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Background: Analysis of variants in distant regulatory elements could improve the
current 25–50% yield of genetic testing for monogenic diseases. However, the vast size
of the regulome, great number of variants, and the difficulty in predicting their phenotypic
impact make searching for pathogenic variants in the regulatory genome challenging.
New tools for the identification of regulatory variants based on their relevance to the
phenotype are needed.

Methods: We used tissue-specific regulatory loci mapped by ENCODE and FANTOM,
together with miRNA–gene interactions from miRTarBase and miRWalk, to develop
Remus, a web application for the identification of tissue-specific regulatory regions.
Remus searches for regulatory features linked to the known disease-associated genes
and filters them using activity status in the target tissues relevant for the studied disorder.
For user convenience, Remus provides a web interface and facilitates in-browser filtering
of variant files suitable for sensitive patient data.

Results: To evaluate our approach, we used a set of 146 regulatory mutations reported
causative for 68 distinct monogenic disorders and a manually curated a list of tissues
affected by these disorders. In 89.7% of cases, Remus identified the regulator containing
the pathogenic mutation. The tissue-specific search limited the number of considered
variants by 82.5% as compared to a tissue-agnostic search.

Conclusion: Remus facilitates the identification of regulatory regions potentially
associated with a monogenic disease and can supplement classical analysis of
coding variations with the aim of improving the diagnostic yield in whole-genome
sequencing experiments.

Keywords: regulatory variants, whole-genome sequencing, monogenic disorder, variant prioritization, web
application, regulatory regions

Abbreviations: API, application programming interface; CAGE, cap analysis of gene expression; ChIP, chromatin
immunoprecipitation; DNase, deoxyribonuclease; FAIRE, formaldehyde-assisted isolation of regulatory elements; HGNC,
HUGO Gene Nomenclature Committee; RLE, relative log expression (normalization method); TF, transcription factor; TFBS,
transcription factor binding site; TSS, transcription start site; WGS, whole-genome sequencing.
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INTRODUCTION

Over the past decade, the generation and analysis of sequencing
data in the clinical setting focused mainly on the protein-
coding genes. Gene-targeted approaches are economically and
computationally justified (Escaramís et al., 2015) and yield
interpretable data. Coding variant analysis is supported by rich
functional annotation, making it easier to shortlist relevant
variants and link candidate hits to a biological process and,
eventually, to the disease phenotype. However, the plunging
costs of sequencing enable a shift from targeted assays to whole-
genome sequencing (WGS), a technique that offers unparalleled
diagnostic rates for monogenic disorders (Gilissen et al., 2014;
Lionel et al., 2018). WGS produces data with the least technical
bias (Meienberg et al., 2016), enables detection of structural
variants (Escaramís et al., 2015), and provides an opportunity
to interrogate non-coding regions of the genome (Smedley
et al., 2016). The increase in conclusive diagnoses, as compared
to the targeted approaches, stems most often from structural
variants, deep intronic variants, and mutations previously missed
(Lionel et al., 2018). Causative regulatory variants are rarely
found, despite a number of already known pathogenic mutations
identified in the regulome (Smedley et al., 2016).

The scarcity of pathogenic regulatory mutations stems partly
from the difficulty in sifting through the variants in the regulatory
genome. It remains challenging, due both to the sheer number of
variants and the difficulty of interpretation (Gilissen et al., 2014).
According to a conservative estimation, the human regulome
comprises 8.5% of the genome, making it over four times
larger than the protein-coding sequence (The Encode Project
Consortium, 2012) typically interrogated for pathogenic variants.
Population frequency databases such as gnomAD (Karczewski
et al., 2019) and whole-genome pathogenicity scores [e.g.,
CADD (Kircher et al., 2014), DANN (Quang et al., 2015),
and ReMM (Smedley et al., 2016)] help in excluding benign
polymorphisms and prioritization of variants with a likely
functional effect. Still, the regulatory regions, being under a
weaker evolutionary constraint than the coding regions (The
Encode Project Consortium, 2012), make shortlisting variants
solely based on these factors insufficient.

Repositories of known regulatory elements [e.g., ORegAnno
(Lesurf et al., 2016) and VISTA Enhancer Browser (Visel
et al., 2007)] or enhancers implicated in pathogenic processes
(DiseaseEnhancer database) (Zhang et al., 2018) can help in
the identification of variants in known regulators. Another
invaluable resource for regulatory variant analysis are repositories
of regulatory regions, which have been comprehensively mapped
by initiatives such as ENCODE (The Encode Project Consortium,
2012), FANTOM (Forrest et al., 2014), or BLUEPRINT (Adams
et al., 2012). In these databases, regulatory regions have been
linked to tissue-specific activity status, which could potentially
help in the prioritization of individual regulatory elements based
on the disease phenotype. Access to these regulatory datasets is
provided through dedicated browsers, e.g., SlideBase (Ienasescu
et al., 2016) for FANTOM enhancers and promoters, and the
ENCODE portal (Davis et al., 2018). However, these tools are
targeted mainly at researchers studying the regulome and are not

easy to access or navigate for clinicians searching for regulatory
variants in a disease.

Tissue-specific regulatory data, in the form of genome tracks,
are also available in major genome browsers (Kent et al., 2002;
Robinson et al., 2011; Zerbino et al., 2018), allowing visual
inspection of the regulatory landscapes in the genomic loci of
interest. Subsets of these tracks are provided in variant annotation
software such as ENSEMBL VEP (McLaren et al., 2016) and
ANNOVAR (Wang et al., 2010). Other resources integrate
this genome-wide regulatory information in various ways: to
support studying the role of enhancers in complex diseases
(Human Enhancer Disease Database, HEDD) (Wang et al.,
2018), to enrich GeneCards suite with enhancer information
(GeneHancer) (Fishilevich et al., 2017), or to support variant
annotation and prioritization (Genomiser) (Smedley et al., 2016).

Despite the long list of resources with a focus on regulatory
elements, we found no software that would integrate the wide
spectrum of the available regulatory data for easy querying and
facilitate the interrogation of patient genomes in the search for
candidate variants. In a scenario where a patient’s variants had
been scrutinized for coding changes with no conclusive diagnosis,
we envisioned a tool that would facilitate a straightforward
identification of candidate variants in the regulatory regions
relevant for the patient’s phenotype. The main requirements set
forth included a wide choice of regulatory elements, ease of use
for shortlisting candidate variants, and a possibility of analysis
of sensitive data.

MATERIALS AND METHODS

Remus is a web server that integrates regulatory data collected
from several sources. The application enables searching
regulatory elements based on target genes and tissues, and the
identified regulators can be used to filter genetic variants. The
regulatory data aggregated by Remus are available for both the
hg19 and hg38 genome builds and are described in detail in
the next sections. Remus was developed in Python 3 using the
Flask framework. Users interact with it via a web application
interface implemented with Bootstrap1 or via an application
programming interface (API). The variant filtering functionality
was implemented in JavaScript.

Datasets
Remus queries regulatory regions for a set of target genes. The
list of genes and their transcript coordinates were downloaded
from the UCSC Table Browser (Karolchik, 2004) (ncbiRefSeq
table accessed December 2019) for both supported genome
builds (hg19 and hg38) and stored in an SQLite database.
The regulatory datasets aggregated in Remus can be divided
into two categories: microRNA–gene interactions and tissue-
specific regulatory regions. MicroRNA–transcript interactions
were downloaded from miRTarBase (Chou et al., 2018) (accessed
Oct. 2018) and miRWalk (Sticht et al., 2018) (accessed Oct.
2019) and stored in an SQLite database. In the case of miRWalk,

1https://getbootstrap.com
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only interactions with the 3′-UTR of the genes were used
(Supplementary Table 1).

The tissue-specific regulatory regions are genome-wide tracks
of regulatory elements active in single tissues or primary
cells. These were downloaded from ENCODE and FANTOM
repositories and processed as described in the next paragraphs.
The regulatory elements were functionally categorized into
promoters, DNA-binding sites (enhancers, repressors, and
insulators), and accessible chromatin regions and stored in
compressed and indexed BED files.

Data Preparation
Coordinates of the ENCODE (The Encode Project Consortium,
2012) regulatory features were downloaded from the ENCODE
portal (Davis et al., 2018) (accessed Sept. 2019) as compressed
BED files (Supplementary Table 1). Downloaded files came
from experiments with status “released,” only on human
samples classified as tissue or primary cell. Experiments with
error flags from internal ENCODE audits were excluded.
For DNA-binding tracks, we used narrowPeak BED files
with status released, containing optimal idr thresholded peaks
or pseudoreplicated idr thresholded peaks, and originating
from transcription factor (TF) chromatin immunoprecipitation
(ChIP) sequencing experiments. Experiments for transcription-
repressing TFs (CTCF) and transcription-promoting TFs were
not separated, as variants in the binding sites of both types
of TFs can have functional implications for the regulated
genes. These tracks are also referred to as transcription
factor binding site (TFBS) tracks. Accessible chromatin regions
were extracted from results of sequencing assays based on
formaldehyde-assisted isolation of regulatory elements (FAIRE-
seq) and deoxyribonuclease footprinting (DNase-seq). We used
narrowPeak BED files with status released, containing peaks
and originating from DNase-seq and FAIRE-seq experiments.
To provide equal tissue and cell type coverage for both
genome builds, liftOver tool (Hinrichs, 2006) was used to
convert BED files in the hg19 coordinate system to hg38, and
vice versa (Supplementary Figure 1). Next, coordinates from
biological replicates of the same tissue or cell type, including
lifted-over data, were collapsed (merged) using BEDtools
(Quinlan and Hall, 2010).

Coordinates of SCREEN cis candidate regulatory elements
(ccREs) (ENCODE Project Consortium et al., 2020) were
downloaded from the ENCODE portal (accessed September
2019) as compressed BED files (Supplementary Table 1). The
ccREs were divided into promoters, enhancers, insulators, and
accessible chromatin according to the annotations provided in
the BED files. If multiple files for a tissue or cell type were present,
collapsing was done as described above for the ENCODE data. As
all SCREEN tracks were in the hg19 coordinate system, hg38 data
were produced using the liftOver tool (Hinrichs, 2006).

Coordinates of FANTOM (Forrest et al., 2014) enhancers were
downloaded from SlideBase (Ienasescu et al., 2016) (accessed
October 2019) as tissue and organ facet-specific BED files.
FANTOM promoters were generated from a normalized (relative
log expression, RLE) cap analysis of gene expression (CAGE)
peak expression table for human samples, downloaded from

the FANTOM5 repository (accessed October 2019). The table
was split into tissue and primary cell type tracks using the
FANTOM ontology. CAGE peaks with normalized tags per
million (TPM) expression values below 10 were filtered out. The
peaks, indicating transcription start sites, were expanded 200 bp
upstream to include the promoter region. As all FANTOM tracks
were in the hg19 coordinate system, hg38 data were produced
using the liftOver tool (Hinrichs, 2006).

Data download and processing was automated in a build script
available in Remus source code repository2. This facilitates data
provenance tracking and deployment of a private Remus instance
on one’s infrastructure. Comparisons between processed datasets
were made using BEDtools (Quinlan and Hall, 2010) and R
packages. The R Markdown script documenting this analysis can
be found in a dedicated repository3.

Searching Regulatory Elements
For a given genome build (hg19 or hg38), a set of HGNC
(HUGO Gene Nomenclature Committee) gene symbols (target
genes), and one or more tissues or cell types (target tissues),
regulatory regions are identified using the following protocol
(Figure 1). A set of transcription start site (TSS) intervals
overlapping the target genes’ transcription start sites is created
using all transcripts of the target genes. The first base of a
transcript is used to calculate a TSS interval, and the upstream
and downstream spans can be tuned by the user, independently
for each dataset. A regulatory region from a cis-regulatory dataset
(e.g., SCREEN promoters and FANTOM enhancers) is included
in the result if: (1) it overlaps the TSS interval and (2a) active-
in-any mode is selected for the dataset and the region is present
in any of the target tissue tracks of the dataset or (2b) active-
in-all mode is selected for the dataset and the region is present
in every available target tissue track of the dataset. MicroRNA
(miRNA) transcript coordinates are included in the result if (1)
a miRNA–target gene interaction is present in a selected dataset
(i.e., miRTarBase and miRWalk) and meets the user-specified
search criteria (e.g., confidence) and (2) the miRNA transcript
overlaps any of the ENCODE accessible chromatin tracks for the
target tissues. In the final result, coordinates of the regulatory
regions and coordinates of the miRNA transcripts, selected as
described above, are merged and collapsed. The result, in a form
of a BED file or a table, contains information about the origin
of each interval allowing to trace back the dataset and tissue.
All operations on genomic coordinates were implemented using
pybedtools (Dale et al., 2011).

Variant Filtering
For user convenience, we added a variant filtering functionality
to the application. It is implemented in JavaScript, works
entirely in a user’s browser, and does not require sending the
data over the Internet, which makes it suitable for sensitive
data analysis. The feature is currently limited by the memory
available to the browser, but our tests have shown that a single-
sample whole-genome variant call format (VCF) file can be

2https://github.com/seru71/Remus
3https://github.com/seru71/remus_manus
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FIGURE 1 | Visualization of the search protocol employed in Remus. In (A), three datasets with cis-regulatory elements are depicted, each with four tissue-specific
regulator tracks. For a selected target gene, regulatory features are identified based on the overlap with a window around a gene’s transcription start sites (the figure
presents only one transcript). Upstream and downstream distances from the transcript start site can be set for each dataset individually. On the bottom, five sets of
identified regulators are presented, depending on the example search criteria (1–5). In (B), a track with microRNAs (miRNAs) targeting the target gene is shown, and
four tracks of accessible chromatin regions. Remus includes in the result only those miRNAs that overlap an accessible chromatin region in the selected tissues (1–3).

processed on a regular laptop within a few seconds. VCF files
filtered by Remus can be further scrutinized for pathogenic
variants using other means, such as population frequency data
or pathogenicity scores.

Evaluation
A subset of the pathogenic regulatory variants collected by
Smedley et al. (2016) was used to evaluate Remus. We selected
promoters and enhancers located up to 1 Mb away from the
closest transcription start site of the affected gene. The variants
were divided into three groups: (1) promoter variants, located
1–100 bp upstream of a transcript start of the affected gene;
(2) intragenic, regulatory variants within the transcript of the
gene, but not classified as promoter variants; and (3) distal,
located more than 100 bp away from the closest transcript start
of the gene. Using the original publication for each variant, we
chose one tissue or one cell type affected by the disorder that
best matched a track available in one of the Remus datasets

(Supplementary Table 2). In addition, a list of related tissues/cell
types representing a wider choice of tracks was created for each
case. Coordinates of the tested variants, affected genes, and
selected tissues are listed in Supplementary Table 2. Remus API
was queried using this list of genes and tissues, against all cis-
regulatory datasets with the default parameters. The number
and size of the regulatory regions output by Remus for each
queried gene, as well as information whether the pathogenic
variant overlapped any of the identified regulators, are provided
in Supplementary Table 3.

RESULTS

Remus4 is a web application and API that facilitates the
identification of regulatory regions and genetic variants
potentially involved in the pathogenicity of monogenic diseases.

4https://remus.btm.umed.pl
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Remus uses a range of tissue-specific genome-wide datasets
to identify regulatory regions active in user-selected target
tissues and in proximity of the target genes (Figure 1). Dataset
availability for each tissue is provided in the user interface and
can suggest tracks with relevant regulatory data. Coordinates of
the regulatory regions can be downloaded, viewed in a genome
browser, or immediately used for in-browser filtering of variants,
making it suitable for analysis of sensitive data.

Analysis starts from one or more target genes, for example
implicated in the pathogenesis of a disease, and a set of tissues
or cell types affected by the disease (target tissues; Figure 1).
After setting these, the user can choose the types of regulators
to include (promoters, enhancers, repressors, insulators, open
chromatin regions, and miRNAs) and a set of particular datasets
to query. The datasets vary in the experimental techniques
that were used to identify the regulatory elements and in
tissue coverage (Figure 2). Cis-regulatory datasets available in
Remus come from ENCODE (The Encode Project Consortium,
2012), SCREEN (ENCODE Project Consortium et al., 2020),
and FANTOM (Forrest et al., 2014) repositories and represent
the results of diverse genome-wide experimental assays on
human primary cell types and tissues (details in “Materials and
Methods” section). MicroRNA–gene interactions are available in
two flavors: experimentally validated (MiRTarBase) (Chou et al.,
2018) and predicted (MirWalk) (Sticht et al., 2018). Neither is
tissue-specific, and to restrict the interactions to the target tissues,
localization of the miRNAs interacting with the 3′-UTRs of the
target genes is filtered through regions of accessible chromatin
in the target tissues. Together, the available datasets represent a
diverse set of cis- and trans-regulators active in the target tissues
that, if mutated, could impact the expression of the input genes.

Remus includes regulatory elements in the final result based
on genomic proximity to the target genes and activity status
in the target tissues. Two modes of search were implemented.
A permissive search will include a regulatory region if it is active
in any of the selected target tissues (Figure 1A, example 2),
and a strict search requires a region to be active in every tissue
of interest (Figure 1A, example 3). The final result contains
genomic coordinates of the selected regulatory regions along with
information about the tracks (tissue and dataset) where they were
identified.

We have provided three ways of using the result. Firstly, the
identified regulatory regions can be downloaded as a BED or
Excel file for further processing. Secondly, the user is provided
with a direct link to the UCSC Genome Browser, where the
regulatory region loci can be cross-checked with a number of
other datasets, including, for instance, evolutionary conservation,
SNP density, or TF-binding motifs. Thirdly, a user-provided
variant file (VCF) can be filtered using the discovered regulatory
regions to suggest regulatory variant candidates relevant for the
studied phenotype.

Summary of the Datasets
In the data preparation phase, we integrated results from 3,509
genome-wide assays and 565 regulatory tracks (Supplementary
Tables 1, 4). It resulted in a total of 179 DNA-binding tracks
(enhancers, repressors, and insulators), 192 promoter tracks, and
146 accessible chromatin tracks, each representing a single tissue

or a cell type (Figure 2A). For 76 tissues, all three types of
regulatory tracks were available, and for 168 both promoters
and DNA-binding sites were present. The datasets were largely
complementary in terms of the types of regulatory elements they
contributed and in terms of the tissues and cell types covered
(Figures 2B–D).

Due to the diverse experimental techniques used to
identify the regulatory regions, the regulatory datasets differed
considerably in terms of feature density and individual regulatory
region characteristics. ENCODE TF-binding site and SCREEN
enhancer tracks contained, on average, 66 thousands and 64
thousands active regions, while FANTOM enhancer tracks
had, on average, 1.8 thousands such regions (Supplementary
Figure 2). The sizes of the individual enhancers and TF-binding
sites were similar across the datasets, with the majority spanning
250–500 bp. For promoters, we also noted large differences, i.e.,
SCREEN and FANTOM tracks had, on average, 62 thousands
and 12 thousands active promoter regions per tissue, and the
average promoter sizes were 582 bp and 275 bp, respectively.
Accessible chromatin regions differed in average count per track
(333 thousands for ENCODE and 123 thousands for SCREEN)
and average sizes of individual regions (176 bp and 539 bp;
Supplementary Figures 2E,F), but the average overall span was
similar (60 and 66 Mb).

Only a fraction of the regulatory tracks included in Remus
was originally available in both genome builds. The FANTOM
and SCREEN datasets were only available in the hg19 coordinate
system, and many ENCODE tracks were provided for a single
genome build. Coordinate liftover of tracks available only for a
single genome build (hg19 or hg38) yielded extra 36 kb–11.6 Mb
regions (0.3–46% increase; median = 14%) for the hg38 TF-
binding site tracks and additional 466 kb–61.6 Mb (0.6–263%;
median = 4.4%) in the case of the hg38 open chromatin tracks
(Supplementary Figure 3). A small fraction of the regions failed
to map between the genome builds, and these were discarded
from the destination genome, but not the source genome.
For the hg19 tracks lifted over to hg38, 0–1.15% base pairs
(median = 0.026%) failed to map, and for the hg38 to hg19
liftover, between 0.09 and 1.02% base pairs (median = 0.3%) were
not lifted over.

The miRNA–gene interactions available in Remus include
380,640 miRTarBase (Chou et al., 2018) records with
experimental evidence, mapped for 2,600 human miRNAs
and their 15,065 target genes. On average, each miRNA targeted
146 genes (1–2,627; median = 94) and a single gene was
targeted by 25 miRNAs (1–359; median = 14). A database
of computationally predicted miRNA–target interactions from
miRWalk (Sticht et al., 2018) was also included. It comprised over
13.5 million interactions involving 2,588 miRNAs and 18,448
genes. In this dataset, a miRNA interacted with a 3′-UTR of, on
average, 5,231 genes (8–10,516; median = 5,706), and a gene was
targeted by 1–2,321 miRNAs (mean = 732, median = 656).

Tissue-Specific Analysis
Our main aim of using tissue-specific data for regulatory variant
selection was restricting the vast regulome to the phenotype-
relevant regions only. We calculated the rate in which a single
tissue/cell type track limited the span of the considered regulatory
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FIGURE 2 | Counts of unique tissue and primary cell type tracks available in Remus. (A) Tracks for the three regulatory region classes (enhancers/TFBS, promoters,
and accessible chromatin); numbers in overlaps indicate tissues/cell types with data for several regulator classes. (B–D) Breakdown of the tissue tracks into datasets
of origin for the three regulatory region classes: enhancers/TFBS (B), promoters (C), and accessible chromatin (D).

regions. The rates varied between tissues and cell types and
across datasets (Figure 3). As expected, reduction in the size
of the regulatory regions was greater for primary cell tracks,
which was the case for all datasets except FANTOM enhancers.
A single tissue promoter track contained medians of 17 and 14%
(SCREEN and FANTOM, respectively) of all promoter regions
(Supplementary Table 5). In the case of enhancers, the rates
were lower and ranged between 4.9% (FANTOM) and 8.7%
(SCREEN). Selecting a single cell type enhancer track from the
FANTOM, SCREEN, or ENCODE dataset allowed limiting the
span of the considered regulatory elements to below 6% of
the total. Open chromatin regions differed for ENCODE and
SCREEN, with the former being more specific and constraining
analysis to medians of 3.6 and 3.7% for primary cell and tissue
tracks, respectively. The median open chromatin track from
SCREEN contained 14.6% (11.7 and 17.1% for primary cells and
tissues) of the total open chromatin regions in this dataset.

Evaluation
To evaluate Remus in searching pathogenic mutations, we used a
set of 146 regulatory variants reported causative for 68 distinct
monogenic disorders (Smedley et al., 2016) and a manually
curated list of tissues affected by these disorders (Supplementary
Table 2). The search was performed in two steps: firstly, for a
single tissue or cell type that best matched the phenotype and,
secondly, for a wider set of tissues related to the phenotype

(e.g., single-tissue search for regulatory elements in the brain
was expanded to include the midbrain and astrocyte tracks
as well). In the control test, regulators in all tissues were
queried (unselected search). The results were broken down
into promoters, intragenic, and distal regulators (details in the
“Materials and Methods” section). Coordinates of the regulatory
variants, genes, and tissues selected for the test were listed in
Supplementary Table 2.

Overall, the set of regulators identified by Remus for a single
tissue comprised 1–909 regions (median = 98) spanning 110 bp–
175.7 kb (median = 44.2 kb) and included the pathogenic
variant in 63 of 78 cases (80.7% recall; Table 1). In the multi-
tissue test, 5–1,010 (median = 254) regulators were found
covering 3.2 kb–296.5 kb (median = 98.4 kb) of the genome
sequence. The causative variant was among the identified
regulators in 70 of 78 cases (89.7%). In the control, tissue-
unselected test, the pathogenic variant was identified in four
more cases (94.9% recall). Specificity of the search was measured
as the fraction of the tissue-unselected result excluded by
performing a tissue-specific query. For single- and multiple-
tissue searches, it equaled to 92.7 and 82.5%, respectively. The
identified regulatory regions and their sizes are available in
Supplementary Table 3.

Out of four regulatory mutations missing from Remus tissue-
specific results, and identified by the control tissue-unselected
search, two were in enhancers of TBX5 and HBA2 (139 kb

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 638960

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638960 March 5, 2021 Time: 14:31 # 7

Sztromwasser et al. Remus: Prioritization of Regulatory Variants

FIGURE 3 | Decrease in the genomic span of the regulatory regions after limiting the analysis to a single track. The Y-axis presents the fraction of all regulatory
regions present in a single tissue or cell type track (based on the numbers of base pairs). Points in the figure represent individual tissue/cell type tracks. The boxes
show the interquartile range (IQR) of the distribution, the middle bar represents the median, and the whiskers extend to the min and max points within 1.5*IQR from
quartiles Q1 and Q3, respectively.

and 13 kb away from the nearest TSS, respectively), one in
a distal promoter of ACTN4 located 445 bp away from the
gene start, and one in the intron of KCNJ11. They were
found in tracks unrelated or vaguely related to the phenotype
of the disorder caused by the mutation, e.g., HBA2 enhancer
overlapped only the stomach accessible chromatin track from
ENCODE, and the ACTN4 promoter causing focal segmental
glomerulosclerosis was found in ENCODE TF-binding site tracks
of erythroblasts, liver, gastroesophageal sphincter, and accessible
chromatin in uterus.

Breakdown of the regulatory categories showed a markable
difference in sensitivity between the regulators proximal to
transcription start site (promoters; recall of 96.8% in single-
tissue tests) and those that were further away, such as distal and
intragenic regulators (recall of 69.2 and 71.4%, respectively). In
contrast, the difference in the median specificity for the single-
tissue analysis was marginal (specificity = 91.6–93.8%).

To present the use of Remus in a specific case, we chose
an example of monogenic diabetes of the young (MODY), a
rare congenital type of diabetes responsible for 1–4% of the
diabetes worldwide (Sztromwasser et al., 2019). MODY is caused
by malfunctioning beta cells of the pancreas, and several genes
have been involved in the pathogenesis of the disease. One
of the genes is BLK, for which an enhancer located 19.7 kb
upstream of the gene has also been implicated in the pathogenesis
(Borowiec et al., 2009). To contrast Remus’ tissue-specific search

with an unspecific screen for regulatory elements, we performed
two analyses. Firstly, we queried regulators active in all tissues
and located up to 50 kb upstream and downstream of BLK’s
transcription start site. In this analysis, Remus identified 89
regulatory regions covering a total of 87.2 kb. In the second
analysis, we tried to use the cell types affected by MODY,
and since pancreatic beta cell tracks were not available, we
used pancreas as the target tissue. An equally parameterized
search restricted to regulators active in the pancreas resulted in
nine regulatory regions covering 4.7 kb, which corresponded to
5.3% of the regions resulting from the tissue-unselected search.
Reduction in the span of the considered regulatory region should
translate directly into a lower number of regulatory variant
candidates. To confirm, this we looked at a set of 10 whole-
genome samples, where we observed a drop in the number of
candidate regulatory single nucleotide variant (SNV) from 204–
292 to 10–14 per sample, illustrating that the decrease in the
number of regulatory variants is proportional to the reduction in
the span of regulatory regions.

DISCUSSION

In this work we present Remus, a new web server that
integrates multiple regulatory datasets from several sources
to facilitate search for regulatory variants with a putative
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TABLE 1 | Sensitivity and specificity tested on 146 regulatory mutations in 68 monogenic disorders.

Single tissue Multiple tissues Unselected

Count Size (kb) Specificity (%) Sensitivity Count Size (kb) Specificity (%) Identified Count Size (kb) Identified

Min 1 0.1 63.4 33 17.7 56.6 645 370.7

Distal regulators Mean 135 48.2 91.6 18/26 334 105.6 82.1 20/26 1237 554.7 23/26

Median 97 42.7 93.3 (69.2%) 272 93.1 80.9 (76.9%) 1268 561.6 (88.5%)

Max 909 175.7 100.0 1010 228.7 96.7 1676 801.8

Min 2 0.4 75.7 5 3.2 56.9 645 370.7

Intragenic regulators Mean 156 64.7 89.9 15/21 374 143.1 77.2 19/21 1,237 554.7 20/21

Median 88 40.6 93.8 (71.4%) 406 148.2 75.9 (90.5%) 1,268 561.6 (95.2%)

Max 796 170.3 99.9 874 296.5 99.5 1,676 801.8

Min 2 0.7 63.4 26 17.4 56.6 748 373.6

Promoters Mean 138 56.9 89.8 30/31 269 99.8 82.8 31/31 1,267 554.6 31/31

Median 98 47.0 91.6 (96.8%) 210 92.8 86.8 (100%) 1,268 534.7 (100%)

Max 909 175.7 99.9 1,010 240.9 97.9 1,676 826.3

Overall Median 98 44.2 92.73 63/78 (80.7%) 254 98.4 82.49 70/78 (89.7%) 1,265 561.6 74/78 (94.9%)

Analyses for single target tissue and multiple target tissues are contrasted with the control (tissue-unselected) search. Mutation categories are broken down into mutations of promoters, intragenic regulators, and distal
regulators (see “Materials and Methods” section). Specificity of the search was measured as the fraction of the tissue-unselected result excluded by performing a tissue-specific query.
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role in monogenic disorder pathogenesis. Using a simple
user interface, the tool enables tissue-specific queries across
a range of regulatory element types: promoters, enhancers,
transcription factor binding sites, as well as miRNA–gene
interactions. Aggregation and processing of regulatory data
allowed us to compare the datasets and identify differences
stemming from the experimental techniques used to obtain
them. For instance, the FANTOM datasets are based on CAGE-
seq data, where a sharp signal spanning a few tens of base
pairs represents a transcription initiation event (Kodzius et al.,
2006). Promoter regions obtained from CAGE peaks are thus
narrow and located precisely at transcription start sites. In
contrast, SCREEN promoters were mapped by overlapping open
chromatin regions (DNase-seq footprinting) located upstream
of annotated genes, with histone modifications promoting
transcription (ChIP-seq) (The Encode Project Consortium,
2012). DNase footprints are wider than CAGE-seq peaks and,
despite being methylated, may not necessarily be actively
transcribed, which explains the modest overlap between the two
datasets (Supplementary Figure 4).

Similar differences stemming from experimental techniques
can be observed for the enhancer and TF-binding datasets
(Supplementary Figure 3). FANTOM enhancers mapped by
CAGE-seq are transcribed enhancers—a subset of all active
enhancers in a cell (Andersson et al., 2014). This explains
their small count when compared to the other two enhancer
datasets. SCREEN enhancers, similarly to SCREEN promoters,
are based on open chromatin regions with methylation signal-
promoting activity. In contrast, the ENCODE TF-binding
tracks obtained in ChIP-seq experiments represent genome-
wide footprints of TFs (including CTCF repressor), a wide
set of regulators that both promote and repress gene activity
(Supplementary Figure 4).

The diversity of the experimental techniques represented
in the regulatory datasets available in Remus facilitates
tuning the sensitivity and specificity of the search. By
using only the FANTOM data, the user gets more sparse
regulatory regions with clear evidence of RNA polymerase
binding. Including enhancer, TF-binding datasets, and
open chromatin regions gradually expands the search
area, likely increasing the rate of regulatory elements with
weaker impacts on gene expression. Further sensitivity and
specificity adjustment can be made on the tissue level—the
search protocol allows querying regulators by activity in
any or all tissues in the user-specified set of tissues relevant
for the phenotype.

The option of tuning sensitivity by modifying the set of
target tissues was illustrated in the experiment that evaluated
the efficacy of Remus. In a strict single-tissue search, Remus
identified over 80% of regulators with a role in the disease,
while the span of considered loci was decreased over 10-
fold (92% specificity). A permissive multi-tissue query resulted
in, on average, less than 20% of all the regulators in the
proximity of the target genes and was able to identify causative
regulators in all but four cases present in the datasets. This
demonstrated that a targeted search for regulatory variants
can be sensitive and at the same time yield comprehensible

numbers of candidate mutations for evaluation. Noteworthy is
that variants in the core promoter regions were identified with
considerably higher sensitivity than distal regulators, especially
when a single tissue was used for searching. This is explained
by the fact that the core promoters are more likely to be active
and detected by Remus in several tissues, while distal regulators
act frequently in a tissue-specific manner. In consequence, the
search for promoter variants is less dependent on the choice of
tissue of interest.

The regulators missed by Remus’ tissue-focused search were
either not present in the regulatory datasets we aggregated or
were present in tracks not related to the tissues affected by
the mutation of the regulator. This highlights the dependence
of the results on the quality and extent of the underlying
data and indicates that, in isolated cases, known regulatory
regions can be missing from the genome-wide regulatory
tracks. Similarly, regulatory data may not be available for
specific tissues and developmental stages, as exemplified by the
PTF1A enhancer active in pancreatic progenitor cells (Weedon
et al., 2014) that was not present in any of the tracks
included in Remus.

Access to the regulatory data aggregated in Remus is
provided through a programmatic interface and a web interface,
where a user can easily query the regulatory elements and
filter variants. The latter, a seemingly minor feature, due to
the way it was implemented, does not require transferring
variant files over the Internet and can be safely used to filter
sensitive data in a user’s own browser. In a setting where
data privacy is a priority or a legal requirement (Shabani
and Borry, 2018), this lifts the access barriers for using the
public Remus instance. Although the functionality is limited
by a computer’s memory available to a web browser, typical
whole-genome variant files (VCF) for a single patient are well
within these limits.

As a web application, Remus lifts the access barriers for
its users—it does not require installation, downloading of
large datasets, or complex configuration. We found one other
software that offers a web-based identification of regulatory
variants with a putative role in disease. IPEV (Zhang et al.,
2019) classifies user-uploaded variants using a random forest
classifier trained on the DiseaseEnhancer (Zhang et al.,
2018) database. The tool is limited to enhancers and the
classification procedure requires 20 min to analyze 100 variants,
making it unsuitable for whole-genome analysis. Additionally,
the analysis involves uploading the variants, which may be
undesirable in case of sensitive patient data. Among other
web applications that support regulatory variant analysis, the
HEDD database offers rich functionality targeted mainly at
studying complex diseases and gene enhancer networks (Wang
et al., 2018). The database offers a subset of the regulatory
datasets available in Remus, but coordinates of the regulators
for target genes can be queried in individual datasets and
downloaded for local filtering of variants. Other resources, such
as GeneHancer (Fishilevich et al., 2017), SlideBase (Ienasescu
et al., 2016), and generic genome browsers (Kent et al.,
2002; Zerbino et al., 2018), are limited in the scope of
regulatory features and datasets provided and, offer only manual
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browsing of individual regulators or bulk data download for
programmatic use.

The approach implemented in Remus has several limitations.
One is certainly the availability of the regulatory data for specific
cell types and developmental stages. This shortcoming may be,
however, compensated in the future as more tissues and cell
types are profiled for regulatory regions. Another limitation is
the identification of the regulators only by proximity to the
TSS of the gene and, implicitly, tissue co-activity. It should be
expected that a portion of the identified regulatory regions have
no influence on the expression of the gene in question, but
regulate other genes in the region. This is a minor issue for
shortlisting candidate variants for a rare disease as these need to
be scrutinized with the help of other means, such as population
frequency or pathogenicity scores. As Remus is currently not
able to annotate or filter variants using these annotations, we
recommend pre-filtering the variants using other tools (Wang
et al., 2010; McLaren et al., 2016) in advance.

However, it is worth noting that the rate of such false-positive
hits could be reduced by linking distal regulators to genes by
tissue co-expression or expression quantitative trait loci (eQTLs).
Ideally, relevant regulators should be identified using tissue-
specific topologically associated domain (TAD) regions, but to
our knowledge, no large public datasets of this kind exist.

Application of the Remus methodology to studying the
pathogenesis of rare disorders could suggest that an alteration
in an actively used regulator of a disease-causing gene could be
equally deleterious as a mutation of the gene itself. As this can
be the case for dosage-sensitive genes, in many situations, other
(alternative) regulatory elements could be sufficient to maintain
gene expression on high-enough levels. Also, the assumption
that a phenotype affecting a particular organ is caused by a
mutation in a gene or a regulatory element active in that part of
the body fails to accommodate disorders where the effect of the
mutation is indirect, e.g., hyperammonemia, caused by mutations
in liver enzymes, manifests in urea accumulation in the blood
(Williams et al., 2018). And finally, only mutations of existing
regulatory elements can be identified by Remus. Gain-of-function
mutations resulting in new transcription factor binding sites or
promoters would be missed, unless they fall within an existing
regulatory region.

CONCLUSION

We developed Remus, a web server that facilitates targeted
screening for candidate regulatory variants in whole-genome
sequencing data. It integrates regulatory features from multiple
sources, allows tissue-specific queries in a simple web interface,
and provides a filtering functionality suited for sensitive data.
As shown on a set of known pathogenic regulatory variants, a
tissue-specific search reduced the number of candidate variants
by an order of magnitude while missing only a small fraction
of the causative variants. We expect that Remus will prove
useful when revisiting undiagnosed cases with available WGS
data, as well as in analyses of new patients without findings in
protein-coding genes. Expanding the variant search beyond the
coding sequence will likely yield candidate variants and may

improve the diagnostic rate of whole-genome sequencing in
monogenic disorders.
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Supplementary Figure 1 | Illustration of track collapsing and liftover. Original
tracks for the same tissue (biological replicates) and in the same genome build
were merged. Next, coordinates were lifted over to the other genome build (i.e.,
hg19 to hg38, and vice versa), and merging on the same tissues was
performed again.

Supplementary Figure 2 | Numbers and sizes of the enhancer/TFBS (A,B),
promoter (C,D), and accessible chromatin regions (E,F) originating from the
different datasets. In the figure the numbers are divided between tissue and
celltype tracks. When considered together, ENCODE TF-binding site and SCREEN
enhancer tracks contained on average 66 thousands and 64 thousands active
regions, while FANTOM enhancer tracks had on average 1.8 thousands such
regions. Sizes of individual enhancers and TF-binding sites were similar across the
datasets with majority spanning 250–500 bp. Promoter tracks from SCREEN and
FANTOM had on average 62 thousands and 12 thousands regions per tissue, and
average promoter sizes were 582 bp and 275 bp, respectively. Accessible
chromatin regions differed in average count per track (333 thousands for ENCODE
and 123 thousands for SCREEN) and average sizes of individual regions (176 bp
and 539 bp), but the average overall span was similar (60 and 66 Mb; not shown
in the figure). Points in the figure represent individual tissue/celltype tracks. The
boxes show the interquartile range (IQR) of the distribution, the middle bar
represents the median, and the whiskers extend to the min and max points within
1.5∗ IQR from quartiles Q1 and Q3, respectively.

Supplementary Figure 3 | Percentage gain in genomic span of the ENCODE
TFBS and accessible chromatin regions as a result of merging hg38 tracks with
the tracks available only in hg19 coordinate system (after liftover to hg38). Points
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in the figure represent individual tissue/celltype tracks. The boxes show the
interquartile range (IQR) of the distribution, the middle bar represents the median,
and the whiskers extend to the min and max points within 1.5∗ IQR from quartiles
Q1 and Q3, respectively.

Supplementary Figure 4 | Overlap between promoter tracks (A) and accessible
chromatin tracks (B) for the same tissue or celltype obtained using different
assays. FANTOM promoters originate from CAGE-seq, ENCODE accessible
chromatin from TF-ChIP seq, and SCREEN promoters and open chromatin from
DNase-seq experiments. The overlap for a single track was calculated as a
fraction of basepairs overlapping the same tissue/celltype track in the compared
dataset, e.g., a median of 83.4% of a FANTOM tissue promoter track overlaps its

equivalent in the SCREEN dataset, while a median of 8.7% of a SCREEN tissue
track is present in equivalent track from the FANTOM dataset.

Supplementary Table 1 | The list of files used to create Remus database.

Supplementary Table 2 | Manually curated list of gene-tissue pairs.

Supplementary Table 3 | Results of the evaluation experiment.

Supplementary Table 4 | Numbers of tissue and celltype tracks
available in Remus.

Supplementary Table 5 | Genomic span and specificity of tracks in the
available datasets.
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