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1  |  INTRODUCTION

The mammalian gastrointestinal tract is a home of a diverse 
microbiota population which serve various biological func-
tions of the host (Frese, Parker, Calvert, & Mills, 2015). Gut 
microbiota have recently been the target of many research ef-
forts resulting from the rapid development in molecular tech-
nologies and led to a vast influx of “omics” studies (Guevarra 

et  al.,  2019). The importance of gut microbiota is widely 
accepted (Kim et al., 2011), with commensal bacteria often 
being called the “forgotten organ” of the host (O’Hara & 
Shanahan, 2006), impacting hosts in a multitude of ways. For 
example, the microbial composition helps in promoting the 
gastrointestinal health through metabolites, postnatal devel-
opment, degradation of short-chain fatty acids and stimulation 
of immune system (Mann et al., 2014; Pedersen, Andersen, 
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Abstract
The impact of gut microbiome composition was investigated at different stages of pro-
duction (weaning, Mid-test and Off-test) on meat quality and carcass composition traits 
of 1,123 three-way crossbred pigs. Data were analysed using linear mixed models which 
included the fixed effects of dam line, contemporary group and gender as well as the 
random effects of pen, animal and microbiome information at different stages. The con-
tribution of the microbiome to all traits was prominent although it varied over time, 
increasing from weaning to Off-test for most traits. Microbiability estimates of carcass 
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analysed, belly weight (BEL) had a higher microbiability estimate (0.29 ± 0.04). Adding 
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quality traits but affected the estimates of carcass composition traits. Fat depth had a 
greater decrease (10%) in genomic heritability at Off-test. High microbial correlations 
were found among different traits, particularly with traits related to fat deposition with a 
decrease in the genomic correlation up to 20% for loin weight and BEL. This suggested 
that genomic correlation was partially contributed by genetic similarity of microbiome 
composition. The results indicated that better understanding of microbial composition 
could aid the improvement of complex traits, particularly the carcass composition traits 
in swine by inclusion of microbiome information in the genetic evaluation process.
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Hermann-bank, Stagsted, & Boye,  2013; Stappenbeck & 
Virgin, 2016).

The gut microbiome constitutes a portion of the hologe-
nome (Sommer & Bäckhed, 2013; Xiao et al., 2016) and has 
the potential to affect numerous biological activities that the 
hosts lack (Pajarillo, Chae, Balolong, Kim, & Kang,  2014). 
The microbial diversity of the intestine accounted for a sig-
nificant amount of the phenotypic variation for any trait in 
humans and should be accounted for when assessing the her-
itability not only in human but also in plants and livestock 
(Sandoval-Motta, Aldana, Martínez-Romero, & Frank, 2017). 
In livestock, Difford, Lassen, and Løvendahl (2016) termed 
“microbiability” as the proportion of total variance explained 
by microbiome for performance traits of dairy cattle. Difford 
et  al.  (2018) reported the effect of microbiota variation in 
methane production in dairy cows. Similarly, Ramayo-Caldas 
et al. (2020) and Saborío-Montero et al. (2020) also reported 
the significant microbiability of methane production in dairy 
cattle. In pigs, Camarinha-Silva et  al.  (2017) and Weishaar, 
Wellmann, Camarinha-Silva, Rodehutscord, and Bennewitz 
(2020) reported the presence of a significant microbiability 
of daily gain, feed intake and feed conversion rate. The gut 
microbiome also has a significant impact on porcine fatness 
(He et al., 2016). In chicken, Wen et al. (2019) demonstrated 
the significant contribution of caecal and duodenal microbiota 
in fat deposition. Until recently, selection of different traits in 
pigs has been done with the use of pedigree and genomic infor-
mation, yet the advantage of incorporating microbial informa-
tion in the genetic evaluation processes has not been assessed. 
Few studies have described the relationship of microbial diver-
sity and host (Guevarra et al., 2019; McCormack et al., 2018) 
however, these were mostly from a nutritional perspective. 
Camarinha-Silva et  al.  (2017) and Difford et  al.  (2018) re-
ported the possibility of incorporating host genome and mi-
crobiome information for better prediction of phenotypic traits.

Specifically, the contribution of microbial composition 
to the phenotypic variation of meat quality and carcass com-
position traits in pigs has yet to be explored and no studies 
to date have been conducted on the effect of microbial com-
position at different stages of production on growth and car-
cass composition. Therefore, the objectives of this study are 
to estimate the microbiability estimates for different meat 
quality and carcass composition traits; to investigate the 
impact of intestinal microbiome on heritability estimates; 
to estimate the correlation between microbial diversity and 
meat quality and carcass composition traits; and to estimate 
the microbial correlation between the meat quality and car-
cass composition traits in a commercial swine population.

2 |  MATERIAL AND METHODS

Phenotypic records presented in this study came from a com-
mercial farm operated by The Maschhoffs LLC. All methods 

and procedures were in accordance to the Animal Care and 
Use policies of North Carolina State University and the 
National Pork Board. The experimental protocol for faecal 
sample collection received approval number 15027 from 
Institutional Animal Care and Use Committee. All pigs were 
harvested in commercial facilities under the supervision of 
USDA Food Safety and Inspection Service.

2.1 | Animals and sample collection

Data were collected from crossbred individuals that were 
obtained from 28 founding Duroc sires and 747 com-
mercial F1 sows composed of Yorkshire  ×  Landrace 
or Landrace  ×  Yorkshire. The pigs were weaned at 
18.64 ± 1.09 days old and were moved to nursery-finishing 
facility. Pigs were kept in 334 single-sire single-sex pens with 
20 pigs per pen. The experiment was repeated six times, each 
of which comprised of two pens (one pen of female pig and 
one pen of castrated male). Pigs that came together in one rep-
licate were put together in one contemporary group. The test 
period began the day that pigs were moved to the nursery-
finishing facility. During the nursery, growth and finishing 
period all pigs were fed a standard pelleted feed based on sex 
and live weight. Feed and water were provided ad libitum to 
pigs. Details of diet and their nutritional values are provided 
in Table S1. The pigs received a standard vaccination and 
medication routine (Tables S2–S4). End of test (Off-test) was 
reached when the average weight of pigs of each pen reached 
138 kg. The average age at Off-test was 196.4 ± 7.80 days. 
Faecal samples for 16S rRNA sequencing were collected as 
follows. Rectal swabs were collected from all pigs at three 
stages from respective pens: weaning (Wean), 15 weeks post-
weaning (Mid-test; average 118.2 ± 1.18 days) and Off-test. 
Four to five pigs from each pen were selected as detailed by 
(Wilson et al., 2016). The selected pigs per pen represented an 
average pig for body weight, along with pigs approximately 1 
and 2 SD above and below the pen average. Their rectal swabs 
were used for subsequent microbial sequencing. There were 
1,205, 1,295 and 1,273 samples at weaning, Mid-test and Off-
test, respectively. Distribution of samples across families, time 
points and sex are provided (Table S5).

2.2 | Illumina amplicon sequencing

DNA extraction, purification, Illumina library preparation 
and sequencing were done as described by (Lu et al., 2018). 
Briefly, total DNA (gDNA) was extracted from each rectal 
swab by mechanical disruption in phenol: chloroform: isoamyl 
alcohol solution. Bead-beating was performed on the Mini-
BeadBeater-96 (MBB-96; BioSpec) for 4  min at room tem-
perature, and samples were centrifuged at 3,220 g. The DNA 
was then purified using a QIAquick 96 PCR purification kit 
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(Qiagen). Minor modifications were performed in purifica-
tion process of manufacturer's instruction. The modifica-
tion included the addition of sodium acetate (3 M, pH 5.5) to 
Buffer PM to a final concentration of 185 mM, combination of 
crude DNA with 4 volumes of Buffer PM and elution of DNA 
in 100 µL Buffer EB. All sequencing was performed at DNA 
Sequencing Innovation Laboratory at the Center of Genome 
Sciences and Systems Biology at Washington University in 
St. Louis. Phased, bi-directional amplification of the v4 region 
(515–806) of the 16S rRNA gene was employed to generate 
indexed libraries for Illumina sequencing as described in Faith 
et al. (2013). Sequencing was performed on an Illumina MiSeq 
instrument (Illumina, Inc.), generating 250-bp paired-end reads.

2.3 | 16S rRNA gene sequencing and quality 
control of data

Sequencing of 16S rRNA gene and quality control of data 
were done as described by Lu et  al.  (2018). Briefly, the 
pairs of 16S rRNA gene sequences obtained from Illumina 
sequencing were combined into a single sequence using 
FLASH v1.2.11 (Magoc & Salzberg,  2011). The sequences 
with a mean quality score below Q35 were filtered out using 
PRINSEQ v0.20.4 (Schmieder & Edwards, 2011). Then, the 
forward-oriented sequences were matched with primer se-
quences and trimmed off. Mismatch was allowed up to 1 
base pair. Sequences were subsequently demultiplexed using 
QIIME v1.9 (Caporaso et al., 2010). QIIME was used to clus-
ter the nucleotide sequences into operational taxonomic units 
(OTU) as explained by Lu et al. (2018). A modified version of 
Greengenes (Ley, Turnbaugh, Klein, & Gordon, 2006; Schloss 
& Handelsman, 2006) was used as reference database. Ninety 
per cent of the input sequences were matched to the reference 
database. The remaining 10% which did not match to the ref-
erence database were then clustered de novo with UCLUST 
(Schloss & Handelsman,  2006) to generate new reference 
OTU. Then, the 90% of reads that were matched with the 
reference database were again assigned to the new reference 
OTU that were derived from the de novo cluster. The sparse 
OTU were filtered to get a minimum total observation count of 
1,200 (0.05% of the samples) to be retained. This threshold, al-
beit arbitrary, was set in order to discard the features that were 
considered unreliable in the OTU generation process. The re-
sulting OTU table was rarefied to 10,000 counts per sample, 
and 1,755 OTU were retained for further analysis.

2.4 | Genotyping

All pigs were genotyped with the PorcineSNP60 v2 BeadChip 
(Illumina, Inc.). Quality control procedures were applied by 
removing the SNPs that had call rate <0.90 and minor allele 

frequency <0.05. After quality control, the number of SNPs 
remaining for further analyses was 42,529.

2.5 | Phenotypic data

Phenotypic data collection was done as described by 
(Wilson et al., 2016). Meat quality traits (intramuscular fat 
content [IMF], Minolta a* [MINA], Minolta b* [MINB], 
Minolta L* [MINL], ultimate pH [PH], subjective colour 
score [SCOL], subjective marbling score [SMARB], sub-
jective firmness score [SFIRM], shearing force [SSF]) 
and carcass composition traits (belly weight [BEL], ham 
weight [HAM], loin weight [LOIN], fat depth [FD], loin 
depth [LD] and carcass average daily gain [CADG]) were 
used for the current analysis. All the traits were measured as 
described by Khanal, Maltecca, Schwab, Gray, and Tiezzi 
(2019). A summary of traits used in current analysis is re-
ported in Table 1.

2.6 | Statistical analysis

The data were analysed using ASReml v4 (Gilmour, Gogel, 
Cullis, Welham, & Thompson, 2014). Univariate analyses 

T A B L E  1  Descriptive statistics of carcass composition and meat 
quality traits: acronym, mean, SD and coefficient of variation (CV) 
values

Traits Acronym Mean SD CV, %

Carcass composition traits

Loin depth, mm LD 67.99 7.21 10.60

Back fat depth, mm FD 22.07 5.24 23.74

Carcass average 
daily gain, g/day

CADG 552.90 73.93 13.73

Ham weight, kg HAM 25.19 2.34 9.29

Loin weight, kg LOIN 20.01 1.88 9.39

Belly weight, kg BEL 15.88 2.55 16.06

Meat quality

Intramuscular fat, % IMF 2.71 1.01 37.26

Minolta a* MINA 3.77 1.16 30.76

Minolta b* MINB −0.16 0.87 −543.75a 

Minolta L* MINL 45.37 5.76 12.70

Ultimate pH PH 5.64 0.22 3.90

Subjective colour SCOL 2.72 0.57 20.96

Subjective marbling SMARB 3.10 0.91 29.35

Subjective firmness SFIRM 3.05 1.04 34.09

Slice shear force, N SSF 156.96 41.99 2.75
aThe value is negative because the value of Minolta b* score ranges from 
negative to positive value and has mean of negative value. 
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were conducted to estimate heritability and microbiability 
estimates, and variance components for each trait. Single trait 
models were fitted as follows:

where µ was the overall mean, dli was the ith fixed effect of 
dam line (two levels), cgj was the jth fixed effect of the con-
temporary group (six levels), sexk was the kth fixed effect of 
sex (two levels), animall was the random animal genetic ef-
fect, penm(j) was the random effect of pen nested within con-
temporary group and eijklmn was the random residual. Pen 
and residuals were assumed normally distributed with mean 
zero and with variances I�2

pen and I�2
e, respectively, where I 

was an identity matrix. The random effect of animal was 
assumed normally distributed with mean 0 and variance G�2

a

, where G was a realized genomic relationship matrix ob-
tained according to VanRaden (2008) as follows:

where M is a matrix of marker alleles with m columns (m = total 
number of markers) and n rows (n = total number of genotyped 
individuals), and P is a matrix containing the frequency of the 
second allele (pj), expressed as 2pj. Mij was −1 if the genotype 
of individual i for SNP j was homozygous for the first allele, 0 
if heterozygous, or 1 if the genotype was homozygous for the 
second allele. Narrow sense heritability estimates were esti-
mated as h2 =

�2
a

�2
P

, with �2
P
= �2

a
+ �2

pen
+ �2

e
.

We added the microbiome information to model (1) in 
order to estimate the changes in heritability due to the incor-
poration of microbiome information at each stage of sample 
collection. Model (2) was then:

where dl, cg, sex, animal, pen and e were as previously de-
scribed and microbiomem was the random effect of the animal 
microbiome. The effect of the microbiome was assumed nor-
mally distributed with mean 0 and variance O�2

m
 in which O 

was a variance–covariance matrix among individuals and �2
m
 

was the microbiome variance. The matrix O was created fol-
lowing Ross, Moate, Marett, Cocks, and Hayes (2013). Briefly, 
O was obtained as O =

1

q
XXT, with matrix X of dimension of 

n × q, where n is the number of animals and q is the number of 

OTU. X was constructed from S, a matrix of equivalent dimen-
sions n × q. Each element of the S matrix, Sij, was the relative 
abundance of OTU j in animal i (plus 0.001). The elements of X 
were calculated as follows: 

where S.j was the vector of the jth column of S. The O matrix 
was created for each stage (Wean, Mid-test and Off-test) 
separately and fitted in each model separately with different 
O matrix. The contribution of the microbiome to the overall 
variance (microbiability) was calculated as follows: m2 =

�2
m

�2
P

 
(Difford et al., 2016). The total variance �2

P
 was in this case 

obtained as �2
P
= �2

a
+ �2

m
+ �2

pen
+ �2

e
. Bivariate analyses 

were subsequently conducted to estimate genomic and mi-
crobial correlations among traits. Bivariate models were of 
form:

where y1 and y2 were the vectors of phenotypic measurements 
for trait 1 and trait 2, respectively; X1 and X2 were the incidence 
matrices relating the fixed effects to vector y1 and vector y2, re-
spectively; b1 and b2 were the vector of fixed effect for trait 1 and 
2, respectively; Z1 and Z2 were the incidence matrices relating 
the phenotypic observations to the vector of random animal ef-
fects for trait 1 and 2, respectively; a1 and a2 were the vectors of 
random animal effect for trait 1 and 2, respectively; K1 and K2 
were the incidence matrices relating the phenotypic observa-
tions to the vector of random microbiome effect for trait 1 and 2, 
respectively; o1 and o2 were the vectors of random microbiome 
effect for trait 1 and 2 respectively; W1 and W2 were the inci-
dence matrices relating the phenotypic observations to the vec-
tor of random pen effects for trait 1 and 2, respectively; p1 and p2 
were the vector of random pen effect for trait 1 and 2, respec-
tively; and e1 and e2 were the vectors of random residuals for 
trait 1 and 2, respectively. The fixed effects and random effects 
were the same as fitted in the univariate analyses.

The additive effects were again assumed normally distrib-
uted with means 0 and variance 

Var

⎡
⎢⎢⎣

a1

a2

⎤
⎥⎥⎦
= C ⊗ G

, where 

C =

⎡
⎢⎢⎣
�2

a1
�a12

�a21 �2
a2

⎤
⎥⎥⎦
. The elements of the covariance matrix C 

were defined as follows: �2
a1

, the genetic variance for trait 1, 

(1)
y������ = � + dli + cgj + sexk + animall + penm(j) +e������

G=
(M−P) (M−P)�

2
∑m

j = 1
pj (1−pj)

(2)y������� = � + dli + cgj + sexk + animall +microbiomem +penn (j) + e�������

X�� =
log (S��)− log S.j

sd (log S.j)

(3)
⎡
⎢⎢⎣

y1

y2

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

X1 0

0 X2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b1

b2

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

Z1 0

0 Z2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a1

a2

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

K1 0

0 K2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

o1

o2

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

W1 0

0 W2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p1

p2

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

e1

e2

⎤
⎥⎥⎦
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�2
a2

, the genetic variance for trait 2, and �a12 = �a21, the addi-
tive genetic covariance between trait 1 and 2. Similar as-
sumptions were made for the microbiome effect for which the 
covariance structure was assumed 

Var

⎡
⎢⎢⎣

o1

o2

⎤
⎥⎥⎦
= Q ⊗ O

, with 

Q =

⎡
⎢⎢⎣
�2

m1
�m12

�m21 �2
m2

⎤
⎥⎥⎦
. The elements Q were: �2

m1
, the microbi-

ome variance for trait 1, �2
m2

, the microbiome variance for 
trait 2 and �m12 = �m21

, the microbiome covariance between 
trait 1 and 2. The pen (co)variance structure was 

Var

⎡
⎢⎢⎣

p1

p2

⎤
⎥⎥⎦
= W ⊗ I

, with 
W =

⎡
⎢⎢⎣
�2

pen1
0

0 �2
pen2

⎤
⎥⎥⎦

 and I an iden-

tity matrix. The W matrix elements were: �2
pen1

 and �2
pen2

 

being the pen variance for traits 1 and 2, respectively. Pen 
effects were assumed uncorrelated among traits. The residual 
variance was given by 

Var

⎡
⎢⎢⎣

e1

e2

⎤
⎥⎥⎦
= R ⊗ I

, 
R =

⎡
⎢⎢⎣
�2

e1
�2

e12

�2
e21

�2
e2

⎤
⎥⎥⎦

 

where and I was an identity matrix. The components of R 
were defined as follows: �2

e1
 was the residual variance for trait 

1, �2
e2

 was the residual variance for trait 2, and �2
e21

= �2
e12

 
was the residual covariance among the two traits. Preliminary 
analyses (data not shown) showed that correlations were not 
estimable for the traits with estimated microbiome variance 
<3%. Microbial correlations were therefore estimated among 
traits for which microbiome explained at least 3% of total 
phenotypic variance. In all cases, microbial correlations were 
not estimated at weaning since microbiome accounted for 
<3% of total variance for all traits.

3 |  RESULTS AND DISCUSSION

3.1 | Phenotypic data summary

Mean and standard deviation for each meat quality and car-
cass composition trait are provided in Table 1. There were nine 
meat quality and six carcass composition traits. The number of 
individual samples with complete genotypic, phenotypic and 
microbiome information at each stage was 1,123, which was 
used for further analyses. The distribution of OTU at weaning, 
Mid-test and Off-test is given in Figure  1. Of a total 1,755 
OTU, there were 1,580 OTU in common between weaning, 
Mid-test and Off-test. There were 1,685 OTU in common be-
tween Mid-test and Off-test, while between weaning and Mid-
test were 1,626 and between weaning and Off-test were 1,590.

3.2 | Microbiability estimates

The proportion of variance explained by each random term 
for meat quality and carcass composition traits is presented 
in Figures  2 and 3, respectively. The estimates of herit-
ability, microbiability and variance components along with 
their respective standard errors are provided in Table 2. The 
variance component estimates from the model which contain 
only the microbiome information and pen are also provided 
(Table S6). The results identified several traits with signifi-
cant microbiability. Likelihood ratio tests showed that inclu-
sion of genomic or microbiome information in the model 
performs significantly better (p < .001) than the null model 
(i.e., including all fixed effects and random effect of pen). 
The model containing both genomic and microbiome infor-
mation was significantly better (p  <  .001) than the models 
containing genomic or microbiome information in addition 
to null model. Correlations between models' solutions were 
performed in order to have a proxy measure of the covariance 
between the host genomic and gut microbial effects; results 
are included in Tables S7 and S8.

The microbiability of carcass composition traits were 
higher than those of meat quality traits. In all cases, mi-
crobiability estimates for both meat quality and carcass 
composition traits at weaning were negligible and ranged 
from zero for several traits to a maximum of 0.06 ± 0.03 

F I G U R E  1  Venn diagram with the numbers of common 
operational taxonomic units (OTU) among different growth stages 
(Wean, Mid-test and Off-test) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(estimate ± SE) for CADG. Three of the nine meat qual-
ity traits investigated showed significant microbiability 
at Mid-test, with estimates of 0.07  ±  0.02 for SMARB, 
0.08 ± 0.03 for SFIRM and 0.10 ± 0.04 for SSF. At Off-
test, four meat quality traits had significant microbiabil-
ity, with estimates of 0.06  ±  0.02 for IMF, 0.09  ±  0.02 
for MINA, 0.11  ±  0.04 for MINB and 0.13  ±  0.04 for 

SFIRM. For carcass composition traits, we found that five 
out of six traits were significantly affected by microbiome 
at Mid-test and Off-test. The microbiability of carcass 
composition traits at Mid-test ranged from 0.12  ±  0.04 
for LOIN and FD to 0.20  ±  0.04 for BEL. The micro-
biability of carcass composition traits at Off-test ranged 
from 0.13  ±  0.05 for LOIN to 0.29  ±  0.05 for BEL. In 

F I G U R E  2  Proportion of variance explained by the inclusion of microbial (O), genomic (G) and pen (P) effect for meat quality traits. Model 0 
contains genomic and pen effect as random effect, and Model 1, Model 2 and Model 3 contain microbial effect at weaning, Mid-test and Off-test in 
addition to genomic and pen effect [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3  Proportion of variance explained by the inclusion of microbial (O), genomic (G) and pen (P) effect for carcass composition traits. 
Model 0 contains genomic and pen effect as random effect, and Model 1, Model 2 and Model 3 contain microbial effect at weaning, Mid-test and 
Off-test in addition to genomic and pen effect [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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T A B L E  2  Variance components explained by the inclusion of microbial effect (�2
m
), genomic effect (�2

a
), pen effect (�2

pen
), residual effect (�2

e
), 

microbiability (m2) and heritability (h2) in different modelsa

Traits Parameter Model 0 Model 1 Model 2 Model 3

IMF �2
pen

0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02

�2
m

– 0.03 ± 0.02 0.03 ± 0.02 0.06 ± 0.03

�2
a

0.55 ± 0.08 0.55 ± 0.08 0.54 ± 0.08 0.53 ± 0.08

�2
e

0.41 ± 0.05 0.38 ± 0.04 0.39 ± 0.05 0.37 ± 0.37

m2 – 0.03 ± 0.02 0.03 + 0.02 0.06 ± 0.02

h2 0.55 ± 0.05 0.54 ± 0.05 0.54 ± 0.05 0.53 ± 0.05

SMARB �2
pen

0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02

�2
m

– 0.02 ± 0.03 0.06 ± 0.02 0.007 ± 0.02

�2
a

0.26 ± 0.08 0.26 ± 0.06 0.26 ± 0.06 0.26 ± 0.06

�2
e

0.48 ± 0.04 0.46 ± 0.04 0.43 ± 0.05 0.47 ± 0.05

m2 – 0.02 ± 0.02 0.07 + 0.02 0.01 ± 0.02

h2 0.32 ± 0.05 0.32 ± 0.05 0.31 ± 0.05 0.32 ± 0.05

MINA �2
pen

0.19 ± 0.04 0.18 ± 0.03 0.18 ± 0.03 0.17 ± 0.03

�2
m

– 0.23E−04 ± 0.00 0.02 ± 0.04 0.12 ± 0.05

�2
a

0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.06

�2
e

0.85 ± 0.06 0.85 ± 0.06 0.83 ± 0.05 0.77 ± 0.07

m2 – 0.00 ± 0.00 0.02 + 0.02 0.09 ± 0.02

h2 0.17 ± 0.05 0.17 ± 0.05 0.17 ± 0.05 0.16 ± 0.05

MINB �2
pen

0.15 ± 0.03 0.15 ± 0.03 0.14 ± 0.03 0.13 ± 0.03

�2
m

– 0.64E−05 ± 0.00 0.005 ± 0.01 0.08 ± 0.03

�2
a

0.056 ± 0.03 0.056 ± 0.03 0.058 ± 0.03 0.056 ± 0.03

�2
e

0.49 ± 0.03 0.49 ± 0.04 0.48 ± 0.04 0.42 ± 0.04

m2 – 0.00 ± 0.00 0.007 + 0.02 0.11 ± 0.04

h2 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04

MINL �2
pen

6.15 ± 1.16 6.15 ± 1.16 6.15 ± 1.16 6.15 ± 1.16

�2
m

– 0.61E−05 ± 0.00 0.99E−05 ± 0.00 1.16 ± 1.15

�2
a

6.90 ± 1.82 6.91 ± 1.82 6.91 ± 1.82 6.57 ± 1.78

�2
e

20.05 ± 1.63 20.04 ± 1.52 20.04 ± 1.52 19.23 ± 1.81

m2 – 0.00 ± 0.00 0.00 + 0.00 0.03 ± 0.03

h2 0.21 ± 0.04 0.21 ± 0.05 0.21 ± 0.05 0.19 ± 0.05

PH �2
pen

0.013 ± 0.002 0.013 ± 0.002 0.013 ± 0.002 0.013 ± 0.002

�2
m

– 0.26E−05 ± 0.00 0.001 ± 0.007 0.002 ± 0.002

�2
a

0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001

�2
e

0.031 ± 0.002 0.031 ± 0.002 0.031 ± 0.002 0.031 ± 0.002

m2 – 0.00 ± 0.00 0.002 + 0.01 0.04 ± 0.03

h2 0.06 ± 0.04 0.06 ± 0.04 0.06 ± 0.04 0.06 ± 0.04

SCOL �2
pen

0.014 ± 0.006 0.013 ± 0.006 0.014 ± 0.006 0.013 ± 0.006

�2
m

– 0.41E−05 ± 0.00 0.40E−05 ± 0.00 0.012 ± 0.011

�2
a

0.096 ± 0.02 0.096 ± 0.02 0.096 ± 0.02 0.097 ± 0.02

�2
e

0.216 ± 0.018 0.215 ± 0.018 0.215 ± 0.018 0.204 ± 0.019

m2 – 0.00 ± 0.00 0.002 + 0.01 0.04 ± 0.03

h2 0.30 ± 0.06 0.30 ± 0.05 0.30 ± 0.06 0.30 ± 0.06
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Traits Parameter Model 0 Model 1 Model 2 Model 3

SFIRM �2
pen

0.026 ± 0.029 0.026 ± 0.029 0.028 ± 0.029 0.022 ± 0.028

�2
m

– 0.41E−05 ± 0.00 0.40E−05 ± 0.00 0.012 ± 0.011

�2
a

0.134 ± 0.050 0.134 ± 0.050 0.120 ± 0.044 0.122 ± 0.046

�2
e

0.904 ± 0.059 0.904 ± 0.059 0.834 ± 0.063 0.791 ± 0.068

m2 – 0.00 ± 0.00 0.08 + 0.03 0.13 ± 0.04

h2 0.13 ± 0.04 0.13 ± 0.05 0.11 ± 0.04 0.11 ± 0.04

SSF �2
pen

0.52 ± 0.36 0.52 ± 0.36 0.50 ± 0.36 0.49 ± 0.36

�2
m

– 0.41 ± 0.32 1.38 ± 0.59 0.30 ± 0.36

�2
a

3.07 ± 0.74 3.12 ± 0.75 3.00 ± 0.73 3.03 ± 0.73

�2
e

9.42 ± 0.70 8.99 ± 0.77 8.27 ± 0.78 9.20 ± 0.66

m2 – 0.03 ± 0.02 0.10 + 0.04 0.02 ± 0.02

h2 0.24 ± 0.05 0.24 ± 0.05 0.22 ± 0.05 0.23 ± 0.05

LD �2
pen

6.55 ± 1.67 6.49 ± 1.66 6.42 ± 1.67 6.55 ± 1.67

�2
m

– 0.71 ± 1.05 1.76 ± 1.58 0.29E−04 ± 0.00

�2
a

6.15 ± 2.94 5.88 ± 2.36 5.88 ± 2.36 6.15 ± 2.93

�2
e

38.53 ± 2.06 38.09 ± 2.05 37.20 ± 2.15 38.53 ± 2.06

m2 – 0.01 ± 0.02 0.03 + 0.03 0.00 ± 0.00

h2 0.12 ± 0.04 0.11 ± 0.05 0.12 ± 0.04 0.11 ± 0.04

FD �2
pen

2.78 ± 0.62 2.77 ± 0.65 2.90 ± 0.67 2.37 ± 0.60

�2
m

– 0.18 ± 0.48 2.71 ± 0.87 5.37 ± 1.05

�2
a

9.84 ± 1.55 9.80 ± 1.56 9.00 ± 1.48 7.61 ± 1.34

�2
e

9.99 ± 1.05 9.84 ± 1.14 7.83 ± 1.13 6.56 ± 1.05

m2 – 0.01 ± 0.02 0.12 + 0.04 0.25 ± 0.04

h2 0.44 ± 0.05 0.43 ± 0.05 0.40 ± 0.05 0.34 ± 0.05

CADG �2
pen

0.78E−05 ± 0.00 0.72E−0 ± 0.00 0.61E−05 ± 0.00 0.59E−05 ± 0.00

�2
m

– 0.31 ± 0.18 0.95 ± 0.26 1.18 ± 0.29

�2
a

1.05 ± 0.23 0.98 ± 0.08 1.07 ± 0.29 0.94 ± 0.27

�2
e

4.71 ± 0.29 4.63 ± 0.30 3.31 ± 0.26 3.18 ± 0.30

m2 – 0.06 ± 0.03 0.18 + 0.04 0.22 ± 0.05

h2 0.20 ± 0.05 0.18 ± 0.05 0.20 ± 0.05 0.18 ± 0.04

HAM �2
pen

0.87E−07 ± 00 0.85E ± 0.00 0.72E−05 ± 0.00 0.73E−05 ± 0.0

�2
m

– 0.10 ± 0.16 0.80 ± 0.25 0.83 ± 0.29

�2
a

0.72 ± 0.27 0.70 ± 0.27 0.82 ± 0.28 0.73 ± 0.27

�2
e

4.71 ± 0.29 4.65 ± 0.32 3.96 ± 0.33 3.96 ± 0.33

m2 – 0.02 ± 0.02 0.14 + 0.04 0.15 ± 0.05

h2 0.13 ± 0.05 0.13 ± 0.04 0.13 ± 0.05 0.13 ± 0.04

LOIN �2
pen

0.82E−05 ± 0.0 0.80E−05 ± 0.00 0.70E−05 ± 00 0.70E−05 ± 00

�2
m

– 0.10 ± 0.16 0.43 ± 0.16 0.44 ± 0.18

�2
a

0.62 ± 0.18 0.58 ± 0.17 0.65 ± 0.18 0.64 ± 0.18

�2
e

2.87 ± 0.18 2.79 ± 0.19 2.46 ± 0.21 2.45 ± 0.21

m2 – 0.03 ± 0.02 0.12 + 0.04 0.13 ± 0.05

h2 0.18 ± 0.05 0.17 ± 0.05 0.18 ± 0.05 0.18 ± 0.04
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our study, the microbiability was not significant for LD. 
In most of the cases, we did not find significant micro-
biability estimates at weaning; however, microbiability 
estimates at Mid-test and Off-test were significant. This 
might have several causes including the sudden change 
of microbiome composition shortly after the diet switch 
occurring at weaning as well as other environmental fac-
tors like, stress. Greater microbiability estimates indicate 
that the microbial composition is more informative for the 
phenotype. Based on our microbiability estimates, mi-
crobial composition at Off-test are important predictors 
of carcass composition traits compared to Mid-test and 
Wean because the microbiability estimates for majority 
of the traits were higher at Off-test than the Mid-test and 
Wean. To our knowledge, this is the first attempt to obtain 
microbiability estimates for meat quality and carcass com-
position traits. We did not find any literature on swine to 
compare the estimates with previous research. However, 
Buitenhuis et al. (2019), Wen et al. (2019) and Rothschild 
et  al.  (2018) reported significant microbiability for fatty 
acids in milk of Holstein cattle, abdominal fat of chicken 
and body mass index and glycaemic index in human, re-
spectively. Based on these literatures and our finding of 
high microbiability estimate of fat-related traits, it was ev-
ident that gut microbiota has impact on lipid metabolism 
and fat deposition in swine. Our results suggest that later 
measures of microbial composition might be more infor-
mative for selection purposes, but further research would 
be needed to clarify this aspect.

Among meat quality traits, microbial variance explained 
a larger proportion of phenotypic variance than additive ge-
netic for SFIRM and MINB at Off-test (Figure 2). Among 
carcass composition traits, BEL, HAM and CADG at Off-
test had higher proportion of phenotypic variation explained 
by microbiome than by additive genetic (Figure  3). These 
results indicated that a significant proportion of total vari-
ance is explained by the microbiome, in some cases larger 
than the additive genetics and that prediction for these traits 

could be improved by accounting for the effect of variability 
in gut microbiome composition. The variation in gut micro-
biome could be fitted as the systematic environmental effect 
in model. Overall, to utilize the microbiome variability in 
the host–microbiome system, causal relationships among all 
systems should be established and fitted in the model. For 
example, the environmental effect on microbial composition, 
effect of host genes on microbial composition, direct effect 
of microbial composition on phenotypes and host genomic 
effects on phenotypes as mediated by microbiome should be 
fitted in the model.

In the current study, we observed a decrease in genomic 
heritability for most of the carcass composition traits at 
Off-test when microbiome information was added. The de-
crease in heritability ranged from 1% for LD to approxi-
mately 10% for FD. At Mid-test, the decrease in heritability 
ranged from 0% for CADG, BEL, HAM and LOIN to 4% 
for FD. No change in genomic heritability was observed 
at weaning. The decrease in heritability for FD was simi-
lar to that found by Lu et  al.  (2018) for similar traits. He 
et  al.  (2016) also reported the significant contribution of 
microbiome for porcine fatness. The results suggested that 
part of the resemblance among individuals captured by ge-
netic effects in breeding values prediction, might be in fact 
a resemblance among microbial composition and genetic 
parameters might not be accurate.

In contrast, for most of the meat quality traits considered, 
the inclusion of microbial composition did not affect the esti-
mates of genomic heritability, thus suggesting that at least for 
meat quality traits, gut microbial composition is mostly an en-
vironmental factor. The decrease in genomic heritability when 
we included the microbiome composition in the models was 
previously observed by Sandoval-Motta et al. (2017) who re-
ported the possibility of overestimation of heritability values 
with the use of genetic similarities by kinship information. The 
authors also suggested that inclusion of genetic diversity of in-
dividual microbiome will most likely increase the accuracy of 
heritability of various traits. The heritability and microbiability 

Traits Parameter Model 0 Model 1 Model 2 Model 3

BEL �2
pen

0.79E−05 ± 0.0 0.76E−05 ± 0.00 0.59E−05 ± 0.00 0.54E−05 ± 0.00

�2
m

– 0.28 ± 0.20 1.37 ± 0.38 1.89 ± 0.38

�2
a

1.34 ± 0.36 1.28 ± 0.35 1.39 ± 0.36 1.18 ± 0.33

�2
e

5.09 ± 0.34 4.88 ± 0.36 3.45 ± 0.38 3.50 ± 0.37

m2 – 0.04 ± 0.03 0.20 + 0.04 0.29 ± 0.05

h2 0.21 ± 0.05 0.19 ± 0.05 0.21 ± 0.05 0.18 ± 0.04

Abbreviations: BEL, belly weight; CADG, carcass average daily gain; FD, fat depth; HAM, ham weight; IMF, intramuscular fat percent; LD, loin depth; LOIN, loin 
weight; MINA, Minolta a*; MINB, Minolta b*; MINL, Minolta L*; PH, ultimate pH; SCOL, subjective colour score; SFIRM, subjective firmness score; SMARB, 
subjective marbling score; SSF, slice shear force.
aModel 0 contains genomic and pen effect as random effect, and Model 1, Model 2 and Model 3 contain microbial effect at weaning, Mid-test and Off-test, 
respectively, in addition to genomic and pen effect. 
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estimation of daily gain, feed intake and feed conversion ratio 
in swine (Camarinha-Silva et al., 2017) and methane emission 
in cattle (Difford et al., 2018) strongly suggested a significant 
contribution of microbiome to the total variation in the com-
plex phenotypes of livestock. In human, Richards et al. (2019) 
reported that host gene effects are affected by the microbiome 
composition. These previous studies agreed with our results. 
Our results also agreed with the concept of “hologenome” of 
evolution (Zilber-Rosenberg & Rosenberg,  2008), where the 
animal or plant along with associated microorganisms are the 
unit of selection in evolution. Based on our results, pigs act as 
holobiont for FD at Off-test as there is change in heritability 
with the inclusion of microbiome information and change in 
microbiability with the inclusion of genomic information.

3.3 | Microbial correlation among traits

In the discussion of correlation, we only focus on microbial 
correlations. Genomic correlations are only discussed if the 
genomic correlations changed due to inclusion of microbi-
ome information in the model. The genomic correlations 
among traits without inclusion of microbiome in the model 
are presented in Tables S9–S12.

3.3.1 | Correlations among meat quality and 
carcass composition traits at Mid-test

Overall, there were three meat quality traits and five carcass 
composition traits having variance of microbiome composi-
tion greater than 3%. Microbial correlations among meat qual-
ity and carcass composition traits at Mid-test are presented in 
Table 3. Most of the microbial correlations were significant. 
SMARB was moderately positively correlated (0.46 ± 0.24) 
with FD. This suggested that shifting of microbiota for high 
marbled meat would result in higher FD. Shear force is the 
measure of tenderness. In this study, the microbial composi-
tion of SSF was highly negatively correlated with SMARB, 
SFIRM, FD, CADG, LOIN and BEL which ranged from 
−0.93 ± 0.11 for SSF and SFIRM to −0.50 ± 0.25 for SSF and 
LOIN. High positive correlations of SFIRM were found with 
CADG, HAM, LOIN and BEL which ranged from 0.58 ± 0.26 
between SFIRM and LOIN to 0.87 ± 0.16 between SFIRM 
and BEL. There were moderate to high correlations of micro-
bial composition of FD with CADG, HAM, LOIN and BEL 
which ranged from 0.44  ±  0.21 between FD and LOIN to 
0.74 ± 0.11 between FD and BEL. High positive correlations 
were found between CADG and HAM, LOIN and BEL. BEL 
was highly positively correlated with HAM (0.96 ± 0.03) and 
LOIN (0.94 ± 0.06). We did not find any other estimates to 
compare our values with microbial correlation between meat 
quality and carcass composition traits.T
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3.3.2 | Correlation between meat quality 
traits and carcass composition traits at Off-test

There were six meat quality traits and five carcass compo-
sition for which variance of microbiome composition was 
greater than 3%. The microbial and genomic correlations 
among meat quality traits at Off-test are presented in Table 4. 
pH had high positive microbial correlation (0.90  ±  0.25) 
with SCOL and SFIRM (0.73  ±  0.35). This is in partial 
agreement with results from Ratzke and Gore (2018), that 
reported the specific bacteria which is responsible for build-
ing lactic acid in the muscle results in the anaerobic break-
down of glucose and glycogen, which eventually loosens 
the myofibril, thus scattering more light making the muscle 
pale (Walters,  1975). Furthermore, increasing pH causes 
swelling of myofibrils (Huff-Lonergan & Lonergan, 2005) 
which ultimately makes the muscle firmer. High positive 
microbial correlation was found between IMF and SFIRM 
(0.91 ± 0.17), MINA (0.55 ± 0.28) and MINB (0.75 ± 0.27). 
This agrees with Fang, Xiong, Su, Huang, and Chen (2017) 
who reported that gut bacteria involved in energy metabo-
lism and IMF in pig also regulate the muscle composition 
and muscle fibres. Higher microbial correlation of IMF with 
minolta colour measurements and SFIRM indicated that mi-
crobial composition increasing IMF would make the muscle 
paler and firmer. High microbial correlation of MINA and 
MINB (0.78 ± 0.16) suggests that microbiota associated for 
redness of meat are also associated with the yellowness in 
the meat. This agreed with Kim et al. (2010) who reported 
the positive correlation of yellowness and redness in the 
muscle of pig.

The microbial and genomic correlations among car-
cass composition traits at Off-test are presented in Table 5. 
The microbial correlation of carcass composition traits was 
highly and positively correlated to each other ranging from 
0.55 ± 0.17 between FD and LOIN to 0.97 ± 0.02 between 
CADG and HAM. McCormack et al. (2018) reported a pos-
itive correlation between gut microbiota and feed efficiency 
in swine. Gut microbiota has significant association with feed 

intake, final body weight (Kubasova et al., 2018) and growth 
traits (Ramayo-Caldas et  al.,  2016). All these studies sug-
gested that microbial composition has considerable effects on 
many carcass composition traits, with positive correlations 
between them. These high correlations indicated that all the 
traits could be simultaneously improved through the same 
microbial composition.

The microbial correlations for meat quality traits and 
carcass composition traits at Off-test are presented in 
Table  6. Intramuscular fat was highly correlated with FD 
(0.90 ± 0.14) and BEL (0.73 ± 0.18). Firmness score was 
positively correlated with BEL (0.50  ±  0.18). Moderate 
positive correlation was found between MINA and BEL 
(0.41 ± 0.21), and high positive correlation was found be-
tween MINA and FD (0.53 ± 0.18), and MINA and CADG 
(0.66 ± 0.17). Minolta b* had moderate positive correlation 
with FD (0.43  ±  0.19) and high positive correlation with 
CADG (0.58 ± 0.18), suggesting that increase in microbiota 
for lean meat and high daily gain of carcass would make the 
meat more yellowish.

3.4 | Change in genomic correlation with the 
inclusion of microbiome information

In this study, we observed a decrease in genomic correla-
tions among meat quality and carcass composition traits 
when microbiome information was included in the model. 
The genomic correlations without the inclusion of micro-
bial effect in model are provided in Tables S9–S12. At Mid-
test, the decrease in genomic correlation ranged from 0% 
among majority of meat quality traits to 18% for BEL and 
LOIN. The genomic correlation of BEL with FD and HAM 
decreased by 5% and 16%, respectively. The genomic cor-
relation of FD with SMARB and SSF decreased by 7% and 
4%, respectively.

At Off-test, the genomic correlation between PH and 
SCOL (0.91  ±  0.29), SFIRM and IMF (0.36  ±  0.15), FD 
and CADG (0.27 ± 0.13), and BEL and HAM (0.58 ± 0.19) 

T A B L E  4  Estimates of microbial correlation (above diagonal) and genomic correlation (below diagonal) at Off-test among meat quality traits

SCOL IMF SFIRM MINA MINB PH

SCOL −0.28 ± 0.57 0.07 ± 0.31 0.29 ± 0.44 −0.26 ± 0.39 0.90 ± 0.25

IMF −0.22 ± 0.13 0.91 ± 0.17 0.55 ± 0.28 0.75 ± 0.27 0.10 ± 0.47

SFIRM 0.18 ± 0.19 0.29 ± 0.17 0.26 ± 0.27 0.12 ± 0.26 0.73 ± 0.35

MINA 0.45 ± 0.16 0.29 ± 0.14 −0.53 ± 0.28 0.78 ± 0.16 0.33 ± 0.36

MINB −0.94 ± 0.22 0.78 ± 0.16 −0.03 ± 0.32 −0.10 ± 0.27 0.38 ± 0.38

PH 0.13 ± 0.50 −0.18 ± 0.25 0.44 ± 0.36 −0.04 ± 0.33 −0.47 ± 0.42

Note: Numbers in bold are significant.
Abbreviations: IMF, intramuscular fat per cent; MINA, Minolta a*; MINB, Minolta b*; PH, ultimate pH; SCOL, subjective colour score; SFIRM, subjective firmness 
score.
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became non-significant with the inclusion of microbial ef-
fect. Among carcass traits, the decrease in genomic cor-
relation ranged from 1% between BEL and CADG to 30% 
between BEL and LOIN. The genomic correlation of BEL 
with FD, CADG with HAM, CADG with LOIN, FD with 
IMF, FD with MINB, BEL with IMF and BEL with SFIRM 
decreased by 13%, 4%, 2%, 9%, 6%, 13% and 8%, respec-
tively. Among meat quality and carcass traits, the decrease 
in genomic correlations ranged from 1% for FD and SFIRM 
to 9% for BEL and IMF. We observed a decrease in genomic 
correlations with the inclusion of microbial effect, partic-
ularly of any other traits with fat-related traits (e.g., BEL, 
FD, IMF). This could be due to the greater influence of gut 
microbiome on fat deposition. The holobiont behaviour of 
FD at Off-test and Mid-test might also explain the decrease 
in genomic correlations with other traits. Furthermore, we 
observed that there was a decrease in genomic correlation 
for those traits which had higher microbial correlation. High 
microbial correlations among different traits suggested that 
genomic correlations among traits are partially contributed 
by the correlations among the gut microbiota composition. 
The covariance among microbiome for different traits might 
have contributed to the genetic covariance and hence the 
genomic correlation. We observed that the decrease in the 
genomic correlation was higher at Off-test than at Mid-test. 
This was due to high variability accounted by microbiome 
composition at Off-test in comparison to Mid-test.

This is the first study to evaluate the variance accounted by 
microbiome and estimate the microbial correlations for meat 
quality and carcass traits in swine. So, we have explored the 
model sequentially, first with inclusion of genomic information 
and then addition of microbiome effect at different stages to 
evaluate the change in variance components. In cattle, Difford 
et al. (2018) and Ramayo-Caldas et al. (2020) fitted the genomic 
and microbiome information simultaneously and reported that 
both of them were jointly associated with methane emissions.

Variance component estimates of different random effects 
with inclusion of interaction of genotype-by-microbiome in 
the model are recommended for future studies.

4 |  CONCLUSIONS

This study was conducted on crossbred pigs to investi-
gate the impact of intestinal microbiota through different 
stages (Wean, Mid-test and Off-test) of production. To our 
knowledge, this study is the first attempt to investigate the 
impact of microbiome on the meat quality and carcass com-
position traits at a large scale in swine. The contribution of 
microbiome to all traits was significant although it varied 
over time with an increase from weaning to Off-test for 
most of the traits. Adding microbiome information did not 
affect the estimates of genomic heritability of meat qual-
ity traits but changed the estimate of carcass composition 

FD CADG HAM LOIN BEL

FD 0.71 ± 0.11 0.59 ± 0.16 0.55 ± 0.17 0.94 ± 0.05

CADG 0.14 ± 0.15 0.97 ± 0.02 0.91 ± 0.05 0.94 ± 0.03

HAM −0.10 ± 0.17 0.63 ± 0.13 NE 0.87 ± 0.06

LOIN −0.13 ± 0.15 0.67 ± 0.10 0.54 ± 0.19 0.82 ± 0.08

BEL 0.49 ± 0.13 0.78 ± 0.07 0.34 ± 0.19 0.40 ± 0.16

Note: Numbers in bold are significant.
Abbreviations: BEL, belly weight; CADG, carcass average daily gain; FD, fat depth; HAM, ham weight; 
LOIN, loin weight; NE, non-estimable.

T A B L E  5  Estimates of microbial 
correlation (above diagonal) and genomic 
correlation (below diagonal) at Off-test 
among carcass composition traits

FD CADG HAM LOIN BEL

SCOL −0.29 ± 0.37 −0.09 ± 0.35 0.16 ± 0.38 −0.25 ± 0.35 −0.32 ± 0.37

IMF 0.90 ± 0.14 0.43 ± 0.33 0.29 ± 0.27 0.21 ± 0.30 0.73 ± 0.18

SFIRM NE 0.31 ± 0.19 0.18 ± 0.24 −0.01 ± 0.20 0.50 ± 0.18

MINA 0.53 ± 0.18 0.66 ± 0.17 0.11 ± 0.27 0.08 ± 0.30 0.41 ± 0.21

MINB 0.43 ± 0.19 0.58 ± 0.18 0.12 ± 0.25 −0.13 ± 0.28 0.35 ± 0.20

PH 0.17 ± 0.31 0.27 ± 0.35 NC NC 0.11 ± 0.32

Note: Numbers in bold are significant.
Abbreviations: BEL, belly weight; CADG, carcass average daily gain; FD, fat depth; HAM, ham weight; 
LOIN, loin weight; IMF, intramuscular fat per cent; MINA, Minolta a*; MINB, Minolta b*; PH, ultimate pH; 
SCOL, subjective colour score; SFIRM, subjective firmness score. NC, not converged; NE, non estimable.

T A B L E  6  Estimates of microbial 
correlation between meat quality traits and 
carcass composition traits at Off-test
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traits suggesting that portion of genomic variance was 
contributed by gut microbiome. A better understanding 
of microbial composition could aid the improvement of 
complex traits, particularly the carcass composition traits 
in swine by inclusion of microbiome information in the 
genetic evaluation process. High microbial correlations 
were found among different traits, particularly with traits 
related to fat deposition. Adding microbiome information 
decreased the genomic correlation for those traits which 
had higher microbial correlation suggesting that portion of 
genomic correlation was due to genetic covariance among 
microbiome composition affecting those traits. Based on 
the results, we can conclude that microbial composition 
could be altered to improve a given trait. Further research 
into causal mechanisms between microbial profiles, host 
genetic make-up and phenotypic performance is needed 
to incorporate the microbiome information in the genetic 
evaluation process. The estimated parameters provide a 
reference value for further research on gut microbial con-
tribution to complex phenotypes in pigs.
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