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INTRODUCTION

Most bacterial genomes encode multiple autoregulatory “poison-antidote” gene pairs called
Toxin-Antitoxin systems (TAs). They encode a “toxin” that inhibits metabolism and an “antitoxin”
that inhibits the activity of toxin protein. TAs are classified into several types, of which Type II TAs
are predominantly encoded by bacterial genomes and plasmids (Pandey and Gerdes, 2005). TAs
are implicated in a multitude of phenomena such as programmed cell death (PCD), persistence,
biofilms, etc., which are proposed to confer eco-evolutionary benefits to the bacteria including
pathogens (Hayes and Van Melderen, 2011; Ramisetty and Santhosh, 2017; Harms et al., 2018).

In the recent past, the regulatory mechanisms of TAs and the consequential phenotypes have
been debated (Engelberg-Kulka and Glaser, 1999; Hazan et al., 2004; Engelberg-Kulka et al., 2006;
Van Melderen, 2010; Hayes and Van Melderen, 2011; Yamaguchi and Inouye, 2011; Ramisetty
et al., 2015; Ramisetty and Santhosh, 2017; Harms et al., 2018; Fraikin et al., 2019). Drawing a
general model for the vast diversity of Type II TAs is indeed difficult. The variability in the operator
architecture, stoichiometries of TA complexes, the activators of TAs and the consequences are
diverse. Two models were proposed to explain TAs regulation: “Passive regulation” and “Active
regulation” (Gerdes et al., 2005). There is consensus that the concentration of antitoxin relative to
the toxin is crucial for the TAs regulation (Chan et al., 2016). But, is the reduction of antitoxin
concentration during stress caused by the decrease in antitoxin production or the increase in
antitoxin degradation? Here, I delineate the general components and regulators of a typical Type II
TAs and then share my opinions on the regulatory models that are specific to Type II TAs.

COMPONENTS AND REGULATORS OF TAs CIRCUITRY

(i) Components: The components of a typical Type II TAs constitute the TA mRNA, antitoxin
protein, toxin protein, and TA complex. A typical Type II TAmRNA consists of the two overlapping
open reading frames (ORFs); generally the antitoxin ORF is located downstream of the promoter
and upstream of the toxin ORF (Gerdes et al., 2005; Harms et al., 2018). Some Type II TAs
such as mqsRA have an alternate architecture: toxin ORF upstream of antitoxin ORF (Brown
et al., 2013). The antitoxin ORF has an optimal Shine-Dalgarno (SD) sequence and AUG start
codon while the toxin has suboptimal SD sequence, which is usually a part of the antitoxin ORF.
These observations indicate the “differential translation” of TA proteins—the number of antitoxin
proteins produced is higher than the number of toxin proteins produced per TA mRNA per unit
time. Typically, the antitoxins have loosely folded conformations, which make antitoxins more
vulnerable to proteolysis and hence a shorter half-life. On the other hand, toxins are globular and
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have relatively longer half-life. Hence, the antitoxins and toxins
are differentially degraded by the specific proteases, such as
Lon and ClpAP (Engelberg-Kulka et al., 1998; Christensen
et al., 2001, 2003; Diago-Navarro et al., 2013). The toxin
protein interferes in metabolism, via translational or replication
inhibition or by disrupting cell membrane integrity (Harms
et al., 2018). The antitoxin protein forms a complex with
toxin, thereby preventing the toxic effects. The TA complex
also functions as the repressor of TAs transcription. The TA
complex binds to the operator region upstream of TA genes
(negative autoregulation) through the DNA binding motif of
the antitoxin protein (Gerdes et al., 2005; Yamaguchi and
Inouye, 2011; Chan et al., 2016). Two factors contribute to the
dynamism in the binding of TA complex to the operator: (i)
the possibility of multiple stoichiometric TA complexes with
varying affinities to their respective operators (Monti et al.,
2007; Overgaard et al., 2009) and (ii) the architecture of the
operator (the number, the orientation and the spacing of the
binding sites; Bailey and Hayes, 2009). There seem to be at
least two stoichiometric forms of TA complexes; (i) one which
neutralizes toxin and (ii) another a transcriptional repressor.
The stoichiometry of the TA complex seems to be dependent
on toxin-antitoxin affinities and their relative concentrations.
Likely, high antitoxin/toxin ratio ([A]/[T]) favors the formation
of TAr (repressive complex) while moderate antitoxin/toxin ratio
favors the formation of TAn (neutralization complex that cannot
bind to the operator). Low antitoxin/toxin ratio discourages
TA complex formation. Therefore, the dynamics of the
concentration of antitoxin is the central variable in the regulation
of TAs.

(ii) Regulatory processes of the TA circuit: Cellular
metabolic processes, such as transcription, RNA degradation,
translation and proteolysis, regulate the TAs genetic circuitry.
Transcription rate of TA operon is proportional to the
availability of free promoter, which in turn is dependent
on the TAr complex binding to the operator. Hence,
transcription and translation are the feeders of the TA
components. The RNases non-specifically degrade the TA
mRNAs. The dilution of TA components also happens due
to cell division, which is then replenished to the equilibrium
during each cell division. The TA proteins are degraded by
specific proteases (Lon protease). The antitoxin is rapidly
degraded compared to the toxin: the “differential proteolysis” of
TA proteins.

Of the above-mentioned processes, translation and proteolysis
of the antitoxins seem to be the key regulators of TAs
functioning. Two models were described, “Passive model” and
“Active model,” to explain the TAs regulation and function
in the general physiology of the bacteria (Gerdes et al.,
2005). The two models differ in the regulatory process that
causes a decrease in the relative antitoxin concentration during
stress. The “Passive model” is based on the suggestion by
Hanna Engelberg-Kulka’s group that the activation of TAs
is caused by the inhibition of the production of antitoxin
during stress (Sat et al., 2001). In the “Active regulation”
model, the rate of production of the antitoxin is considered
to be constant and the rate of proteolysis is thought to

be highly variable, i.e., stress triggers antitoxin degradation
(Christensen et al., 2003; Gerdes et al., 2005).

THE CONTROVERSIAL ACTIVE MODEL
AND THE ROLE OF INORGANIC
POLYPHOSPHATE

The Active model, proposed by “Kenn Gerdes” group, is
“attractive.” Response to stimuli is elicited in the form of
signal molecules which in turn regulate TAs followed by
activation of toxins and culmination in a phenotype (Figure 1A).
Since the discovery of relBE in the studies of stringent
response (Mosteller and Kwan, 1976), it was speculated that
TAs play a role in stringent response (Christensen and
Gerdes, 2004). During amino acid starvation, RelA produces
ppGpp, which in turn inhibits the exopolyphosphatase resulting
in the accumulation of inorganic polyphosphate (polyP), a
key modulator of Lon protease (Rao et al., 1998; Kuroda
et al., 2001). It was reported that polyP is essential for
the degradation of antitoxins and that the activated toxins
induced persistence, a non-inherited multidrug tolerance to
lethal doses (Maisonneuve et al., 2013).

Two key points in the Active model were challenged
(Osbourne et al., 2014; Ramisetty et al., 2016; Van Melderen
and Wood, 2017; Goormaghtigh et al., 2018):(i) the link
between polyP and degradation of antitoxins and (ii) induction
of persistence by the toxins. The chromosomal TA-mediated
persistence was an artifact due to an inadvertent prophage
integration within the mutant genome. The papers reporting
“evidence” for the active model have now been retracted
(Maisonneuve et al., 2018; Retraction, 2018) and follow up
studies with a new mutant strain (deleted for ten Type II
TAs) ruled out the role of chromosomal TAs in persistence
in E. coli (Harms et al., 2017; Goormaghtigh et al., 2018).
Unfortunately, the role of polyP in TAs regulation was
never addressed by the proponents in light of the retractions
(Maisonneuve et al., 2018). Does polyP modulate Lon protease to
degrade antitoxins? How probable is that all the 10 structurally
diverse antitoxins are degraded by Lon protease modulated
by polyP?

The Activemodel predicts that the regulation of TAs is bistable
meaning that the TA operon is either “ON” (toxin-dominant
state) or “OFF” (antitoxin-dominant state; Cataudella et al., 2013;
Fasani and Savageau, 2013). Hence, it is essential to address the
direct role of polyP or ppGpp in the regulation as mathematical
models are still based on the linear “Active regulation model”
(Tian et al., 2017). Firstly, ppGpp is not required for the
transcriptional activation of relBE, chpBS,mazEF, and yefM/yoeB
(Christensen et al., 2003; Ramisetty et al., 2016). There is
transcriptional upregulation as well as toxin dependent mRNA
cleavage in mutant strains deficient in accumulation of ppGpp
and/or polyP (Ramisetty et al., 2016). Hence, polyP is neither
involved in the transcriptional activation of yefM/yoeB operon
nor YoeB dependent target mRNA cleavage. Therefore, the
null hypothesis that polyP is not involved in the degradation
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FIGURE 1 | (A) Active model. Stress triggers the production of ppGpp, which in turn triggers the accumulation of inorganic polyphosphate (polyP) by inhibiting

Exopolyphosphatase (PPX). The accumulation of polyP is proposed to direct Lon protease to specifically target antitoxins thereby activating the TAs. The shaded part

represents the flaw in active model [adapted from (Ramisetty et al., 2016)]. There is no evidence to prove that polyP is essential for the Lon dependent degradation of

antitoxins. Rather, it was shown that polyP is not involved in the regulation of TAs. (B) Translation-responsive model. The concentration of the TA proteins is primarily

dependent on two factors; proteolysis by Lon (essential but constant) and translation (highly variable factor). The rate of translation dictates the Antitoxin concentration

which in turn influences the TA complex formation and consequently the repression or target inactivation. (C) The consequences or state of TAs regulation in response

to translation rate. The regulation of TAs ranges from repression (and neutralization of toxin) of the operator to inactivation of the targets; with multiple intermediate

states. Higher the translation rate, the higher is the transcriptional repression and lower target inactivation. Lower the translation, lower the transcriptional repression

and higher the target inactivation. In intermediate rates of translation, there is incomplete transcriptional repression and incomplete target inactivation.

of antitoxins is accepted, and the “Active regulation model”
is rejected.

THE TRANSLATION-RESPONSIVE MODEL

The concentration of relative antitoxin is paramount and is
influenced by the rate of production (translation) and the rate
of degradation (proteolysis). What is causal for the activation
of TAs regulation during stress; inhibition of translation or
enhancement of proteolysis? The rate of global translation is
highly variable. It is a function of the ATP/ADP ratio, amino acid
pool, charging of tRNA, production of rRNA, ribosomal proteins,
and the formation of functional ribosomes. The advantages of
switching off translation are conceivable; the conservation of
energy, amino acids, and redirection of translational machinery
to produce the stress proteome.

In contrast, the proteolysis is dependent on only two factors;
the energy required for proteolysis and the concentration
of active proteases available to degrade antitoxins. Upon
amino acid starvation, the depletion of charged tRNA causes

ribosomal stalling and followed by the activation of proteases
to degrade ribosomal proteins (Kuroda et al., 2001). Hence,
translational inhibition precedes proteolysis during conditions
like amino acid starvation. Hence, it is conceivable that TAs
are responsive to translational inhibition rather than the
proteolysis of antitoxin. Although I ascribe a lot of significance
on the rate of antitoxin production, it is important to note
that the proteolytic degradation of antitoxin is essential
but constant. For example, in a protease deficient strain
the regulation of TAs is “dead” (Christensen et al., 2003;
Ramisetty et al., 2016) as there is insignificant degradation of
the antitoxin resulting in the production of sufficient TAr and
hence constant repression of TA operon. The changes in the
transcription of TA operon, which represents the antitoxin/toxin
ratio, is a dynamic function of translation and hence this
model is referred to as the “Translation-responsive model”
(Figure 1B). In the translation-responsive model (based on
the “Passive model” Sat et al., 2001), the key regulator of the
antitoxins’ concentration is the rate of antitoxin production
(highly variable) while antitoxin proteolysis is essential
but constant.
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Experiments involving drastic and instantaneous inhibition
of translation, like treatment of exponentially growing E. coli
with high doses of serine hydroxamate or chloramphenicol,
ensure that there is no production of antitoxins but proteolysis
continues, and hence a dramatic increase in transcription is
observed over time (Christensen et al., 2001; Ramisetty et al.,
2016). Based on these observations of TAs transcription upon
induction of severe stress, several researchers attribute TAs as
bistable systems that are either “ON” (toxin-dominant state
or derepressed state) or “OFF” (antitoxin-dominant state or
repressed state). The Translation-responsive model predicts that
the TAs is rather analog and not be bistable. As opposed to
starvation experiments in which TA mRNA seems to accumulate
over time, stable maintenance of transcriptional upregulation
(∼3-fold higher transcription) indicates that the operator is
partially repressed. There are a few empirical evidences where an
intermediate state (higher than basal level but lower than outright
activation) of TAs transcription is observed. In heat shock (47◦C)
and oxygen deprivation experiments, a consistent three-fold
increase in the transcription rate of yefM/yoeB loci is maintained
throughout the experiment [see Figure 4 of (Ramisetty, 2015)].
These observations indicate that the regulation of yefM/yoeB
is not just an ON or OFF but has several intermediate states.
relBmutants (relB101) had intermediate transcription compared
to the wild type [see Figure 5B of (Bech et al., 1985)]. An
intermediate transcription was also observed in the relBE system
upon heat shock and glucose starvation [see Figure 3A of
(Christensen et al., 2001)]. Studies on relB101 (a single nucleotide
polymorphism resulting in A39T mutant of RelB), showed
that mutations within the TAs operon could affect the general
metabolism. In fact, it was shown that relB mutants are sensitive
to glucose starvation (Mosteller, 1978). Based on the translation-
responsive model we could predict that mutations within the
operator, antitoxin gene or toxin gene which may interfere in the
antitoxin dimerization, antitoxin interaction with the operator,
antitoxin interaction with the toxin, or increase the antitoxins’
susceptibility for proteolysis could have drastic effects.

The rate of global translation would determine the
concentrations of each component (TA proteins and mRNA).
The concentration of the components and the consequent
transcriptional repression or target inactivation could be
envisioned as a chemical reaction (Figure 1C). When the
translation rate is high, the equilibrium is toward effective
TA operon repression (OFF state). When the translation rate
is low, the equilibrium is toward target inactivation (ON
state). In suboptimal conditions, where translation rate is an
intermediate state, the repression is incomplete, and there is
also a possibility of target inactivation (intermediate state).
Alternately, slow-growing pathogenic bacteria (likely to have
lower translations rate) such as Mycobacterium tuberculosis
would be ideal to understand the TAs regulation and the
multiplicity of TAs on the general metabolism. The phenotypic
heterogeneity in a bacterial population could imply that
the translation rates in different bacteria could be different,

resulting in a concomitant difference in the TAs expression
and phenotypes.

Studies by various groups on different TAs in different
model bacteria resulted in the implication of TAs in numerous
phenomena such as bacterial programmed cell death, persistence
and biofilm formation. However, most of these observations are
contended with counter-evidence and debated (Harms et al.,
2017; Ramisetty and Santhosh, 2017; Fraikin et al., 2019, 2020).
One crucial problem is the lack of complete insights into the TAs
regulation. Hence, it is imperative to understand the intricacies
of TAs regulation. Further exploration is required to estimate the
concentrations of each component at different metabolic states
and contexts.

CONCLUSIONS

It could be ambitious to provide one single model for diverse
and abundant TAs (Van Melderen and Wood, 2017). The
proposed Translation-responsive model is based on the fact
that TAs are horizontally transferring genes, which meant that
their expression on plasmids and different bacterial genomes
must be dependent on general factors such as translation and
proteolysis. However, there could be additional factors in the
regulation due to proximity of binding of other regulators
(other than TA complex) (Uppal and Jawali, 2016) and cross-
activation of TAs (Kasari et al., 2013). At the state of current
information, the active model of TAs regulation is refuted. The
key aspects of the translation-responsive model of Type II TAs
regulation are (i) the differential translation and differential
proteolysis rates of TA proteins, (ii) antitoxin concentration
is highly variable, (iii) translational machinery is the critical
regulator, (iv) proteolytic degradation is essential but relatively
constant and (v) the TA operon repression by the TA complex
is dynamic with the possibility of intermediate states of
expression. This model could be applicable to other types of
TAs (irrespective of the toxin targets) as long as the principal
regulator of the system is under the control of translation.
Based on the Translation-responsive model, the physiological
significance of TAs could be in natural conditions (suboptimal
relative to laboratory conditions) wherein the TA proteins
are likely to be in higher concentration or toxins could be
relatively active.
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