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José Hernández-Rodrı́guez,
Clinical Unit of Autoinflammatory
Diseases and Vasculitis Research Unit,
University of Barcelona, Spain

*CORRESPONDENCE

Xiaochuan Wu
xiaochuanwu@csu.edu.cn

SPECIALTY SECTION

This article was submitted to
Autoimmune and Autoinflammatory
Disorders,
a section of the journal
Frontiers in Immunology

RECEIVED 19 April 2022
ACCEPTED 15 September 2022

PUBLISHED 03 October 2022

CITATION

Xu L, Li Y and Wu X (2022) IgA
vasculitis update: Epidemiology,
pathogenesis, and biomarkers.
Front. Immunol. 13:921864.
doi: 10.3389/fimmu.2022.921864

COPYRIGHT

© 2022 Xu, Li and Wu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 03 October 2022

DOI 10.3389/fimmu.2022.921864
IgA vasculitis update:
Epidemiology, pathogenesis,
and biomarkers
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Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
Immunoglobulin A vasculitis (IgAV), formerly known as Henoch-Schönlein

purpura, is the most common systemic vasculitis in children, characterized

by diverse clinical manifestations with a wide spectrum ranging from isolated

cutaneous vasculitis to systemic involvement. The incidence of IgAV is

geographically and ethnically variable, with a prevalence in autumn and

winter, suggesting a driving role that genetic and environmental factors play

in the disease. Although IgAV has a certain degree of natural remission, it varies

widely among individuals. Some patients can suffer from severe renal

involvement and even progress to end-stage renal disease. Its pathogenesis

is complex and has not been fully elucidated. The formation of galactose-

deficient IgA1 (Gd-IgA1) and related immune complexes plays a vital role in

promoting the occurrence and development of IgAV nephritis. In addition,

neutrophil activation is stimulated through the binding of IgA to the Fc alpha

receptor I expressed on its surface, resulting in systemic vascular inflammation

and tissue damage. Starting from the epidemiological characteristics, this

article will review the role of immunological factors such as Gd-IgA1,

autoantibodies, circulating immune complexes, complement system, cellular

immunization, and the contributions of environmental and genetic factors in

the pathogenesis of IgAV, and conclude with the major biomarkers for IgAV.
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1 Introduction

Immunoglobulin A vasculitis (IgAV), also referred to as Henoch-Schönlein purpura,

is the most common primary vasculitis in childhood. The 2012 Chapel Hill Conference

defined it as a vasculitis with IgA1-dominant immune deposits, affecting small vessels

(predominantly capillaries, venules, or arterioles), highlighting the role of IgA in the

disease (1). According to different clinical presentations, it can be divided into skin-

limited IgA vasculitis (cutaneous IgA-dominant vasculitis without detectable

involvement of systemic organs, purely manifested as non-thrombocytopenic purpura)
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and systemic form (present in at least one organ in addition to

skin, e.g., often combined with joint, gastrointestinal and renal

involvement, a few involves pulmonary and central nervous

system) (2). The course of IgAV is mostly self-limiting.

However, there is a recurrence rate of one-third for pediatric

patients (3). Renal involvement is the prominent determinant of

prognosis, since up to 20%–80% of children showing signs of

nephritis such as hematuria and/or proteinuria within four to six

weeks at the initial consultation, and 1%–7% of children with

IgAV nephritis (IgAVN) may progress to renal failure or end-

stage renal disease (ESRD) (4, 5). The risk of progression to

chronic kidney disease in patients with ≥50% glomerular

crescents on biopsy ranges from 5% to 20% (5). In addition,

recent studies have shown that patients with tubular or

interstitial lesions and glomerulosclerosis are associated with

poor renal outcomes, and patients with both nephritic and

nephrotic syndrome have the highest risk for progression to

ESRD (6–9). Adult patients face a poorer prognosis than

children, leaning more towards a protracted and chronic

course, of who the incidence of ESRD is up to 32% (10–12).

IgAVN and IgA nephropathy (IgAN) have similar features,

both characterized by hematuria, proteinuria, and the

glomerular mesangium deposition of immune complexes,

sharing a common pathogenetic basis. Some scholars have

even suggested that IgAVN and IgAN should be classified as

the same disease, but IgAN is confined to kidney manifestations

and usually begins with asymptomatic hematuria. Even if IgA

deposits occur in extrarenal sites in some patients but no

corresponding clinical manifestations, renal biopsy remains

essential for making a definitive diagnosis; additionally, there

is no seasonal variation in the incidence of IgAN. It tends to be

more frequent in children over 10 years of age and adults; The

prognosis is quite different between the two. IgAN has a far

worse outcome than IgAVN, with 30%–40% of patients reaching

ESRD 20–30 years after first clinical presentation (13), while

some IgAVN patients with proteinuria are occasionally transient

and seem to have a tendency to resolve spontaneously. All these

discrepancies determine that the treatment strategies and follow-

up goals of the two diseases are distinct.

On the other hand, although patients with mild urinary

abnormalities in IgAVN are also at risk of developing permanent

kidney damage, severe cases of IgAV can manifest as acute

kidney injury, even rapid deterioration of renal function similar

to rapidly progressive glomerulonephritis, or macroscopic

hematuria and chronic kidney damage. At the same time, life-

threatening complications such as severe gastrointestinal

bleeding, intestinal intussusception, or perforation, can also

occur in the acute phase of IgAV, which require clinicians to

pay substantial attention (14). Therefore, it is of great

significance to study the pathogenesis of IgAV and learn how

to identify severe cases or patients at risk of chronic kidney

injury at an early stage, which will be conducive to clinically

targeted early prevention and treatment.
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Efforts have been made to further understand IgAV. Some

scholars have recently reviewed the role of genetic and

geographical factors and galactose-deficient IgA1 (Gd-IgA1) in

the pathogenesis of IgAV (15, 16). However, the pathogenic

mechanisms of IgAV are far from being completely understood.

Immunological factors other than Gd-IgA1-containing immune

complexes, such as anti-endothelial cell antibodies (AECAs),

and irritant causes of disease may also be important. There is

also the issue of the exploration of mechanisms that lead to

different clinical phenotypes. Furthermore, it is still inconclusive

whether IgAV is an extension of IgAN or a different disease

entity. The exploration of the applicability of the IgAN

pathogenes i s hypothes i s to IgAV can deepen the

understanding of the disease and enhance the standardized

diagnosis and management, and the current molecular

mechanism-based targeted therapy for IgAN may be able to be

applied to IgAVN. This paper will describe the epidemiological

characteristics of IgAV, and review the advances in IgAV

pathogenesis in terms of Gd-IgA1, complement system,

cellular immunity, and other immunological factors based on

the “multiple-hit” models, as well as environmental and genetic

factors, and summarize the main biomarkers of IgAV, in order

to shed light on guiding the prevention and management of

the disease.
2 Epidemiology

2.1 Overview of incidence

The incidence of IgAV has been relatively stable over time,

generally showing an upward trend. The change in the incidence

of IgAVmay be correlated with the updated inclusion criteria for

the epidemiological study population. The diagnosis criteria

applied to IgAV earlier is the 1990 American College of

Rheumatology (ACR) classification criteria, which is not

specific for children, showing a restricted applicability. In

2010, the European League against Rheumatism/Pediatric

Rheumatology International Trials Organization/Pediatric

Rheumatology European Society (EULAR/PRINTO/PRES)

published the diagnostic criteria for children: purpura or

petechiae (mandatory) and meeting at least one of the

following criteria: abdominal pain, arthritis or arthralgia, renal

involvement, and biopsy of IgA deposition at any site (sensitivity

100%, specificity 87%), which is still the accepted classification

standard (17). A French study in 2017 applied the EULAR/

PRINTO/PRES criteria to homogenize the study population for

the first time, finding that the average annual incidence rate was

approximately 30 per 100,000 people with capture-recapture

analysis (18). There are differences in the incidence rate of IgAV

among countries; e.g., the average annual incidence is 6.79/

100,000 in Croatia, 6.21–20.4/100,000 in the UK, 6.1/100,000 in

the Netherlands, 17.55/100,000 in southern Sweden, 12.9/
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100,000 in Taiwan of China, and 55.9/100,000 in Korea (19–21).

The actual incidence might be higher, considering that children

with isolated cutaneous IgAV generally require no

hosp i t a l i za t ion , which resu l t s in underes t imated

epidemiological data fetched from healthcare facilities;

furthermore, the chronic disease management and follow-up

systems in some regions are imperfect and there may be missing

data due to incomplete registration. There are no data yet

referring to systemic or skin-limited vasculitis alone since this

distinction has not been made until recently.
2.2 Region and race

The variation in incidence from country to country is

described above. Modern geostatistical studies in Croatia have

shown that IgAV is geospatially aggregated (22), appearing as a

non-random distribution and mainly clustered around the

Mediterranean and the western continental regions. In

addition, there are ethnic disparities in IgAV; the incidence is

3–4 times as high in Caucasian or Asian children than in black

children (23).
2.3 Age and gender

IgAV can occur at any age, mainly in childhood, the

estimated incidence rates among children are 2 to 33 times

greater than those in adults (9), 75%–90% of pediatric patients

are below 10 years old, and the most frequent being 4–7 years of

age, with an incidence up to 70.3/100,000 (23). The age-

preference may be attributed to the fact that children of this

age group are a favored population for pathogenic infections.

When comparing genders, males seem to be more susceptible

than females (23) and the prevalence ratio of males to females is

approximately 1.5:1. However, the directivity of this slight

gender difference is not yet clear.
2.4 Seasonal variation

The peak onset of IgAV appears in the fall-winter season,

while summer shows the lowest rates of attack (18), which is

consistent with epidemics of most respiratory infections. The

temporal pattern of IgAV attack provides a clue to trace the

association between infection and the pathogenesis of IgAV.

Moreover, we have observed a decrease in the frequency of IgAV

during the coronavirus disease 2019 (COVID-19) pandemic.

This reduction could be associated with the precautions (such as

wearing masks and quarantining) and decreased circulation of

respiratory viruses (24).
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3 Pathogenesis

IgAV is a leukocytoclastic vasculitis with an IgA-dominant

immune complex deposited within or around the small vessels.

Two major models of pathogenesis for IgAV have been proposed

to interpret the nephritis and systemic phenotypes, respectively.

IgAVN manifests similarly to IgAN, both characterized by

hematuria, proteinuria and glomerular mesangial immune

complex deposition, and its pathogenesis can be explained by

a similar “four-hit” theory (25), that is, increased production of

circulating galactose-deficient IgA1 (hit1) binds to specific IgA1

autoantibodies (hit2), forming pathogenic circulating immune

complexes (CICs) (hit3), which then deposits in the glomerulus

and triggers inflammatory responses (hit4).This hypothesis

highlights the critical role of Gd-IgA1 in renal injury.

However, some publications stated that in a certain number of

patients there is no obvious increase of Gd-IgA1 in serum or in

biopsy specimens, while in a certain number there is an increase

in Gd-IgA1 and no clinical manifestations of the disease (26, 27).

In contrast, another hypothesis targets the systemic

manifestations of IgAV, emphasizing the effect of neutrophil

activation on systemic small vessels (25, 28, 29). The first hit is

provided by elevated AECA levels of IgA1 isotype (30), followed

by the binding of IgA1-AECA complexes to specific b2
glycoprotein I receptors on vascular endothelial cells (hit2),

inducing excessive production of proinflammatory factors such

as interleukin-8 (IL-8), which in turn stimulates neutrophil

recruitment (hit3), and then neutrophils are activated by the

interaction of IgA1 and IgA1 Fc alpha receptor I (FcaRI, also
called CD89), causing extensive damage to the vascular

endothelium wall via antibody-dependent cellular cytotoxicity

(ADCC), complement-mediated cytotoxicity (CDC), and

reactive oxygen species (ROS), ultimately leading to systemic

vascular inflammation and permeation (hit4). It is to be noted

that there are few original articles on the role of AECA in IgA

vasculitis, and it is possible that AECA is an incidental

phenomenon of vascular injury and cannot be completely

ruled out. The pathogenic processes of IgAV are promoted by

immune cells and inflammatory mediators and regulated by

mu l t i p l e f a c t o r s , i n c l ud i n g env i r onmen t a l a nd

genetics (Figure 1).
3.1 Galactose-deficient IgA1

3.1.1 The production of galactose-deficient
IgA1

IgA is the most abundant immunoglobulin class found in

mucosal immunity, produced by B cells through class switching

in a T-cell-dependent or T-cell-independent manner (31). It is

mainly generated in mucosal-associated lymphoid tissue and

bone marrow. According to the structure of the hinge region,
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IgA can be divided into IgA1 and IgA2. IgA1 makes up to 90% of

the serum IgA (32). IgA1 exists in both monomeric and

polymeric forms (composed of two to four monomers linked

through joining chains). More than 90% of serum IgA1 is

monomeric, while the type of IgA1 secreted by mucosal tissues

is mainly polymeric. Compared with IgA2, IgA1 is unique in that

it is rich in O-linked glycosylation structures, for which two
Frontiers in Immunology 04
octapeptide repeat regions are inserted between the C1 and C2

regions of its heavy chain, with three to six O-glycosylation sites

consisting of serine or threonine residues (30). Under the

catalysis of polypeptide N-acetylgalactosaminyl transferase 2

(GALNT2), it can combine with N-acetylgalactosamine

(GalNac) to form O-glycans (33), and the terminus of which is

bound to galactose or sialic acid by the action of core-1
FIGURE 1

Two four-hit pathogenesis models for IgAV: (1) Increased production of circulating galactose-deficient IgA1 (hit1) binds to specific IgA1
autoantibodies (hit2), forming pathogenic circulating immune complexes (hit3), which then deposited in the glomerulus and trigger
inflammatory responses (hit4); (2) The first hit is provided by elevated AECA levels of IgA1 isotype, followed by the binding of IgA1-AECA
complexes to specific b2 glycoprotein I receptors (b2GPI) on vascular endothelial cells (hit2), inducing excessive production of proinflammatory
factors such as IL-8, which in turn stimulates neutrophil recruitment (hit3), and then the activation of causes extensive damage to the vascular
endothelium via antibody-dependent cellular cytotoxicity (ADCC), complement-mediated cytotoxicity (CDC), and reactive oxygen species
(ROS), ultimately leading to systemic vascular inflammation and permeation (hit 4). The pathogenic processes of IgAV are promoted by immune
cells and inflammatory mediators and regulated by multiple factors, including genetics and the environment.
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b1,3galactosyltransferase (C1GALT1, encoded by the C1GALT1

gene) and acetylgalactosamine-specific a-2,6 sialic acid

transferase (ST6GALNAC2, encoded by the ST6GALNac2

gene) respectively (34, 35), completing the glycosylation

process. The correct folding and complete activity of

C1GALT1 requires the participation of a specific chaperone,

COSMC (encoded by the C1GALT1C1 gene) (36). Altered

expression of activity key transferase during the glycosylation

steps, such as low expression of C1GALT1 and COSMC, and

upregulation of ST6GalNac2 can hinder the IgA1 glycosylation

process (37, 38), resulting in the exposure of terminal GalNac

residues or the production of sialized Gd-IgA.

3.1.2 Regulatory mechanisms of galactose-
deficient IgA1

The enzymatic activity and gene expression in the process of

glycosylation are regulated by certain cytokines and related

molecular signaling pathways (39). It is currently considered

that Th2 cytokines, especially the interleukin-6 (IL-6) family, are

most closely related to Gd-IgA1 (40). IL-6 is the main candidate

factor for promoting the terminal differentiation and the

proliferation of IgA1 (39). Aberrant IL-6 activates the JAK2/

STAT3 signaling pathway through its receptor protein coupling

gp130, and the enhanced phosphorylation of STAT3 further

downregulates the transcription of C1GALT1, thereby mediating

the production of Gd-IgA1 (41). Furthermore, another member

of the IL-6 family, leukemia inhibitory factor (LIF), upon

receptor binding, leads to the overproduction of Gd-IgA1 via

the LIF/STAT1 pathway (42). In addition to the IL-6 family, B-

cell activating factor (BAFF), a tumor necrosis factor (TNF)

superfamily member, is also involved in the synthesis of Gd-

IgA1. BAFF stimulates B-cell transformation (43). It blocks the

degradation of NF-kB and leads to enhanced translocation to the

nucleus through the binding to BAFF receptors, such as B-cell

maturation antigen (BCMA), the transmembrane activator and

cyclophilin ligand interactor (TACI). The activation of NF-kB

signaling subsequently impacts on the production of Gd-IgA1

(44). Notably, a proliferation-inducing ligand (APRIL), also

known as tumor necrosis factor ligand superfamily member 13

(TNFSF13), shares the same signaling receptor as BAFF, also

playing an important role in IgA class transformation and

plasmacytoid differentiation (44, 45), is similarly involved in

the formation of aberrant glycosylated IgA (46).

Recent studies have found that some mucosal immunity-

related molecule Toll-like receptors (TLRs), also participate in

the production of Gd-IgA1 (47). For example, the activation of

TLR4 causes the methylation of C1GALT, leading to reduced

COSMC expression and a low glycosylation level of IgA1; TLR7

can stimulate B cells to secrete cytokines such as IL-6 and IL-12

and generate more Gd-IgA1 through the TLR7–GALNT2 axis

(48); TLR9 activation can induce increased IL-6 or APRIL
Frontiers in Immunology 05
production through the TLR9–MyD88 signaling pathway as

well as promote Gd-IgA1 in synergy with both (49).

In addition to the aforementioned molecules, the expression

of glycosyltransferase can also be regulated by certain miRNAs.

For example, C1GALT1 expression is negatively correlated with

miR-148b. The upregulation of miR-148b leads to an increase in

the Gd-IgA1 level due to suppressed C1GALT1 expression (49). It

is worth noting that most of the studies on the production and

regulatory mechanism of Gd-IgA1 are based on IgAN patients,

and exploring whether there are similar molecular signaling

pathways in IgAV can provide novel targets for therapy (Figure 2).

3.1.3 Correlation between Gd-IgA1 level and
the disease

Gd-IgA1 plays an important role in the pathogenesis of IgAV.

Some studies showed that the levels of serum IgA1 as well as Gd-

IgA1 are significantly increased in IgAVN, with the acute phase

being higher than in the remission (50–54). At present, the

approaches used to detect Gd-IgA1 mainly include the

conventional Helix aspersa agglutinin lectin enzyme-linked

immunosorbent assay (ELISA) method and the novel lectin-

independent ELISA assay using a specific monoclonal antibody

KM55 (55, 56). Suzuki et al. found that Gd-IgA1 mesangial

deposition was a typical manifestation of IgAN and IgAVN

patients when they performed immunohistochemical analysis of

renal biopsy specimens from those and patients with other

secondary nephropathy by KM55 staining (57), which has also

been confirmed in relevant studies on children (58). Gd-IgA1

levels in patients of IgAV with nephritis were similar to IgAN,

while those without nephritis showed no statistical difference

compared to healthy controls (58). Neufeld et al. also showed

that although Gd-IgA1 was deposited around the blood vessels in

both the skin-limited and systemic types, the serum Gd-IgA1 level

was significantly higher in the latter (27). This suggests that there

may be a dose-dependent effect on the pathogenicity of Gd-IgA1,

and IgAVN can only occur when Gd-IgA1 accumulates to a

certain level. However, the Gd-IgA1 threshold for different clinical

phenotypes of IgAV needs to be further explored. Studies related

to the predictivity of Gd-IgA1 on disease severity have shown that

the level of Gd-IgA1 does not correlate with the degree of renal

involvement; its level can only signal whether the kidney is

involved but cannot predict the extent of proteinuria, GFR, and

renal pathology score (55). In clinical practice, anti-CD20 therapy

with rituximab, which depletes B cells and reduces the production

of Gd-IgA1, has been used with benefit in cases of IgAV or IgAVN

refractory to conventional immunosuppressive drugs (59).

Simultaneously, a novel targeted-release formulation of

budesonide, which can target Payer’s patches in the ileum and

suppress the gastrointestinal immune system and subsequently

decrease the level of Gd-IgA1, could become a promising

treatment for IgAV (60).
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3.2 Circulating immune complexes
containing Gd-IgA1

3.2.1 Autoantibodies
High serum Gd-IgA1 levels are predisposed to familial

distribution since circulating galactose-deficient IgA1 has also

been found in first-degree relatives of many patients with IgAV

and IgAN, yet these relatives often show no clinical evidence of

renal disease (61). In addition, in 2020, Ishiko et al. found that

patients with lupus nephritis and primary membranous

nephropathy also had renal Gd-IgA1 deposition (58). These

suggest that Gd-IgA1 alone is not a determinant of IgAV

pathogenesis and that other triggers need to be considered.

IgAVN patients are similar to IgAN patients in the presence of

IgG autoantibodies against Gd-IgA1 in the serum, and the level

is higher in the acute period of nephritis than in the resolution

phase (37), and co-sedimentation of IgG and Gd-IgA1 immune

complexes is seen in the kidney mesangial region by confocal

microscopic analysis (25). In studies of IgAN, specific IgG

autoantibodies were found to correlate with disease activity as

well as renal prognosis (62). Berthoux et al. found that mean
Frontiers in Immunology 06
serum levels of total autoantigen, normalized IgG autoantibody,

and total IgA autoantibody were significantly higher in 97 adult

patients with IgAN than in the healthy controls or patients with

non-IgAN disease, furthermore, IgG autoantibody levels ≥1.33

predicted dialysis or death in Cox regression and Kaplan–Meier

analyses (63). In addition, another study revealed a correlation

between the concentrations of the autoantigen and the

corresponding IgG autoantibodies in serum samples from 135

patients with biopsy-proven IgA nephropathy, 76 patients with

other renal diseases, and 106 healthy controls. Serum IgG

autoantibody and Gd-IgA1 can influence each other (64).

However, the correlation of autoantibodies with disease

act ivity and severity in patients with IgAV needs

further confirmation.

3.2.2 Gd-IgA1 immune complex formation
In fact, the formation of the Gd-IgA1 circulating immune

complex (CIC) is divided into two major parts: Firstly,

abnormalities in the quantity and structure of IgA alter the

binding affinity to its receptors, which include the

transmembrane receptor on the surface of circulating myeloid
FIGURE 2

The production and major regulatory mechanisms of Gd-IgA1. (1) B cells in the mucosa differentiate into IgA1-secreting plasma cells and
produce IgA1 through class switching in a T-cell-dependent or T-cell-independent manner when stimulated by pathogens, such as bacterium
and virus. Then, the abnormal activation of signaling pathways promotes the production of Gd-IgA1 through altering the expression and activity
of the key glycosyltransferases. Potential signaling pathways involved are mainly below: IL-6 activates the STAT3 pathway via binding to its
gp130 receptor; LIF binds the LIF-R/gp130 receptor and activates the STAT1 pathway; TLRs (TLR7/TLR9) activation induce production of IL-6
and APRIL, which function synergistically to promote the generation of Gd-IgA1; BAFF or APRIL signaling through the BAFF receptors, such as
TACI, BAFF-R, BCMA prevents degradation of NF-kB and influence the O-glycosylation of IgA1. (2) The structure and O-glycosylation process of
IgA1. IgA1 has O-glycans located in the unique hinge region, with 3 to 6 O-glycosylation sites consisting of serine or threonine residues. The
low expression of GALNT2, C1GALT1, and COSMC, and upregulation of ST6GalNac2 can hinder the IgA1 glycosylation process, resulting in the
exposure of terminal GalNac residues and overproduction of Gd-IgA1.
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leukocytes—FcaRI (CD89), and the transferrin receptor (also

referred to as CD71) on mesangial cells. It was shown that Gd-

IgA1 forms the IgA1–CD89 complex with soluble FcaRI (65,
66); Secondly, the exposed GalNac residues at the end of Gd-

IgA1 serve as new binding epitopes to the corresponding anti-

Gd-IgA1 autoantibodies (including IgA and IgG) in circulation,

leading to the generation of Gd-IgA1-autoantibody-CD89 CICs

(67, 68). CICs can further cause the aggregation of IgA, forming

polymers of larger molecular weights.

The weights and fractions of CICs appear to influence the

disease phenotype. As early as 1979, a study by Levinsky and

Barratt found that IgAV patients all had relatively small IgA1-

circulating immune complexes, while those with nephritis

contained additional large-molecule IgA1–IgG immune

complexes (69). Later, this phenomenon has been verified by

other scholars (70), who found that CIC molecules are usually

>800 ku and contain polymerized IgA and IgG in IgAVN

patients (71). Macromolecular immune complexes containing

Gd-IgA1 cannot be effec t ive ly recognized by the

asialoglycoprotein receptor (ASGPR) on hepatocytes (72). The

impaired hepatic clearance may be a reason for enhanced levels

of CICs. CICs enter the kidney via the blood flow, and the

binding of CD71 on mesangial cells leads to deposition within

the glomerulus, which is synergistically promoted by other

molecules secreted by mesangial cells such as extracellular

matrix proteins, integrins, and transglutaminase 2 (TG2) (73–

75). The induction of TG2 in turn up-regulates CD71

expression, showing a positive feedback enhancement effect of

CICs on renal deposition (76). The deposition sites of immune

complex IgAVN differ from those of IgAN in that IgAVN

exhibits mesangial, subendothelial, and perivascular deposits,

while the CICs of IgAN are mainly deposited in the mesangial

region (3, 77).
3.3 Renal pathology and local immune
microenvironment

3.3.1 Renal pathology
I gAVN i s d efined a s mesang i a l p ro l i f e r a t i v e

glomerulonephritis and immunofluorescence indicates that the

sediments are predominantly IgA1, often with C3 and

occasionally with IgG and IgM, with granular or diffuse

subcellular distribution in the mesangial area or the capillary

wall (78). The histological lesions of IgAVN range from mild to

severe, manifesting as slight mesangial proliferation,

microscopic lesions, and focal nephritis in mild types, and

diffuse proliferative nephritis, segmental glomerulosclerosis, or

crescent formation in severe cases (79). It remains controversial

and unresolved which histological classification to choose in

regard to the interpretation of renal biopsy findings. Compared

with IgAN, the episode of kidney injury in IgAVN is mainly

acute, usually accompanied by intracapillary proliferation and
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inflammatory cell infiltration, with more crescentic lesions and

fewer sclerotic lesions than IgAN (80, 81). Therefore, the most

widely used classification for IgAVN is still the International

Study of Kidney Disease in Children (ISKDC), based on

crescents to a large extent, which focuses on active

inflammation while ignoring vascular and tubulointerstitial

changes. It was subsequently recognized that sclerotic

glomeruli and interstitial fibrosis correlate better with the

long-term outcome. Therefore, the Oxford classification is

increasingly used. The revised 2016 Oxford classification

includes five main parameters: mesangial hypercellularity (M),

endocapillary proliferation (E), segmental glomerulosclerosis/

adhesion (S), tubular atrophy/interstitial fibrosis (T), and

cellular/fibrocellular crescents (C), and current studies have

suggested that T and S lesions are associated strongly with

renal progression, however, a larger multicenter study with a

longer follow-up targeted at IgAVN patients is needed to

validate the predictive value of MEST-C in IgAV (82–84).

IgAVN is caused by a cascade of immunological reactions

triggered by circulating Gd-IgA1 immune complexes, which are

deposited in the glomerular mesangium and small vessel walls

through the synergistic effects of transferrin receptor and TG2

on mesangial cells. The deposits of CIC further stimulate

mesangial cell proliferation and extracellular matrix expansion,

inducing the aggregation of inflammatory cells such as

neutrophils and T lymphocytes and activating the complement

system. Mesangial cells or inflammatory cells that migrate to the

glomerulus can produce excessive cytokines and simultaneously

release multiple pro-inflammatory factors, such as

prostaglandins, angiotensin II, nitric oxide synthase,

chemokines, matrix metalloproteinases (MMPs) and cytokines

or key mediators affecting podocyte functions, ultimately leading

to renal damage (85–87). In addition, there is a tubular-

glomerular feedback mechanism that further exacerbates

glomerular and tubulointerstitial inflammation, resulting in a

series of clinical consequences such as proteinuria, hematuria,

renal insufficiency, and hypertension.

3.3.2 Local immune microenvironment
3.3.2.1 Complement activation

The depositions of complement components such as

complement factor B, C3, C4d, and C5b-9 complexes are often

observed in skin and kidney biopsy specimens from IgAV and

IgAVN patients during the acute stage, whereas serum

complement levels are lowered (88, 89). The immune complex

containing Gd-IgA1 activates the complement cascade via the

mannose-binding lectin pathway and the alternative pathway

once deposited in subendothelial and mesangial areas (90–92),

in which the lectic pathway is dominant (93), and the supporting

evidence is mainly listed below: At present, glomerular

deposition of the lectin pathway-related molecules mannose

binding lectin (MBL) and mannan-binding lectin serine

peptidase (MASP) and an elevated plasma C4d level have been
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detected (93); a case report has shown that IgAV patients

presenting with acute progressive nephritis who were treated

with anti-MASP-2 monoclonal antibody Narsoplimab had a

sustained reduction in lectin pathway activity and a delayed

progression of renal dysfunction (94); IgAVN and IgAN patients

with C4d deposition had a higher incidence of chronic lesions,

low GFR, and poor prognosis, and were more likely to develop

microangiopathy (95–97).

Complement activation can lead to fibrin deposition,

glomerular basement membrane disruption, attraction of

inflammatory cells, endothelial cell activation, and increased

secretion of proinflammatory cytokines. Meanwhile, cytokines

can induce the proliferation of epithelial cells in Bowman’s

capsule and eventually the mesenchymal fibroblast infiltration,

resulting in the formation of fibrous crescents (3). The

complement cascade is strongly associated with the renal

pathology and clinical phenotypes in IgAV patients, and

biologics directed toward the complement pathway may be a

new strategy for the treatment of IgAV in the future (98).
3.3.2.2 T lymphocyte-mediated immune imbalance

In addition to attacking renal resident cells, Gd-IgA1

circulating immune complexes also affect T lymphocyte

immunity, manifesting as altered quantity, proportion, and

function of T lymphocytes. Imai et al. found that cytotoxic T

cells (CTLs) were activated in IgAVN patients with nephrotic-

range proteinuria, the expression of GNLY and GZMB as well as

the level of granulysin and granzyme B in peripheral blood were

increased, and the glomerular CTLs behaved similarly (99);

Furthermore, it has been described that the expression of

CX3CR1 on the surface of CTLs is up-regulated, in line with

increased serum and glomerular CX3CL1 expression, and

granulysin and granzyme B facilitate the transmigration of

CTLs through blood vessels to the glomerulus (100), resulting

in increased vascular permeability and accelerated cell death.

Helper T cells (Th cells) can be classified into different subsets:

Th1, Th2, Th17, follicular helper T (TFH), and regulatory T

(Treg) cells, which also serve central roles in IgAV. Multiple

studies have demonstrated that a Th1/Th2 imbalance exists in

both the blood and renal tissues of IgAVN patients in the acute

phase (101). The intranuclear expression of GATA3, a hallmark

transcription factor of Th2 cells, was significantly increased in

IgAVN, while there was no obvious change in the level of Th1-

specific transcription factor Tbet, showing a state of Th2

dominance. IgAV patients also have an imbalance in the

Th17/Treg and present with increased Th17 cells and

decreased Treg cells (102). Recent studies have identified a

special type of Treg cell, Tr1 cells, co-expressing CD49b and

lymphocyte activation gene 3 (Lag-3). Tr1 cells can be used as a

risk factor for predicting the relapse of IgAV, with increased

expression in renal tissues and significantly decreased percentage

in peripheral blood during the acute phase, and partial recovered
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once the disease remitted, those who with low Tr1 cells during

remission exhibited a high recurrence rate (103).

Furthermore, IgAV is accompanied by increased Tfh cell

frequencies in acute stage, the elevation degrees vary from

subpopulations, and reduced amount of Tfh cells in the

remission (104). There are different correlations with organ-

specific clinical manifestations among each subtype of Tfh

cells (105).

In summary, most IgAV patients show an increase in the

number of Th2, Th17, and Tfh cells with a concomitant decrease

in the population of Treg cells. Abnormal T lymphocyte subsets

can cause corresponding changes in cytokines, serum levels of

IL-6, IL-8, IL-17A, IL-18, IL-23, and TNF-a in IgAV patients are

significantly higher than that in healthy controls, while the

negative regulators IL-10, IL-27, and TGF-b1 are obviously

lower (103, 106, 107). For instance, serum proinflammatory

cytokines can stimulate the production of chemokines and

adhesion molecules by endothelial cells and attract other

inflammatory cells, driving inflammatory responses. For

instance, IL-6 has been shown to prime polymorphonuclear

neutrophils in vitro and induce NETosis (108, 109). At the same

time, cytokines affect the IgA glycosylation mechanism through

relevant molecular signaling pathways, which intensify the

production of Gd-IgA1. The formation of a positive feedback

loop between inflammatory mediators and immune cells

exacerbates kidney damage in IgAV.
3.4 IgA1-anti-endothelial cell antibodies
and systemic small-vessel inflammation

The typical histopathological findings of IgAV are

endothelial cell injury and infiltration of leukocytes within the

vascular wall. Since the action of circulating immune complexes

containing Gd-IgA1 cannot fully explain systemic symptoms in

IgAV, and the “new multiple hit” hypothesis provides

supplementary explanations of IgAV pathogenesis, we propose

that the binding of IgA1 to anti-endothelial cell antibodies

(AECAs) plays a central role in systemic small-vessel

inflammation. AECAs are a heterogeneous group of

autoantibodies bound to endothelial cells (ECs) through

region-specific interactions and target a variety of antigens,

both against EC antigens and antigens adsorbed on EC

membranes. AECAs are commonly of the IgG isotype, and a

few are IgM and IgA types. They have been described in a variety

of vascular diseases, such as Takayasu arteritis, giant cell arteritis,

Kawasaki disease, and other systemic vasculitis (110, 111). In

1998, Fujieda et al. found the presence of IgA-anti-endothelial

cell antibodies in IgAV, and IgA-AECAs were able to bind to

bovine glomerular ECs (29). Recently, Yang et al. also detected

IgA in AECAs of human dermal capillary endothelial cells and

human umbilical vein endothelial cells from the serum of

children with IgAV, but IgM and IgG failed to be detected,
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supporting that it is mainly the IgA isotype that plays a role in

IgAV (28). IgA-AECAs may be produced by the molecular

mimicry during microbial infection, and high IgA-AECAs

titers correlated with active disease, while antibody titers fall in

remission (112). Tumor necrosis factor (TNF-a) can

significantly increase IgA-AECA levels by mediating the

exposure of EC-specific antigenic epitopes. IgA-AECAs bind

to specific b2GPI receptors that adhere to endothelial cells (113),
inducing the release of IL-8 via the MEK/ERK signaling pathway

(114), and therefore recruiting polymorphonuclear neutrophils

in vitro. Meanwhile, IgA contributes to neutrophil activation and

chemotaxis through its binding to FcaRI receptors, and the

cross-linking of FcaRI causes endothelial cell injury in multiple

ways, such as phagocytosis, ROS generation, release of particles

containing toxic molecules such as lactoferrin, secretion of

cytokines and chemokines, antibody-dependent cellular

cytotoxicity, and the formation of neutrophil extracellular

traps (NETs) (115). In addition, serum IL-33 level was found

to be positively correlated with AECA-IgA concentration (116),

and elevated serum IL-33 may be a result of endothelial cell

injury, which in turn interact with endothelial cells as a positive

feedback, promoting the production of adhesion molecules,

endothelial selectin and monocyte chemotactic protein-1

(MCP-1) and bringing neutrophils and endothelial cells into

close contact (117), further aggravating vascular endothelial

dysfunction and amplifying immune inflammatory response.
3.5 Irritant causes of disease

3.5.1 Infection
Many studies have supported the correlation between

infection and the onset of IgAV, and the evidence can be

described as follows: The prevalence of IgAV is seasonal,

consistent with the epidemiological characteristics of some

respiratory or enteropathogenic microorganism (118); IgAV

recurrence is associated with reinfection of certain pathogenic

microorganisms, for that IgAV patients with Helicobacter pylori

(Hp) infection could achieve remission via Hp eradication, but

relapsed after re-infection with Hp (119, 120).

Approximately 70% of IgAV patients have a history of

prodromal infection or co-infection symptoms at the disease

onset, with respiratory tract infections being the most common,

followed by gastrointestinal infections, cellulitis, and urinary

tract infections, etc. The common infectious pathogens are

Streptococci, Hp, Mycoplasma pneumoniae, Human microvirus

B19, and Hepatitis A virus (121, 122). IgA is synthesized by

plasma cells in mucosa-associated lymphoid tissue (MALT),

which includes the nasopharynx, tonsils, and gastrointestinal

mucosa (such as Peyer’s patches and mesenteric lymph nodes).

When the body is stimulated by pathogens, B cells differentiate

into mature plasma cells, leading to the secretion of more IgA

polymers (123, 124). In turn, pathogens may contain antigenic
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structures similar to those of the vessel walls that induce cross-

reactive autoantibodies and enhance immune responses (28).

Additionally, infections up-regulate pro-inflammatory factors

such as IL-6 or pattern recognition receptors, leading to changes

in the key enzyme activities of IgA1 glycosylation. As an

example, TLR9 expression was discovered to be increased in

tonsillitis, resulting in activation of APRIL and thus causing the

overproduction of Gd-IgA1.

It should be pointed out that some studies support that

SARS-CoV-2 has been linked to IgAV. The mechanisms

involved in SARS-CoV-2 regulation of autoantibody

generation, faulty development of Th2 response, endothelial

inflammation and dysfunction, complement activation, NET

production, and the upregulation of proinflammatory

cytokines such as interleukin 6 may lead to vasculitis (125–

127). The contradiction between the reduction in IgAV cases

and the possible trigger may arise from the fact that SARS-CoV-

2 may not be as strong a trigger as the other cold viruses or

bacteria for IgAV.
3.5.2 Non-infectious triggers
Besides infection, drugs also contributed to the development

of IgAV. A case-crossover control study by Piram et al. in 2018

concluded that vaccination with common vaccines in childhood

(DPT, polio vaccine, meningococcal vaccine, and hepatitis

vaccine) did not significantly increase the risk of IgAV within

3 months (128). However, a French study combined with the

French Pharmacovigilance Database (FPVD) and the World

Health Organization (WHO) Global Individual Case Safety

Report (ICSR) database revisited the relations between drugs

and IgAV using a dual pharmacovigilance-based approach in

2021, which was inconsistent with previous reports, this study

believed that vaccines are the primary suspected IgAV-inducing

drugs, mainly for influenza and measles vaccines, others being

rubella, mumps, polio, diphtheria, tetanus, and etc. (129). In the

context of the COVID-19 pandemic, some scholars suggest a

link between the increase in anti-SARS-CoV-2 spike IgA and the

reactivation of pre-existing IgA vasculitis observed after

COVID-19 vaccination (130). Vaccines may act as an

immunological trigger by mimicking the pathogen-specific

immune response and inducing long-term antibody

production, promoting the development of IgAV. The second

most relevant drugs are antibiotics (such as b-lactams,

quinolones, and macrolides, which encompass almost all

pharmacological classes of antibiotics), the role of which is

controversial given that infection may be a confounding factor

in the analysis of antibiotic effects. Further, biological agents,

especially TNF-a blockers (adalimumab, infliximab, etc.) are

also commonly suspicious drugs, and case reports described the

occurrence of IgAV with rare neurological involvement in

Crohn’s patients after adalimumab treatment (131). Studies

have suggested that TNF-a blockers can stimulate the
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formation of anti-tumor necrosis factor or tumor necrosis

factor-containing immune complexes in small vessels and

subsequently activating the complement pathway to induce

vasculitis (132). Other drugs that evoke IgAV include

rosuvastatin, tofacitinib, and so on (133, 134). Altogether,

drugs may induce IgAV through stimulation of antibody

production, direct toxic effect on the blood vessel wall, or

activation of eosinophils.
3.6 Genetic predisposition

The prevalence of IgAV differs with geographical variation

and ethnicity, and it has been reported that some patients

present with familial aggregation (135). Moreover, the clinical

course, manifestations, and prognosis vary highly between

individuals, underscoring the importance of genetic factors in

IgAV pathogenesis. The susceptibility of IgAV is not determined

by a single gene, which requires a combination of genes to work

together. Current research mainly focuses on gene

polymorphisms related to signaling pathways associated with

immune response and inflammation, involving the human

leukocyte antigen (HLA), cytokines and their receptors, the

complement system, endothelial function, coagulation, and

fibrinolytic systems. At present, there are various methods for

studying genetic elements, such as whole-genome sequencing

and copy number variation analysis, rearrangement of the

genetic structure (small insertions or deletions, segmental

duplications, gene expression profiling, etc.). However, the

majority of studies only focused on one gene or a few genes.

Larger-scale and more systematic studies are needed to verify the

effect of gene polymorphisms on IgAV. Investigating genetic risk

factors is helpful for deepening the understanding of IgAV

pathogenesis, and close monitoring and prompt intervention

of patients carrying susceptible genotypes can help to avoid the

occurrence of serious complications, improve disease prognosis,

and achieve individualized precision therapy.

3.6.1 HLA
Human leukocyte antigens, also known as major

histocompatibility complex (MHC) antigens, are vital

components of the immune system, the hyper-polymorphic

genetic loci of which are situated on the short arm of

chromosome 6 (6p21). MHC genes are mainly divided into

three categories: MHC class I (including HLA-A, HLA-B, and

HLA-C), MHC class II (comprising of HLA-DR, HLA-DP, and

HLA-DQ) and MHC class III genes [encompassing genes

encoding complement components, heat shock protein 70

(HSP70), tumor necrosis factor and receptor for advanced

glycosylation end products (RAGE; also known as AGE)]

(136). Among them, MHC class II genes have been identified

as the most predominant genetic susceptibility loci for IgAV.
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In 2017, the first genome-wide association study (GWAS)

for IgAV in Spain found that polymorphic linkage

disequilibrium blocks located in the intergenic regions of

HLA-DQA1 and HLA-DQB1 are closely related to disease

susceptibility, with the strongest association signal being HLA-

DRB1 alleles, particularly HLA-DRB1 loci 11 and 13 (137) (98).

The effects of different genotypes on IgAV are not identical. For

instance, HLA-DRB1*03 and HLA-DRB1*07 have protective

effects against the development of IgAV, while HLA-DRB1*01

and HLA-DRB1*11 allele groups may predispose individuals to

IgAV (138–140). Notably, population disparities exist in the

effect of HLA-DRB1 polymorphism, e.g., studies in Caucasians

have shown that HLA-DRB1*01 increases susceptibility to IgAV

(138), whereas this result has not been validated in India (141).

HLA class II gene polymorphisms can not only confer

susceptibility to IgAV but also influence disease severity and

clinical heterogeneity.

In addition to the HLA-class II region, the other two classes

are also known to affect the susceptibility of IgAV. A study in

Turkey found an increased frequency of HLA-class I alleles

coexistence in IgAV and HLA A2, A11, and B35 could increase

the risk of IgAV, while those carrying HLA A1, B49, and B50

antigens had a reduced disease risk (142), and further analysis

revealed that HLA B35 was associated with renal involvement

and HLA A3 and B44 were more susceptible to exhibiting joint

symptoms. There are few studies on the HLA-III class region.

The sites in this region are primarily associated with the

synthesis of complement and glycosylation-related enzymes of

IgA. Activation of complement 4 is a key molecule in the

complement cascade, whose gene expression loss leads to the

reduced synthesis (143), and individuals with C4 gene

homozygous deletion are more prone to IgAVN (144).

3.6.2 Non-HLA
Recently, a variety of non-HLA genes have been found to be

involved in IgAV susceptibility. Carmona et al. identified a

shared potential risk locus between IgAV and KD in a large-

scale crossover disease meta-analysis, rs3743841 (located in the

intron region of the NAGPA gene), which is the strongest non-

HLA signal with IgAV to date (145). This study revealed that

NAGPA regulates the expression level of NAGPA proteins and

participates in the immunomodulatory response of the body by

acting on the central link of the lysosomal pathway. This study

also revealed that the lysosomal pathway may play an important

role in the pathogenesis of IgAV. Most studies suggest that

patients with familial Mediterranean fever (FMF, the disorder

caused by MEFV gene mutations) are at an increased risk of

IgAV (146, 147). MEFV encodes a protein called pyrin, which is

an important active component of the inflammasome. The

relationships between the mutation sites of MEFV and IgAV

phenotypes are still inconclusive (148–150). For example,MEFV

E148Q polymorphism (G >C) increases the risk of IgAV and is
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associated with joint involvement (151). Other non-HLA signals

are mainly genes implicated in vascular inflammatory pathways.

Polymorphism in enzyme encoding genes such as C1GALT1

may affect the synthesis of Gd-IgA1 and interfere with the IgA1

glycosylation process (152, 153). Moreover, polymorphism in

genes encoding cytokines such as IL-1 and IL-8, chemokines,

TLRs, vascular endothelial growth factor, renin–angiotensin

system, and nitric oxide synthase is also associated with the

risk of IgAV (139, 154–159).
3.7 Epigenetics

Epigenetic regulation, including DNA methylation, histone

modifications, and non-coding RNAs, has emerged as one of the

key mechanisms regulating gene expression and cell

development or differentiation, and also plays a role in

immune diseases (160, 161). The “histone code” is a set of

post-translational modifications, including acetylation,

methylation, and phosphorylation, that can confer precise

functional properties to specific gene segments (162). Cross-

phenotype analysis of immunochip data identifies KDM4C, the

gene encoding histone demethylase, as a common risk locus for

multiple vasculitis in children (163). Luo et al. observed aberrant

histone modifications in peripheral blood mononuclear cells

(PBMCs) from patients with IgAV, and the pronounced increase

of H3 acetylation and H3K4 methylation both reached the

genome-wide level, higher in patients with nephritis than in

non-nephritis patients (164). Due to the IL-4 promoter and

enhancer regions of CD4+ T cells enriched in H3 acetylation and

H3K4me3, the Th1/Th2 balance is further disrupted in IgAV

patients, leading to a Th2 bias and promoting the development

of disease. Advances in the field of epigenetic regulation have

deepened the molecular mechanisms underlying IgAV

pathogenesis and may prove novel insights for the treatment

of IgAV.
3.8 Biomarkers

The prognosis of IgAV largely depends on the incidence of

serious gastrointestinal, pulmonary, and neurological

complications in the immediate period and the severity of

renal involvement. The current studies on biomarkers also

mainly target these two aspects. Renal biopsy is the gold

standard for assessing renal injury in IgAVN, but it is invasive

and not easily monitored dynamically. Searching for non-

invasive biomarkers with high sensitivity and specificity is of

clinical importance for early identification, timely intervention,

dynamic monitoring, and evaluation of disease efficacy

and prognosis.

The main candidate biomarkers for severe gastrointestinal

involvement of IgAV include plasma coagulation factor XIII
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activity and neutrophil/lymphocyte ratio (NLR) (165–167). Both

are easy to obtain clinically, and active measures can be taken for

biomarker-positive patients. Factor XIII catalyzes the cross-

linking of fibrin and plays an important role in clot formation

and wound healing. IgAV causes a decrease in factor XIII activity

during its acute phase, presumably due to degradation by

proteolytic enzymes released during inflammation, in

proportion to inflammatory damage (168, 169). Also, these

biomarkers provide new therapeutic targets in the treatment of

IgAV. Case reports indicate that coagulation factor XIII infusion

can improve gastrointestinal symptoms (170, 171).

Nephritis is a major long-term complication of IgAV, where

a prospective study in Finland showed that age older than 8 years

and recurrence are risk factors for the development of nephritis

(172). In general, the prognosis in children is better than in

adults (173). With the advanced technology of biological

detection in recent years, serum and urine biomarkers of

kidney injury in IgAVN have constantly been discovered.

Urine markers can be divided into two main categories:

preclinical and clinical. Williams et al. stated that the most

dominant preclinical urine biomarkers of IgAVN are kidney

injury molecule-1 (KIM-1), MCP-1, b-N-acetylglucosaminidase

(NAG) and urinary angiotensinogen (UAGT) (174). The first

three also correlate with disease severity. KIM-1 and NAG are

usually upregulated after renal tubular damage and thought to be

associated with tubulointerstitial inflammation. The urinary

concentrations decrease when the disease is in remission,

showing a relationship with disease activity (175, 176).

Furthermore, the accepted clinical urine biomarkers are urine

protein concentrations, including 24-hour urinary protein, the

urinary protein to urinary creatinine ratio, and others. A

prospective cohort study of adults identified other urine

markers for predicting IgAVN, including IgA, IgG, IgM,

netutrophil gelatinase-associated lipocalin (NGAL), IL-1b, IL-
6, IL-8, IL-10, IgA-IgG, and IgA-sCD89 complexes, and it is

worth pointing out that urinary IgA levels at the onset of illness

may predict poor renal outcome, which can possibly serve as a

routine marker for IgAVN (51). In addition to the above urine

biomarkers, serum Gd-IgA1 and specific antibody levels,

apolipoprotein M, matrix metalloproteinase-9 (MMP-9), red

blood cell distribution width, pentraxin 3, alpha-smooth

muscle actin, and c-Met have also been reported to be

associated with the risk of IgAV nephritis (37, 177, 178).

However, the predictive values for circulating IgA level are

divergent across studies. The findings of Hočevar et al. showed

that patients with elevated serum IgA seem to have a higher risk

of renal involvement, while a study on biomarkers of childhood

IgAV nephritis showed no significant differences in the serum

IgA level comparing cases without nephritis (176, 179). On the

other hand, Tan et al. found that elevated serum bilirubin levels

might be related to favorable renal outcomes (180).

What calls for special attention is that although biomarkers

can serve as warnings, there is no effective means to identify
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which patients are likely to suffer irreversible kidney damage at

disease onset. Kidney biopsy is vital to assess disease activity and

prognosis and determine therapy selection. It is recommended

that all patients be monitored for at least 6 to 12 months, and

monitoring can be prolonged in patients at high risk of nephritis

(4, 181). For those with continuously aggravated symptoms or

no-remission after treatments, especially patients with impaired

eGFR, severe or persistent proteinuria (UP : UC ratio >250 mg/

mmol for 4 weeks; UP : UC ratio >100 mg/mmol for 3 months;

UP : UC ratio >50 mg/mmol for 6 months), timely renal biopsy

and active intervention should be performed (4). It is important

for clinicians to integrate the clinical features with different

histological findings as well as biomarkers of IgAV patients and

observe patients at regular intervals in order to better decide the

time for initiating glucocorticoids or other immunosuppressive

therapies and improve the prognosis.
4 Conclusion

IgAV is a multifactorial vascular disease, and the

epidemiological features highlight the influences of genetic and

environmental factors. The pathogenesis of IgAVN is similar to

the “four-hit” hypothesis of IgAN, in which the abnormal

immune response of the body is activated by precipitating

events such as infection, leading to overproduction of

galactose-deficient IgA1 and the formation of an immune

complex containing Gd-IgA1, which is then deposited in the

kidney and promotes the development of IgAVN. Given these

shared mechanistic foundations, experimental targeted

treatments for IgAN are likely to be applied to IgAV. Another

mainstream pathogenesis hypothesis is the “new multi-hit”

model, in which the binding of IgA to FcaRI induces the

migration and activation of neutrophils and causes systemic

vascular inflammation, which better elucidates the extrarenal

involvement mechanism of IgAV. In-depth exploration of IgAV

pathogenesis is of great significance for disease prevention,

prognosis improvement, and precise treatment at the

molecular level. Nevertheless, the pathogenic mechanisms of
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IgAV are far from being completely understood, and the

relationship between IgAV, IgAVN, and IgAN has not been

fully clarified. Constant original research and more rigorous

evidence are needed to reveal the essential and core pathogenesis

of IgAV and IgAVN.
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