment).

Now we make some comparison of our quantifiers of decoherence with existing
ones. Since, in general, decoherence is also regarded as the establishment of correlations
between the system and environment, it is expected that decoherence should be related
to correlations, as quantified by the mutual information between the system and the
environment. For simplicity, we consider the setup described by Figure 2 and assume
that the initial system state and environment state are both pure. In this case, the final
system–environment state ρ′SE is pure since the coupling ΠU is unitary. Consequently, the
mutual information of the final system–environment state is
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I(ρ′SE) = S(ρ′S) + S(ρ′E)− S(ρ′SE) = 2S(ρ′S) = 2
(
− λ1(ρ

′
S)lnλ1(ρ

′
S)− λ2(ρ

′
S)lnλ2(ρ

′
S)
)
,

where λj(ρ
′
S) are determined by Equations (41) and (42), and S(σ) = −trσlnσ is the von

Neumann entropy of the state σ. Since the initial system state ρS defined by Equation (37)
is pure, we have r2

1 + r2
2 + r2

3 = 1. Therefore by Equations (41), (42) and (45), we have

λ1(ρ
′
S) =

1
2

(
1 +

√
1− (r2

1 + r2
2)(1− |V|2)

)
=

1
2

(
1 +

√
1− 2F(ρS|Π, U)

)
,

λ2(ρ
′
S) =

1
2

(
1−

√
1− (r2

1 + r2
2)(1− |V|2)

)
=

1
2

(
1−

√
1− 2F(ρS|Π, U)

)
.

Now the mutual information can be expressed as

I(ρ′SE) = 2H
(1

2
(
1 +

√
1− 2F(ρS|Π, U)

))
,

where H(p) = −plnp− (1− p)ln(1− p) is the binary Shannon entropy function, 0 ≤ p ≤ 1.
From the above equation, we see that the mutual information is monotonically related to
the decoherence: when decoherence increases, the mutual information increases, which
is consistent with the intuition that larger decoherence corresponds to larger amount of
correlations established between the system and the environment (larger information
leakage to the environment). Although the above result is proved for initial pure states
and F(ρS|Π, U), the general cases concerning mixed initial states and the decoherence
quantifier D(ρS|Π, U) are similar, but the calculations are more complicated. It will be also
interesting to make a more comprehensive comparative studies between various quantities
related to decoherence and correlations.

6. Summary

In order to quantify decoherence induced by environment, we reviewed two quanti-
fiers of classicality in a general setup of state–channel interaction by exploiting the Jordan
symmetric product and a modified notion of variance. These quantifiers may be of inde-
pendent interest in addressing the classical–quantum interplay. We also elucidated some
simple yet useful features of the decoherence channel (Hadamard channel).

Employing the above quantifiers of classicality, we introduced two quantifiers of
decoherence induced by environment in the combined “system + environment” setup.
These quantifiers have some nice properties and can be used to summarize the decoherence
strength of an open system. Connections with complementarity were discussed. The
results were illustrated via a two-path interferometer.

A natural approach to quantifying decoherence is via correlations between the system
and the environment. There are various quantifiers for correlations such as the quantum
mutual information, entanglement, quantum discord, measurement-induced disturbance,
measurement-induced nonlocality, classical correlations, etc. In particular, decoherence is
quantified from a decorrelating perspective in Refs. [106,107]. However, correlations are
generally hard to evaluate. Our present approaches differ from the conventional approach
to decoherence via correlations such as quantum mutual information. Our quantifiers
of decoherence are relatively easier to calculate and have intimate relations with the
Wigner–Yanase skew information, uncertainty, and the resource theory of coherence. This
indicates certain operational significance of the quantities. However, it remains to further
study the operational meaning of these quantifiers of decoherence and to investigate their
implications for foundational issues and experimental practices.

For open quantum systems, apart from decoherence, another prominent characteristic
is quantum Markovianity/non-Markovianity [108–116]. Although the classical Markovian-
ity is uniquely defined and well understood, there is not a single universally accepted defi-
nition of quantum Markovianity. A host of quantum Markovianity-related concepts coexist,
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such as GKS–Lindblad master equations, distinguishability, divisibility, no-information
backflow, monotonic decreasing in correlations, etc. However, just like decoherence is
related to the decaying of off-diagonal entries of the density matrix, a general common
feature of the various Markovianities is related to information loss and memoryless effects.
This indicates that there are intimate relations between decoherence and Markovianity.
We remark that the feature of decoherence as information monotonically flowing into
the environment is deeply related to the Markovian approximation. In non-Markovian
dynamics, in contrast to decoherence, recoherence may occur. The interplay and relations
between decoherence and quantum Markovianity/non-Markovianity are worth further
investigations.
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