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Abstract

Over the past decade, there has been an abundance of research on the difference

between age and age predicted using brain features, which is commonly referred to

as the “brain age gap.” Researchers have identified that the brain age gap, as a linear

transformation of an out-of-sample residual, is dependent on age. As such, any group

differences on the brain age gap could simply be due to group differences on age. To

mitigate the brain age gap's dependence on age, it has been proposed that age be

regressed out of the brain age gap. If this modified brain age gap is treated as a

corrected deviation from age, model accuracy statistics such as R2 will be artificially

inflated to the extent that it is highly improbable that an R2 value below .85 will be

obtained no matter the true model accuracy. Given the limitations of proposed brain

age analyses, further theoretical work is warranted to determine the best way to

quantify deviation from normality.
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1 | INTRODUCTION

Over the past decade, there has been an explosion of research devoted

to estimating individuals' ages using features derived from magnetic

resonance images (MRIs) of the brain (Franke & Gaser, 2019). From

studies using diffusion-weighted features to complex functional con-

nectivity metrics, the literature is extensive (Cole, 2020; Erus

et al., 2015; Irimia, Torgerson, Goh, & van Horn, 2015; Li,

Satterthwaite, & Fan, 2018; Lin et al., 2016). While age is easily mea-

sured through more conventional means, assessing the appearance of

the brain with respect to the natural patterns of development and aging

provides a framework for dimension reduction; from hundreds of thou-

sands to millions of MRI measurements, these models aim to provide

the age of the brain for each subject as a convenient summary measure.

The predicted age from these models has been coined “brain age,” and
the difference between age (sometimes referred to as “chronological
age”) and brain age is typically referred to as the “brain age gap” (BAG).
Predicted ages are calculated using the following fitted model:

Âi ¼ f̂ Bi1,Bi2,…,Bip

� �
,

where Âi is the predicted age of the ith subject, Bij is the jth brain fea-

ture for the ith subject, and f(�) is some function of the brain features.

BAG analysis was developed to address two major challenges in

neuroscience and medicine: high-dimensionality, and individual risk

assessment. Neuroimaging data are high dimensional, with the aver-

age T1-weighted scan containing approximately 1,200,000 voxels of

brain tissue (Cosgrove, Mazure, & Staley, 2007). Importantly, different

parts of the brain follow a variety of trajectories across the lifespan

(Coupé, Catheline, Lanuza, & Manj�on, 2017; Gennatas et al., 2017;

Kennedy et al., 2015). Therefore, in order to better predict age, it is

beneficial to use more brain features that complement each other

(Varikuti et al., 2018). The main motivation, however, behind BAG

analyses has been to develop a single number to represent an individ-

ual's deviation from some normal trajectory (de Lange & Cole, 2020).

This is an admirable goal, since deviating from a normal trajectory may

be indicative of or predictive of debilitating disorders (Marquand,

Rezek, Buitelaar, & Beckmann, 2016).

Researchers often test whether members of a group tend to have

their age overestimated compared to a control group, striving to assess

whether the disorder is associated with the brain aging prematurely or

lagging behind. For instance, Chung et al. (2018) asked if those at clinical

high risk for psychosis had a larger BAG than healthy controls, and Liem

et al. (2017) asked if the BAG differed across groups with varying

degrees of objective cognitive impairment. Typically, these models are

developed using regression or machine learning in one dataset, and are

evaluated in a test set. The cross-validation process involves dividing

the training set into k folds, estimating the model parameters on k�1

folds, applying the fitted model to the remaining fold, and repeating

until every participant in the training set has a predicted age. This proce-

dure helps avoid overfitting and reporting an inflated model accuracy

statistic. Finally, the trained model is applied on a separate test set to

predict age of each individual based on their brain features.

In this article, we further study the BAG with particular attention

to its interpretation and its limitations. The BAG is a linear transforma-

tion of an out-of-sample residual (subsequently referred to as a “pre-
diction error”). As such, it is dependent on the outcome variable

(i.e., age) (Le et al., 2018). Therefore, differences in the BAG between

groups may be due to differences in the brain, or due to differences in

the age distributions across groups (Le et al., 2018; Smith, Vidaurre,

Alfaro-Almagro, Nichols, & Miller, 2019). A recently proposed solution

to this problem involves regressing the BAG on age and taking the

residuals from this model as a modified BAG (MBAG) that is orthogo-

nal to age (Beheshti, Nugent, Potvin, & Duchesne, 2019; Chung

et al., 2018; Liang, Zhang, & Niu, 2019; Smith et al., 2019). We show

that this adjustment is problematic, because if this new prediction

error is treated as a deviation from a subject's age, which it is not,

metrics of model accuracy will be severely inflated.

2 | KNOWN LIMITATIONS OF THE BRAIN
AGE GAP

BAG analyses have historically failed to account for the fact that the

difference between age and predicted age varies as a function of age

(Beheshti, Maikusa, & Matsuda, 2018; Cole, Underwood, et al., 2017;

Franke, Hagemann, Schleussner, & Gaser, 2015; Gaser et al., 2013;

Liem et al., 2017; Nenadi�c, Dietzek, Langbein, Sauer, & Gaser, 2017;

Steffener et al., 2016); however, recently several groups have pointed

out that this assumption is false (Le et al., 2018; Liang et al., 2019;

Smith et al., 2019). Smith et al. (2019) pointed out an extreme case of

this error: when age has truly no relationship with brain features, the

difference between age and predicted age (“brain age gap”) is a linear

function of age, which implies that age explains 100% of the variance

in the BAG. Smith et al. (2019) note that any subsequent analyses

studying the relationship between this gap and other metrics is equiv-

alent to relating a linear transformation of age to other metrics.

To flesh out the gravity of this observation, consider an example:

If age does not vary as a function of any of the brain parameters, all

coefficients, aside from the intercept, will be close to zero with high

probability, and the intercept will be close to the mean age of the

training sample. Let Ai be the age of the ith subject, Bij the jth brain

feature for the ith subject, εi random error, and �A the mean age of the

training sample. The brain age model is thus:
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Ai ¼ β0þβ1Bi1þβ2Bi2þ…þβpBipþ εi ð1Þ

And the fitted values are:

Âi ¼ β̂0þ β̂1Bi1þ β̂2Bi2þ…þ β̂pBip ≈ �Aþ0�Bi1þ0�Bi2þ…þ0�Bip ¼ �A: ð2Þ

For simplicity, let us assume that the coefficients are estimated to

be exactly zero. Suppose the mean age of the training sample is

10 years old. Every person will have an estimated age of 10, so their

BAG, Âi�Ai , will be 10�Ai. Thus, the BAGs are as follows: 15-year-

olds have a BAG of �5, 10-year-olds have a BAG of 0, 5-year-olds

have a BAG of 5, and so forth. Older participants are estimated as

being younger than they are, and younger participants as older. The

BAG is a linear transformation of a residual (i.e., ε̂i ¼Ai� Âi ¼
� Âi�Ai

� �
), which by definition varies as a function of the outcome

variable, in this case age. This emphasizes the complexity of inter-

preting the BAG. Suppose two groups, A and B, are to be compared

with respect to the BAG. If the brain features are linearly independent

of age, then testing for differences in the BAG is equivalent to testing,

“Is the mean age of group A different from the mean age of group B?”
In cases where the brain features are linearly associated with age, the

group comparison of BAGs may be viewed as similar to asking “Con-
trolling for the brain features, is the mean age of group A different

from the mean age of group B?” As regression of out-of-sample resid-

uals (derived from a previous model) is not equivalent to multiple

regression, this description is not quite correct (Chen, Hribar, &

Melessa, 2018; Freckleton, 2002). Nonetheless, the interpretation of

the BAG remains difficult.

Whether or not the brain parameters under study are associated

with age, the predicted age for every subject will still be shrunk

toward the mean age of the training sample. This is referred to as

regression toward the mean, and was first documented by Sir Francis

Galton in 1886 (Bland & Altman, 1994). As Liang et al. (2019) noted,

this phenomenon is a common feature of many good models. There-

fore, older subjects will have negative BAG estimates on average sim-

ply because they are older, while younger subjects will have positive

estimates on average. Note that the example of brain features being

unable to predict age is unrealistic, and is used merely for illustration

purposes. Out of sample R2s typically fall between .4 and .9, and vary

by the brain features and age range utilized (Alam, Nakano, &

Kobashi, 2016; Aycheh et al., 2018; Beheshti et al., 2018; Brown

et al., 2012; Cole, Poudel, et al., 2017; Dean III et al., 2015; Dose-

nbach et al., 2010; Guggenmos et al., 2017; Kiehl et al., 2018; Kwak,

Kim, Chey, & Youm, 2018; Lancaster, Lorenz, Leech, & Cole, 2018;

Pardoe et al., 2017; Richard et al., 2018; Rudolph et al., 2017;

Steffener et al., 2016).

It is important to note that regression toward the mean is not a

failure, but a feature, of regression and related methods. If there is

any randomness in a process, observations will tend toward the mean

of the outcome variable rather than remain as extreme as they were

upon initial sampling (Stigler, 1997). Regression toward the mean is a

feature of regression that is actively useful for prediction. Since age is

known with certainty, the notion of predicting it makes the

construction of a residual awkward because residuals are an estimate

of random error. Thus, as we continue to use age prediction as a

means to reduce dimensionality, it is important to understand the limi-

tations of using age as an outcome variable and subsequent associ-

ated analyses. Recognizing the dependence of the BAG on age,

researchers have begun to develop methods to mitigate the age

dependence of the BAG (Beheshti et al., 2019; Le et al., 2018; Smith

et al., 2019). However, these methods require careful theoretical con-

sideration as we demonstrate in the next section.

3 | RISKS OF USING AN MODIFIED BRAIN
AGE GAP

To mitigate the residuals' dependence on age, some researchers apply

the following algorithm (Beheshti et al., 2019; Chung et al., 2018;

Liang et al., 2019; Smith et al., 2019) (see the appendix for details on

Beheshti et al.'s (2019) method). First, a training sample is used to esti-

mate a mapping f(�) from brain features to age. Then, for a left out

subject i with brain data Bi1, Bi2, …, Bip, the predicted age (“brain age”)
is estimated as Âi:

Âi ¼ f̂ Bi1,Bi2,…,Bip

� �
: ð3Þ

Then the ith subject's BAG is

BAGi ¼ Âi�Ai: ð4Þ

Recognizing the BAG's dependence on age, the researcher poses a lin-

ear model of the BAG on age:

BAGi ¼ αþ γAiþδi ð5Þ

where estimated parameters α̂ and γ̂ are found from a regression using

training data, and δi is random error. Thus, the effect of age is

removed, producing the MBAG:

MBAGi ¼ δ̂i ¼BAGi� α̂þ γ̂Aið Þ, ð6Þ

which, as the prediction error from model (5), is approximately

uncorrelated with age (only exactly uncorrelated if test data is used to

estimate α and γ). Because the MBAG has been interpreted as a

corrected residual, the MBAG is added to (or subtracted from; equiva-

lent in correlation, see Supplement) age. This new variable is then

referred to as the corrected predicted age:

Â
M

i ¼AiþMBAGi ¼ Âþ α̂þ γ̂Ai: ð7Þ

Because the researcher perceives this predicted age as corrected, they

correlate it with age to assess their model's accuracy in predicting age.

We will refer to Â
M

i as the “modified predicted age” and will show

below why this age estimation is flawed.
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The MBAG is by no means a more accurate measure of an out-

of-sample residual, or prediction error (i.e., the “brain age gap”). The
BAG itself is more dependent on age the less the brain features are

associated with age. Again, consider the extreme case where age is

independent of the brain features. Then, the BAG is completely deter-

mined by age, as explained in the previous section. If the MBAG is

treated as an estimate of the deviation from age, the reported model

accuracy (e.g., Corr Ai, Â
M

i

� �2
¼R2 ) will always be inflated relative to

the true model accuracy, and often drastically so (see Table 1 for

details on papers that have reported inflated model accuracy statis-

tics). When age has no true dependence on the brain features, the

population covariance between age and predicted age, Âi , is zero.

However, when the MBAG is treated as the deviation from age, Ai+

MBAGi, age and modified predicted age, Â
M
i , have an approximately

perfect correlation of 1.

In fact, the inflated correlation can be directly computed as a

function of the sample estimates of the covariance between age and

predicted age, the variance of age, and the variance of predicted age

(see Supplement for derivations):

Corr A, Â
M

� �
¼ �γ̂Var Að ÞþCovðA, ÂÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Að Þ� VarðÂÞþ γ̂2Var Að Þ�2γ̂CovðA, ÂÞ
� �r

¼ 1þ 1

rAÂ� γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2 1� r2
AÂ

� �0
B@

1
CA

�1=2 ð8Þ

If α̂ and γ̂ are estimated in the test set, Equation (8) can be further

simplified:

Corrtest A, Â
M

� �
¼ 1þVar Að Þ

VarðÂÞ 1� r2
AÂ

� � !�1=2

: ð9Þ

The equation can be simplified even further if Â is a linear estimator:

Corrtest,linear A, Â
M

� �
¼ 1þ r2

AÂ
1� r2

AÂ

� �� ��1=2
: ð10Þ

To illustrate the inflated correlation effect and confirm that Equa-

tion (8) is correct, a series of simulations were run to compare the

transformations that researchers describe performing to the above

equation using R version 3.6.2 (R Core Team, 2019). Training and test-

ing sets of 10,000 samples were simulated from each of a series of

bivariate normal distributions, where the true correlation between age

and the brain feature was varied between 0 and 1, with the correlation

between age and the modified predicted age, Â
M

i , in the test set being

the key outcome measure recorded. All model parameters were esti-

mated in the training set. Since there is only one brain feature, the

correlation between age and predicted age is the same as the correla-

tion between age and the brain feature. Results using a single brain

feature are detailed in Figure 1. A single brain feature was used so as

to have easy control over the correlation between age and predicted

age, but note that this result generalizes to any number of brain fea-

tures. For a set of correlations between 0 and 1, the correlation

between age and the modified predicted age, Â
M

i , was calculated using

the theoretical formulation in Equation (8) (black line), and the inflated

correlation was obtained using the previously described transforma-

tions (grey dots). The identity line is displayed to aid in visualizing that

the inflated correlation is larger than the true correlation. The simula-

tions confirmed that the theoretical formulation in Equation (8) is

equivalent to the transformations researchers have described. In addi-

tion, Figure 1 illustrates that the degree of inflation is much greater

for models that have lower values of CorrðA, ÂÞ than for models that

have higher values of CorrðA, ÂÞ.
Additional analyses were run using the Philadelphia Neu-

rodevelopmental Cohort (PNC) to illustrate the findings in brain MRI

data. Sample details, neuroimaging protocols, and processing can be

found in Calkins et al. (2015), Gur et al. (2021), and Satterthwaite

et al. (2014). Briefly, participants ages 8–22 were recruited through

their primary care providers in the Philadelphia area. After complete

description of the study, written informed consent was obtained from

participants aged ≥18, and written assent and parental permission were

TABLE 1 Papers reporting inflated model accuracy statistics

Paper Before modification After modification

Beheshti et al. (2019)
Corr A, Â

� �2
¼ :38 Corr A, Â

M
� �2

¼ :88

Chung et al. (2018)
Corr A, Â

� �2
¼ :66 Corr A, Â

M
� �2

¼ :84

Liang et al. (2019) MAE =1.57 MAE =1.32

Smith et al. (2019) Corr A, Â
� �

¼ :06 Corr A, Â
M

� �
¼ :99

Abbreviation: MAE, mean absolute error.

F IGURE 1 Inflated correlation, Corr A, Â
M

� �
, is a function of the

true correlation, CorrðA, ÂÞ. The inflated correlation is the correlation
between age and the modified predicted age. The true correlation is
the correlation between age and predicted age. To illustrate that the
series of transformations that researchers perform is equivalent to
Equation (8), correlations using both are plotted. rfunc is using
Equation (8), and rtrans is using the series of transformations. The
identity line is displayed for ease of comparing the axes
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obtained from children aged <18 and their parents/legal guardian. The

University of Pennsylvania and Children's Hospital of Philadelphia Insti-

tutional Review Boards approved all procedures. Subjects were

excluded for the purposes of these analyses if their cognitive assess-

ment was conducted more than a year before or after their neuroimag-

ing data was collected, or if their structural image did not pass stringent

quality assurance measures. T1-weighted images (voxel dimensions:

0.9375�0.9375�1) were obtained using a magnetization prepared,

rapid-acquisition gradient-echo sequence. Receive coil shading was

reduced by selecting the Siemens prescan normalize option, which is

based on a body coil reference scan. Then, 132 regional volume values

were extracted using the Advanced Normalization Tools software pack-

age (Tustison et al., 2013; Wang & Yushkevich, 2013), including cortical,

subcortical, white matter, ventricle, and cerebellar volumes.

Elastic net models to predict age were built on youths ages 8–22

without a history of mental illness (“typically developing”).

Hyperparameters were chosen using repeated five-fold cross-

validation on the typically developing youth as implemented in the

“caret” package, version 6.0-86 (Kuhn, 2012). Then, a linear regres-

sion of the BAG on age was fit in the typically developing subjects

(N = 317). Using the fitted values for the parameters from these

models, the transformations previously described were applied to

youth who met screening criteria for lifetime instance of a mental ill-

ness (N = 862). This real data example confirmed the theoretical and

simulation findings (see Figure 2). Prior to any modification, the corre-

lation between age (A) and predicted age (Â ) was .77. After applying

the modifications, the correlation became .88. There were no differ-

ences between the typically developing youth and youth with a his-

tory of mental illness on age (t = �1.05, p = 0.29), the BAG

(t = 0.72, p = 0.47), or the MBAG (t = 0.09, p = 0.39). Age and per-

formance on the complex cognition tasks were highly associated

(r = 0.54, p< .0001). After regressing the brain features out of age and

F IGURE 2 The inflated correlation finding was replicated in the Philadelphia Neurodevelopmental Cohort. Plotted are values for age (A),
predicted age (Â), the brain age gap (BAG), the modified BAG (MBAG) and the modified predicted age (Â

M
) in the subset of participants who met

screening criteria for an instance of mental illness in their lifetime. Panel (a) displayed the correlation between age and predicted age; Panel (b) the
correlation between age and the brain age gap; Panel (c) the correlation between age and the modified brain age gap; and Panel (d) the correlation
between age and the modified predicted age. The identity line is displayed in Panels (a) and (d)

4096 BUTLER ET AL.



multiplying by negative one—or constructing the BAG—this associa-

tion weakened (r = � .30, p< .0001). The MBAG and performance on

the complex cognition tasks were not associated (r = � .01, p = 0.71).

These results indicate that the association between cognition and the

BAG are driven by the association between age and cognitive perfor-

mance. As such, it is critical that readers of past literature note

whether or not age was controlled for when testing for effects on the

BAG, as this has not always been common practice (e.g., Beheshti

et al., 2018; Cole, Underwood, et al., 2017; Franke et al., 2015; Gaser

et al., 2013; Liem et al., 2017; Nenadi�c et al., 2017; Steffener

et al., 2016).

Other common methods for addressing the fact that the BAG is

correlated with age include scaling the predicted age by the slope and

intercept from the regression of predicted age on age (de Lange &

Cole, 2020), and including age as a covariate when testing for group

differences on the BAG (Le et al., 2018). de Lange and Cole (2020)

and Cole et al. (2018) suggest fitting the following regression:

Âi ¼ λþθAiþηi, ð11Þ

where θ is the coefficient for age, λ is the intercept, ηi is random error,

and predicted age (Â) is treated as a random variable. Then, they cal-

culate a revised predicted age (Â
R
) as follows:

Â
R

i ¼
Âi�λ

θ
: ð12Þ

As de Lange and Cole (2020) demonstrate, this results in a revised

predicted age that is as exactly correlated with age as the original

predicted age. This is the case because correlations are invariant to

linear transformations. Cole et al. (2018) go on to calculate the revised

BAG as follows (though this is not stated explicitly in the manuscripts,

it can be inferred from how they define brain-PAD, i.e., the BAG):

RBAGi ¼ Â
R
i �Ai: ð13Þ

This results in a revised BAG that is uncorrelated with age. In the

PNC, the correlation between age and both the predicted age (Â) and

the revised predicted age (Â
R
) in the group of youth with mental ill-

ness was 0.77. The correlation between the revised BAG and age was

�0.08. Note that it is not exactly zero because the parameters in

Equation (11) were estimated in the typically developing youth.

Le et al. (2018) suggest either testing for group differences on the

MBAG, or preferably controlling for age when testing for group differ-

ences on the BAG. The latter approach is not susceptible to

researchers misinterpreting the reduced variability of the MBAG as an

improvement in prediction accuracy because the MBAG is never cal-

culated. In the PNC, controlling for age results in a nonsignificant rela-

tionship between the BAG and performance on the complex cognition

tasks (t = 1.066, p = 0.29), similar to the result obtained from testing

for a correlation between the MBAG and cognition. While the trans-

formations and analyses in both Cole et al. (2018) and Le et al. (2018)

are not susceptible to being misinterpreted as producing an improve-

ment in model accuracy, there is still much work to be done to deter-

mine whether either speaks to advanced or delayed development.

4 | CONCLUSION

We have shown that a modified predicted age (“brain age”) based on a

regression adjustment of the BAG results in a correlation between the

modified predicted age and age never falling much below 0.85 regard-

less of the original predicted age and age correlation. Further, the inter-

pretability of the modified brain age gap (MBAG) itself is limited by the

fact that it is a prediction error from a regression to remove the effects

of age from a residual obtained through a regression to predict age. By

virtue of these limitations, we suggest that the modified version may

not provide useful information about precocity or delay in brain devel-

opment. In light of this, as well as the complexities associated with

interpretations of the BAG and its dependence on age, we suggest that

further methodological and theoretical work is warranted.

Many other transformations have been developed to mitigate the

downstream effects of BAG's dependence on age (de Lange &

Cole, 2020). Some are not susceptible to the inflated correlation issue

described in this work. Methods include scaling the predicted age by

the slope and intercept from the regression of predicted age on age

(see equation (5) in de Lange and Cole (2020)), and including age as a

covariate when testing for group differences in BAG (Le et al., 2018).

The former results in a new BAG estimate that is uncorrelated with

age, and the latter ensures that any group differences found on the

BAG will be linearly independent of age. More fundamentally, though,

the need for age-correction in BAG comparisons highlights the ques-

tion under study and the methodology employed. For example, con-

trolling for age when testing for group differences on an in-sample

estimated BAG is the two-step regression equivalent of including age

as a covariate in a multiple regression with brain features predicting

age. This inherent circularity is troublesome and emphasizes the need

for methods that are designed to directly answer questions about sim-

ilarity between brains of different age groups and disease states.
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APPENDIX

All code can be found in https://github.com/PennBBL/brainAgeGap

Mistake.

Beheshti et al. correlation

Beheshti et al. (2019) suggest subtracting α̂þ γ̂Ai from Âi , and calling

this new value the corrected predicted age:

Corr A, Â� α̂þ γ̂Að Þ
� �

¼Corr A, Â� γ̂A
� �

¼
Cov A, Â� γ̂A

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVar Â� γ̂A

� �r

¼ �γ̂Var Að ÞþCovðA, ÂÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ VarðÂÞþ γ̂2Var Að Þ�2γ̂CovðA, ÂÞ

� �r

¼Corr A, Â
M

� �
:

Therefore, their method is equivalent to Equation (8).

Adding and subtracting MBAG from age results in the same inflated

correlation with age

Modified predicted age has been calculated in the literature as either

MBAGi = Ai�BAGi or MBAGi = Ai+BAGi. In both cases, the main
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results from the paper apply since the correlation between age and

the modified predicted age using either formula is the same. We

have that

Corr A,A�MBAGð Þ¼ Var Að Þ�Cov A,MBAGð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ Var Að ÞþVar MBAGð Þ�2CovðA,MBAGÞð Þp

¼ Var Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ2þVar Að ÞVar MBAGð Þ

q

Corr A,AþMBAGð Þ¼ Var Að ÞþCov A,MBAGð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ Var Að ÞþVar MBAGð Þþ2CovðA,MBAGÞð Þp

¼ Var Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ2þVar Að ÞVar MBAGð Þ

q
¼Corr A,A�MBAGð Þ

which follows from the fact that MBAGi is a residual from regression

of BAGi on Ai and thus MBAGi is orthogonal to Ai or equivalently, Cov

(A,MBAG) = 0. Note that this result is only approximate when the

regression of BAG on age is done in the training set.

Derivation of Equation (8)

Corr A, Â
M

� �
¼Corr A,AþMBAGð Þ
¼Corr A,AþBAG� α̂þ γ̂Að Þð Þ
¼Corr A, Â� α̂� γ̂A

� �

¼
Cov A, Â� α̂� γ̂A

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVar Â� α̂� γ̂A

� �r , apply thedefinition of correlation

¼ �γ̂Var Að ÞþCovðA, ÂÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ VarðÂÞþ γ̂2Var Að Þ�2γ̂CovðA, ÂÞ

� �r

¼
�γ̂

Var Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVarðÂÞ

q þ CovðA, ÂÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVarðÂÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Var Að ÞVarðÂÞ Var Að Þ VarðÂÞþ γ̂2Var Að Þ�2γ̂CovðA, ÂÞ
� �h is

¼
�γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
þCorrðA, ÂÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ̂2

Var Að Þ
VarðÂÞ�2γ̂

CovðA, ÂÞ
VarðÂÞ

s

¼
�γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
þ rAÂffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2
�2γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
rAÂ

vuut

¼
�γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
þ rAÂffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2
�2γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
rAÂþ r2

AÂ
� r2

AÂ

vuut

¼
�γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
þ rAÂffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
AÂ

þ rAÂ� γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2r , factor thequadratic

¼ �γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s
þ rAÂ

 !�2
0
@

1
A

�1=2

1� r2
AÂ

þ rAÂ� γ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

s !2
0
@

1
A

�1=2

¼
1� r2

AÂ
þ rAÂ� γ̂

ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2
Þ

�γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q
þ rAÂ

� �2
0
B@

1
CA

�1=2

¼ 1þ 1

rAÂ� γ̂
ffiffiffiffiffiffiffiffiffiffi
Var Að Þ
VarðÂÞ

q� �2 1� r2
AÂ

� �0
B@

1
CA

�1=2

Derivations of Equations (9) and (10)

The following derivation involves the algebraic manipulation of the sam-

ple estimates and not expectations. Assuming that the linear regression

of BAG on age has been estimated with the testing data, then

MBAG¼BAG�HABAG

¼ Â�A�HA Â�A
� �

¼ Â�A�HAÂþHAA

¼ Â�HAÂ� A�HAAð Þ
¼ Â�HAÂ

¼RAÂ

where HA = A(ATA)�1AT is the hat matrix for the regression on age,

A = [1A], and RA = I�HA is the corresponding residual forming matrix.

We first note that

Cov A, Â
M

� �
¼Cov A,AþMBAGð Þ

¼Cov A,AþRAÂ
� �

¼Var Að ÞþCov A,RAÂ
� �

¼Var Að Þ
where the last equality holds due to the orthogonality of A and RA.

Then, consider:

Var Â
M

� �
¼Var AþMBAGð Þ

¼Var AþRAÂ
� �

¼VarðÂÞ Var Að Þ
VarðÂÞþ

Var RAÂ
� �

VarðÂÞ

0
@

1
A

¼VarðÂÞ Var Að Þ
VarðÂÞþ 1� r2

AÂ

� � !
:

Then, Equation (9) is found as
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Corr A, Â
M

� �
¼ Var Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Að ÞVar Â
M

� �r

¼ Var Að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVarðÂÞ Var Að Þ

VarðÂÞþ 1� r2
AÂ

� �" #vuut

¼ VarðÂÞ
Var Að Þ

Var Að Þ
VarðÂÞþ 1� r2

AÂ

� � !" #�1=2

¼ 1þVarðÂÞ
Var Að Þ 1� r2

AÂ

� � !�1=2

:

For insight on the VarðÂÞ=Var Að Þ term, note that shrinkage will

generally mean this term is less than one. Moreover, if Â were found

with a linear regression on the testing data, that is, Â¼X XTX
� ��1

XTA

where X are brain features, then this ratio is exactly the squared

correlation,

VarðÂÞ
Var Að Þ¼ r2

AÂ
,

producing Equation (10).

In this setting, when both brain age and MBAG are determined

from testing data using linear regression, the correlation of A and Â
M

can never fall below 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:52� 1�0:52ð Þp ≈0:9177. Of course, in practice,

held-out training data is used to learn the brain-age relationship,

so a regression prediction would instead have the form Â¼
X XT

inXin

� ��1
XT
inAin , where Xin and Ain are held-in training data, but

VarðÂÞ=Var Að Þ≈ r2
AÂ

still provides a useful starting point for exploring

the parameters in the expression for Corr A, Â
M

� �
.

Finally, note that the equality of VarðÂÞ=Var Að Þ and r2
AÂ

holds not

just for linear regression, but any linear estimator. Specifically, if there

exists an idempotent HX (HXHX ¼ I,HT
X ¼HX ) such that 1THX = 1 and

Â¼HXA, then

VarðÂÞ
Var Að Þ¼

Var HXAð Þ
Var Að Þ

¼
HXAð ÞT=N� 1THXA=N

� �2
Var Að Þ

¼
ATHXA=N� 1TA=N

� �
1THXA=N
� �

Var Að Þ
¼Cov A,HXAð Þ

Var Að Þ

¼CovðA, ÂÞ
Var Að Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðÂÞ
Var Að Þ

s
rAÂ:

And thus

VarðÂÞ
Var Að Þ¼ r2

AÂ
:
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