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Abstract

Little is known about the characteristics of respiratory tract microbiome in

Coronavirus disease 2019 (COVID‐19) inpatients with different severity. We

conducted a study that expected to clarify these characteristics as much as possible.

A cross‐sectional study was conducted to characterize respiratory tract microbial

communities of 69 COVID‐19 inpatients from 64 nasopharyngeal swabs and

5 sputum specimens using 16S ribosomal RNA gene V3‐V4 region sequencing. The

bacterial profiles were analyzed to find potential biomarkers by the two‐step

method, the combination of random forest model and the linear discriminant analysis

effect size, and explore the connections with clinical characteristics by Spearman's

rank test. Compared with mild COVID‐19 patients, severe patients had significantly

decreased bacterial diversity (p‐values were less than 0.05 in the alpha and beta

diversity) and relative lower abundance of opportunistic pathogens, including

Actinomyces, Prevotella, Rothia, Streptococcus, Veillonella. Eight potential biomarkers

including Treponema, Leptotrichia, Lachnoanaerobaculum, Parvimonas, Alloprevotella,

Porphyromonas, Gemella, and Streptococcus were found to distinguish the mild

COVID‐19 patients from the severe COVID‐19 patients. The genera of Actinomyces

and Prevotella were negatively correlated with age in two groups. Intensive care

unit admission, neutrophil count, and lymphocyte count were significantly correlated

with different genera in the two groups. In addition, there was a positive correlation

between Klebsiella and white blood cell count in two groups. The respiratory tract

microbiome had significant differences in COVID‐19 patients with different severity.

The value of the respiratory tract microbiome as predictive biomarkers for

COVID‐19 severity deserves further exploration.
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1 | INTRODUCTION

As an emerging infectious disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2),1 coronavirus disease 2019

(COVID‐19) has spread throughout the world, causing more than 223

million confirmed cases and over 4.6 million deaths.2 Since theWorld

Health Organization (WHO) has declared COVID‐19 outbreak a

global pandemic on March 11, 2020,3 the pandemic has already

brought an enormous threat to the global economy and public

health burden.

SARS‐CoV‐2 may damage the epithelial barrier acutely and

promote invasions of other pathogens.4 Moreover, viral respiratory

infections such as influenza virus and human coronavirus may lead to

secondary bacterial and/or fungal infections which results in high

mortality rate among patients, especially in high‐risk groups.5,6 A

systematic review showed that bacterial co‐infection was relatively

infrequent in hospitalized patients with COVID‐19.7 However, the

occurrence and characterizations of bacterial infection in COVID‐19

patients remains poorly understood.

The bacterial communities of the upper respiratory tract (URT)

can prevent respiratory pathogens from establishing an infection on

the mucosal surface and spread to the lower respiratory tract (LRT)8

and play an important role in human health. Concerns about

biomarkers of the gut and respiratory microbiome in COVID‐19

patients have been raised. For instance, compared with healthy

controls, a relative higher abundance of opportunistic pathogens,

such as Streptococcus, Rothia, Veillonella, and Actinomyces was

observed in COVID‐19 patients.9 Moreover, according to previous

studies, viral load,10 acute severity,11,12 host immunity, and pathogen

susceptibility13 were influenced by the viral–bacterial relationships.

However, little is known about the interaction between respiratory

tract (RT) microbiome and COVID‐19 severity, and no appropriate

biomarkers are available to support the prognosis of the disease. A

cross‐sectional study was conducted to explore the relationship

between RT microbiome and COVID‐19 severity, which could

provide a theoretical reference for clinical diagnosis and intervention.

2 | MATERIALS AND METHODS

2.1 | Study patients and specimens collection

From March 17, 2020 to March 28, 2020, 69 RT samples were

collected from 69 patients in a COVID‐19 treatment hospital in

Wuhan, China. These patients were diagnosed as confirmed COVID‐

19 cases according to the Diagnosis and Treatment Protocol for

Novel Coronavirus Pneumonia (Trial Version 7) released by National

Health Commission & State Administration of Traditional Chinese

Medicine.14

If serial samples were collected from the same patient, only the

first sample was included in the comparison of the microbiome in

hospitalized COVID‐19 patients with different disease severity. A

total of 69 cases were classified as moderate cases, severe cases and

critical cases. Finally, 41 moderate cases were classified as mild

group, 26 severe cases, and 2 critical cases were combined into

severe group for the further study.

Sixty‐four nasopharyngeal swabs, five sputum samples were

collected at admission from hospitalized COVID‐19 patients and

stored at −80°C until analysis after collection. Moreover, all blood

samples from all patients were stored at room temperature and then

were used to analyze routine blood parameters and inflammatory

factors by the conventional laboratory methods. All detailed

information of clinical characteristics for patients were presented in

Supporting Information: Table S1.

2.2 | DNA extraction

Total microbial DNA was extracted from all samples using RT gene

detection kit (Capital Bio Corporation) following the manufacturer's

protocol. A beat‐beating step was used to lyse bacteria, so that

nucleic acids were released into the solution of nucleic acid

extraction, and finally the purpose of extracting nucleic acids was

achieved. When extracting nucleic acids from sputum samples, it is

important to transfer each sputum sample to a sterile centrifuge tube

and then add equal volume of 10% NaOH, respectively. Next, these

tubes containing sputum samples were vibrated by pulse‐vortexing

and then liquefied for 30min at 37°C, to achieve better effect in the

following operation. When the liquefied sputum samples with no

sense of stickiness and homogenization were ideal. Then taking the

1ml liquefied from each sample into a 1.5 ml centrifuge tube,

centrifuging for 5 min at 12 000 rpm, and then discarding the

supernatant. Adding 1ml washing solution to the centrifugal tube

and vortexing oscillation, centrifuging for 5 min at 12 000 rpm and

discarding the supernatant. Next, after adding 100 µl nucleic acid

extraction solution to the centrifugal tube, the tube was placed in the

rapid nucleic acid extractor and oscillated 5min with the maximum

vibration velocity. Finally, putting these tubes in a 95°C dry bath for

heating 5min and then centrifuging 3min at 10 000 rpm. All samples

were stored at −80°C until shipment to Beijing Genomics Institute

for sequencing.

2.3 | Sequencing and bioinformatics analysis

After PCR amplification targeting 16S ribosomal RNA (rRNA)

sequencing of the V3‐V4 regions in an Illumina MiSeq platform with

base‐pair reads, DNA libraries was generated. The samples were

amplified using the 341F (ACTCCTACGGGAGGCAGCAG) and

806R (GGACTACHVGGGTWTCTAAT) primer pair and sequenced

as previously described.

The raw sequencing reads were removed with primers and

adapter contaminations using cutadapt v2.615 and quality‐filtered to

obtain clean data. The quality‐filtered reads were denoised and

generated Amplicon Sequence Variants (ASVs) by Divisive Amplicon

Denoising Algorithm in Qiime2 (https://qiime2.org/).16 Then, ASVs
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representative sequences were taxonomically classified using Ribo-

somal Database Project (RDP) Classifier (1.9.1) (http://rdp.cme.msu.

edu/)17 with a minimum confidence threshold of 0.6 against the

16S rRNA database (RDP: Release16 20160930).18

Alpha diversity and beta diversity were estimated and rare

faction curve was plotted by Microbiome Analyst19,20 at the ASVs

level, respectively. Alpha diversity was estimated by the Simpson

index and Abundance‐based coverage estimator (ACE) index. Beta

diversity analysis was performed by principal coordinate analysis

(PCoA) of the ordination method based on the Bray–Curits index. For

the important biomarkers identification, a two‐step method was

adopted by MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/

). First step, a random forest model (ntree = 500) was used to

estimate the difference between the two groups and top 10 genera

were selected as candidate biomarkers by their contributions to

classification accuracy (mean decrease accuracy). Second step, the

linear discriminant analysis (LDA) effect size (LEfSe) method was used

to distinguish between the mild group and the severe group and

genera with LDA‐score> 421,22 were selected as candidate biomar-

kers. Finally, the common genera were identified as final biomarkers

by the two‐step method.

2.4 | Statistical analysis

As appropriate, comparisons between different rates or percentages

were performed using the χ2 test or the Fisher's Exact test. Continuous

variables such as age, inpatient days and clinical laboratory test results

were reported as median and interquartile range (IQR), and statistical

comparisons by the Mann–Whitney U‐test. It was supposed to be the

Point‐Biserial Correlation Coefficient, when we explored the relation-

ships between partial clinical indexes as binomial variables and the top

10 genera. But we assigned these indexes as dummy variables and then

explored the relationships directly through the Spearman's rank test.

Spearman's rank test for correlation analysis between clinical indexes

and enriched genera were plotted with R v3.4.1 software using psych,

pheatmap, and corrplot packages, the other statistical analyses were

used by SPSS software version 23.0. p < 0.05 is considered as

statistically significant.

3 | RESULTS

3.1 | Demographic and clinical characterizations of
patients

Demographic information and clinical characteristics of 69 COVID‐19

patients were shown in Table 1 and laboratory test indices between

two groups were shown in Table 2. The median age of patients was

57 years (IQR: 49.5–70.5), the median of length of hospitalization

was 12 days (IQR: 6.5–17.0) and 14 (34.1%) were men in the mild

group. In the mild group, 73.2% of hospitalized patients had at least

one underlying disease, and 4.9% were admitted into the intensive

care unit (ICU). In the severe group, the median age was 71 years

(IQR: 62.3–82.8) and the median duration of hospitalization was 18.5

days (IQR: 10.0–38.6) and 16 were men (57.1%). And there was

92.9% of the patients with underlying diseases and 32.1% of patients

were admitted into the ICU.

There were significant differences in age, inpatient days,

dyspnea, coexisting disorders, ICU admission (p < 0.05) between the

mild group and the severe group (p < 0.05). Significant differences

were also found in white blood cell count (WBC), neutrophil count

(GRA), lymphocyte count (LYMPH), C‐reactive protein (CRP), and

procalcitonin between two groups (p < 0.05). However, there was

missing data of procalcitonin in eight patients and it was not

considered in the subsequent analysis.

3.2 | Microbial richness, abundance, and diversity

Sixty‐nine specimens including 64 nasopharyngeal swabs and

5 sputum swabs were analyzed by 16S RNA gene sequencing to

TABLE 1 Demographic and clinical characteristics between two
patient groups

Characteristics

Groups

p ValueaMild group (n = 41)
Severe
group (n = 28)

Age
(median
[IQR])

57.0 (49.5–70.5) 71.0 (62.3–82.8) 0.009

BMI (kg/m2) 25.0 (20.3–26.0) 24.0 (20.5–27.2) 0.869

Inpatient days 12.0 (6.5–17.0) 18.5 (10.0–38.6) 0.010

Sex, male (%) 14 (34.1) 16 (57.1) 0.058

Symptoms
(yes, %)

Cough 31 (75.6) 25 (89.3) 0.154

Diarrhea 7 (17.1) 4 (14.3) 1.000

Dyspnea 4 (9.8) 11 (39.3) 0.003

Coexisting

disorders (%)

Any 30 (73.2) 26 (92.9) 0.040

Hypertension 20 (48.8) 17 (60.7) 0.329

Cardiopathy 7 (17.1) 8 (28.6) 0.256

ICU
admission
(%)

2 (4.9) 9 (32.1) 0.007

Death during
hospitaliza-
tion (%)

2 (4.9) 3 (10.7) 0.389

Abbreviations: BMI, body mass index; ICU, intensive care unit; IQR,
interquartile range.
ap < 0.05 was considered statistically significant between the mild group

and severe group.

5286 | CHEN ET AL.

http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
https://www.microbiomeanalyst.ca/


study the microbial composition of RT in COVID‐19 patients. After

merging and filtering the raw reads data, 3 957 195 high‐quality

sequence reads were saved for the subsequent analysis. To avoid

analysis bias caused by different sequence reads of samples, all

samples were rarefied to even sequencing depth based on the sample

with the lowest sequencing depth. With the increase of sequencing

depth, the rarefaction curves increased rapidly and then became flat

(Figure 1), indicating that the sample sequencing data was reasonable

and the quality of reads was good with certain depth and

representativeness.

According to Simpson diversity index (p = 0.0062) and ACE

diversity index (p = 1.7474e−5), the microbial diversity and the

richness of mean community were significantly higher in the mild

group than the severe group (Figure 2A,B). PCoA based on

Bray–Curtis distances displayed differences in both the mild group

and severe group (analysis of similarities, R = 0.143, p < 0.003)

(Figure 3).

3.3 | Different bacterial taxonomic
characterizations in the two groups

To investigate alterations in microbiome of the respiratory about

COVID‐19 patients with different severity, we selected top 10 relative

abundances at the phylum, class, order, family, and genus levels,

respectively, and assessed differences by Mann–Whitney U‐test in the

groups. Then, relative abundances with significant differences at different

taxonomic levels were shown in Figure 4 and Supporting Information:

Table S3. At the phylum level, the relative abundances of Fusobacteria and

Bacteroidetes were lower in the severe group compared with the mild

group (Figure 4A), which was probably due to significant decrease of

Fusobacteriia and Bacteroidia at the class level (Figure 4B). At the class

level, except the significant reduction in Bacteroidia and Fusobacteriia, the

relative abundances of Clostridia and Negativicutes decreased in the

severe group. At the order level (Figure 4C), there were seven

significant orders including Bacteroidales, Clostridiales, Enterobacteriales,

TABLE 2 Laboratory test results
between two patient groups Indicators

Groups
p ValueaMild group (n = 41) Severe group (n = 28)

IgG (μg/ml, median [IQR]) 121.3 (58.3–187.6) 102.8 (55.6–188.1) 0.903

IgM (μg/ml, median [IQR]) 16.3 (3.7–33.5) 18.0 (5.8–39.0) 0.961

White blood cell count (×109/L) 6.0 (5.2–8.0) 7.6 (6.1–10.6) 0.006

Neutrophil count (×109/L) 3.9 (3.1–4.7) 5.7 (4.6–8.7) 0.001

Lymphocyte count (×109/L) 1.6 (1.2–1.9) 0.9 (0.5–1.8) 0.006

Hemoglobin (g/L) 117.0 (100.5–133) 111.5 (93.0–133.8) 0.591

C‐reactive protein (mg/L) 4.0 (1.5–9.6) 42.4 (15.3–72.3) <0.001

Procalcitonin (ng/m)b 0.04 (0.03–0.17) 0.15 (0.06–0.38) 0.002

Abbreviations: IgG, Immunoglobulin G; IgM, Immunoglobulin M; IQR, interquartile range.
ap < 0.05 was considered statistically significant between the mild group and severe group.
bPartial data missing.

F IGURE 1 The rarefaction curves between the mild group and severe group. A curve represents a sample. The x‐axis indicates the number
of clean reads randomly selected from a sample, and the y‐axis represents the species richness. Words "SN" plus a number indicates a specific
sample.
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Fusobacteriales, Neisseriales, Pseudomonadales, Selenomonadales, among

which the relative abundances of Selenomonadales and Bacteroidales in

the mild group were higher than that in the severe group. However, the

relative abundance of Pseudomonadales was lower in the mild group than

that in the severe group. At the family level (Figure 4D), the relative

abundances of Actinomycetaceae, Micrococcaceae, Prevotellaceae, Strepto-

coccaceae, Veillonellaceae significantly decreased in the severe group

compared to the mild group. At the genus level, the relative abundances

of Actinomyces, Prevotella, Rothia, Streptococcus, Veillonella decreased in

the severe group (Figure 4E) and this taxonomy bar plot showed the main

species composition of each sample (Figure 5, Supporting Information:

Table S2), respectively.

3.4 | Biomarkers exploration in the different
groups

The random forest model was used to distinguish the different

genera of respiratory microbiome between the two groups. The

differential genera were ranked by their contribution to the mild and

severe disease groups and then the top 10 genera were selected as

candidate biomarkers (Figure 6A).

LDA‐score > 4 by LEfSe analysis was conducted to select

candidate biomarkers in the groups. Significant differences were

found in 22 genera of Acinetobacter, Capnocytophaga, Centipeda,

and so forth, between the mild group and severe group (Figure 6B).

Finally, eight common genera (Treponema, Leptotrichia, Lachnoanaer-

obaculum, Parvimonas, Alloprevotella, Porphyromonas, Gemella, and

Streptococcus) were selected to distinguish the two groups. The

correlations of enriched genera were analyzed by Spearman's rank

test to evaluate relationships among genera (Figure 6C). There were

positive correlations across different genera with different degrees of

COVID‐19 severity, except for Acinetobacter.

3.5 | Association of respiratory microbiome
composition with clinical characteristics and
inflammatory fetures

Spearman's rank analysis was used to evaluate the relationships of

correlation between top 10 genera and clinical characteristics

(including age, inpatient days, dyspnea, coexiting diseases, and days

in the ICU) and indexes (WBC, GRA, LYMPH, and CRP) in the

mild group and severe group, respectively (Figure 7, Supporting

(A) (B)

F IGURE 2 Alpha diversity between mild group and severe group. The Mann–Whitney U‐test was used to compare the (A) Simpson index
(p = 0.0062) and (B) ACE (p = 1.7474e−5) index between the two groups, respectively. There were significant differences about the respiratory
microbiome in the groups.

F IGURE 3 Beta diversity between mild group and severe group.
PCoA of Bray‐Curtis distances indicated differences in the mild group
(orange) and severe group (green). Each point represents one sample
and each color shows all samples from the same group. R = 0.143,
p < 0.003. PCoA, principal coordinate analysis.
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(A) (B)

(C)

(E)

(D)

F IGURE 4 Taxonomic differences of top 10 in the respiratory microbiome beween the mild group and the severe group. Comparison of the
significant relative abundance at the phylum (A), class (B), order (C), family (D), genus (E) levels in the groups. Each box shows the relative
abundance levels of respiratory microbes in the mild group (red) and the severe group (blue) and the black line represents median abundance.
Each hollow circle represents these extreme values. All significant taxa were selected by Mann–Whitney U‐test (*p < 0.05; **p ≤ 0.01;
***p ≤ 0.001).

CHEN ET AL. | 5289



Information: Table S4). According to Figure 7A,B, the genera of

Actinomyces and Prevotella were negatively correlated with age in the

two groups. The genera of Acinetobacter were positively and

Streptococcus were negatively correlated with dyspnea in the severe

group, but these genera were uncorrelated with dyspnea in the mild

group. Moreover, inpatient days, ICU admission, GRA, and LYMPH

were correlated with different genera in the two groups. In addition,

there were a positive correlation between Klebsiella and WBC in two

groups and a negative correlation between Rothia and WBC in the

mild group. There was a positive correlation between Acinetobacter,

Corynebacterium, and CRP in the severe group, while Actinomyces,

Rothia, and Streptococcus were negatively correlated with CRP in the

severe group. No significant correlations were found between top 10

genera and CRP in the mild group (Figure 7C,D).

4 | DISCUSSION

In this cross‐sectional study, we explored connections between

COVID‐19 inpatients with different severity and RT microbiome.

While a large number of studies focused on SARS‐CoV‐2, there were

few studies investigating alterations of the microbiome of RT

between the mild and severe groups. URT is the entry point of

respiratory viruses and bacterial pathogens.8 The initial viral replica-

tion occurs in the nasal epithelia of COVID‐19 patients and when this

initial response is insufficient, the virus migrates into the LRT and

then results in moderate or severe COVID‐19.23 Therefore, there is a

need to understand the alterations of RT microbiome during

SARS‐CoV‐2 infection.

In this study, we characterized the alterations of RT microbiome

in COVID‐19 inpatients with different severity. Our results showed

that there were significant differences between mild and severe

groups, which is in accordance with previous studies.11,12 Although

these studies had various group reference standards, they all showed

that microbiome diversity and abundance correlated inversely with

disease severity of COVID‐19 inpatients.

Compared with the mild group, our study found there was a

decreased relative abundance of opportunistic pathogens, including

Actinomyces, Prevotella, Rothia, Streptococcus, Veillonella, in severe

COVID‐19 patients. The relative abundance of Actinomyces, Rothia,

and Streptococcus were negatively associated with CRP. Rothia was

thought to play an important role in the pathogenesis of pneumonia,

especially for patients with retained catheters and immuno-

compromised patients.24 A study suggested that Rothia and

Streptococcus were connected with susceptibility to secondary

bacterial lung infection in patients of avian H7N9 virus infection.25

Noteworthily, the level of Rothia might also affect the pathogenesis

or disease severity of SARS‐CoV‐2 infection, and the changes of

Rothia and Streptococcus might be associated with with susceptibility

to secondary bacterial lung infection in patients of COVID‐19, while

further explorations are needed.

Several bacterial taxa in RT microbiome have been found to be

associated with disease severity in COVID‐19 inpatients and can

become potential biomarkers to predict the development of disease,

which was similar with previous studies.22 Although we combined the

random forest model and LEfSe to find these potential biomarkers,

the final results were both partially overlapping and different.

Therefore, it is necessary to find a more appropriate method to

identify the microbial biomarkers. Most of our samples were

nasopharyngeal swabs, which lead to final biomarkers associated

with oral related bacteria. Thus, we hypothesized that the oral cavity

may be a potential source of the pathogens that infect the lung. A

study hypothesized that the genera of oral bacteria enriched in

COVID‐19 such as Veillonella and Megasphaera may be pathogenic

when transferred to other organs of the body,26 which is in

accordance with our hypothesis.

Another important finding was a core symbiotic relationships

between most enriched genera in COVID‐19 inpatients with different

disease severity, except there was the negative correlation between

Acinetobacter and other enriched genera. More than one study about

coinfection with Acinetobacter baumannii secondary to SARS‐CoV‐2

infections, particularly in ICU, during the COVID‐19 pandemic has

been reported,27 which suggested that there were nosocomial

infections. Moreover, bacterial co‐pathogens are not only commonly

identified in viral respiratory infections, but also important causes of

exacerbating condition.

It was noteworthy that age might have influences on respiratory

microbiome in COVID‐19 patients. When exploring the relationship

between microbiome and inflammatory fetures, we found some

opportunistic pathogens were significant correlated with CRP levels

in severe patients, but not in mild patients. Previous studies have

F IGURE 5 Taxonomy bar plot showing the top 10 microbiome
profile at phylum level. This bar plot shows the main species
composition of each sample in the two groups at the genus level,
respectively.
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demonstrated a higher rate of co‐infections with bacteria in severe

COVID‐19 patients28 and common conditional pathogens in the RT

could cause severe respiratory infections.29 In addition, alteration of

the microbiota profile with SARS‐CoV‐2 infection might be associ-

ated with disease severity.30 It suggests that dysbacteriosis and

bacteria infection were more likely to develop in severe patients.

Our study have several limitations. First, this study is an cross‐

sectional study which makes it impossible to figure out whether the

infection of SARS‐CoV‐2 affects the respiratory community or

whether the dominated bacteria types of RT community selects a

person to viral infection. This is a complex relationship. Second, there

are some unknown classification taxa at the species level due to

limiation of the 16S RNA sequencing. Third, there are still some

confounding factors such as antibiotic use, age, and sex impacting the

characteristics of RT microbiome in COVID‐19 inpatients. Though

compared to the influence of SARS‐CoV‐2 infection, age and sex

might have a limited effect on the overall composition of the RT

microbiome. Thus, future studies should control or match these

confounding factors. Lastly, our results should be extended cau-

tiously, because our study only have less than 100 samples and

cannot represent all population. In spite of these limitations, our

study shed some light in the interactions between characteristics of

respiratory bacterial microbiome and SARS‐CoV‐2 in COVID‐19

patients with different disease severity.

(B)

(A)

(C)

F IGURE 6 Screening of potential biomarkers and exploration of their correlations. The x‐axis represents MeanDecreaseAccuracy and y‐axis
indicates the genera; the greater mean decrease accuracy, the more important the genus(A). At the genus level, linear discrimination analysis
(LDA)‐scores generated by the LDA effect size (LEfSe) analysis showed significant differences in the mild (red) and severe (blue) groups. LDA‐
score threshold >4 (B). Spearman's rank correlation of different genera between the mild and severe group (C). Blue represents positive
correlation and red represents negative correlation. The larger the circle and the deeper the color, the greater the correlation coefficient in
genera.
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5 | CONCLUSIONS

In this study, we have demonstrated that COVID‐19 disease

severity can be predicted by RT microbiome compositions

with high accuracy. Particularly, eight potential biomarkers can

serve as indicator species to robustly predict the severity of

SARS‐CoV‐2 infections. Our discovery about bacterial communi-

ties in COVID‐19 with different severity suggests that

bacterial microbiome possibly plays an important role in clinical

diagnosis.
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the ICU and dyspnea and laboratory biomarkers include WBC, GRA, LYMPH, and CRP. A color gradient from blue (negative correlation) to red
(positive correlation) indicates the degree of correlation. (*p < 0.05; **p ≤ 0.01; ***p ≤ 0.001).
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