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A B S T R A C T   

To precisely identify multi-dimensional spatiotemporal rain-making parameters, generate an 
approximate Hessian matrix, and solve the nonlinear ill-posed problem, this study uses composite 
logical tangent hyperbolic functions to construct the rain-generating simulation model as 
nonlinear algebraic equations with designed key–lock quasi-Newton optimization for deriving 
multi-order objective functional derivatives for rainstorm causal decomposition into advanced 
functional, analytical solution (lock) and Newton’s conditional constraints. Specifically, the rank- 
two approximate structure of the Levenberg–Marquardt and Broyden–Fletcher–Goldfarb–Shanno 
quasi-Newton algorithms are modified as the symmetric rank-four structure to efficiently calcu-
late a positive definite stable Hessian and solve the constrained nonlinear rain-making threshold. 
The model projects various rain-making factors into multi-rank loading scores, characterizing 
rain-generating mechanisms and causal components as associated DNAs. To accelerate/modify 
directional convergence, avoid local minimum, and detect global optimum, the devised vector-
ized limited switchable step sizes are optimized using advanced double-bracketing approaches 
combined with candidate parameters’ correction vectors (key) and referenced step-size distri-
butions solved by Newton’s constrained analytical solution to reduce heterogeneous differences 
and eliminate the conventional overestimated Hessian. The identified rain-making DNAs reveal 
that typhoons with similar DNAs move in similar directions. Specifically, rain-making DNAs in 
Taipei Category 1 were correlated with wind force/direction and cloud height along PCs 1, 3, 4, 
and 7, and those in Category 2 were correlated with cloud-cover distribution along PCs 1, 2, and 
5. The identified rain-making thresholds of typhoons with constant direction/structure showed a 
weaker steady state, whereas the unsteady rest produced multi-peak rainfall hydrographs. Rain 
evolution analysis reveals that cloudy rainbands, carried by the wind field, move along the 
Tamsui River valley when traveling between northeast and south-southeast of Taipei; converge 
with gradient and geostrophic winds when traveling between east-northeast and southwest; 
merge with southwest monsoon when traveling between west-southwest and northeast of 
Kaohsiung.  

Abbreviations: BFGS, Broyden–Fletcher–Goldfarb–Shanno; PC, principle component; SVD, singular-value decomposition; LSE, least-squares er-
rors; LMA, Levenberg–Marquardt algorithm; LCH, low-layer cloud height; CH, ceiling height; LCC/TCC, low/total cloudy cover. 
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1. Introduction 

Typhoons and hurricanes are severe weather systems that bring rainstorms with strong destructive force. The processes of their 
formation, growth, and evolution are rather rapid. During a typhoon’s strong winds and torrential rains invading the biosphere due to 
short early-warning time, high atmospheric evolutional uncertainty, and complex atmosphere-ocean–terrain exchange mechanisms, 
the conventional hydrometeorological numerical/statistical models for typhoon rainfall-flood forecasting have limitations on the 
simulated accuracy of invasion time and disastrous area, leading to losses of life, property, industry, commerce, and the biological 
environment. This can be attributed to the simulation of rainfall spatiotemporal patterns without thoroughly considering various types 
of atmospheric rain-making causes and rain-generating mechanisms. In addition, because of global warming and climate change, the 
intensity of wind or rainfall during typhoons has significantly increased in recent years [1–5]. In this context, the rainstorm invasive 
area must be identified through qualitative and quantitative analyses of the typhoon’s rain-making causes to investigate the corre-
sponding evolutionary degree. The analyzed results must be incorporated into simulation models to improve forecasting accuracy and 
extend the time for disastrous early warning. 

Previous studies mainly focused on simulating typhoon moving track [6,7], wind field intensity [8–11], or storm surges [12–14]. 
However, these studies analyzed the interaction between the atmosphere and oceans to predict the evolving process of track, intensity, 
and surges, with less emphasis on the monsoon co-accompanying and terrain effect for further rainfall simulation. Due to the complex 
surface formations, the structure, intensity, and rainbands are primarily affected by topographic interactions following typhoon 
landfall; thus, the associated simulation ability for spatiotemporal changes is relatively reduced because the inter-evolutional 
mechanisms are less discussed. Previous methods for rainfall simulation during typhoons can generally be categorized into 
data-driven soft-computing approaches and atmospheric numerical simulations. Regarding data-driven approaches, Wei [15], Lin, 
Jhong [16], Yen, Liu [17], Wei [18], and Chen, Yeh [19] respectively applied an adaptive network-based fuzzy inference system with 
radar reflectivity, a multi-objective genetic algorithm with support vector machines, a deep echo state network, a radial basis function 
neural network with principal component analysis, and genetic programming combined with a multi-variable satellite dataset to 
predict typhoon precipitation. However, these methods’ effective forecasted lead time is limited to 6 h, and the number of effective 
prediction stations is restricted. 

Furthermore, regarding numerical methods, due to limitations of large-scale atmospheric, ocean, and terrain parametric/obser-
vational resolution, computing speed, and insufficient understanding of complex dynamic exchange mechanisms among different 
systems, accurate rainfall simulation have certain challenges [20]. Moreover, the following important findings have been obtained: (1) 
the structural distribution and transmission strength of a typhoon’s cloudy rainband affects its moving speed and rainfall pattern [21]; 
(2) incorporating typhoon circulation and monsoon’s co-accompanied effect into a simulation model can significantly improve the 
accuracy of rainfall forecast [22,23]; (3) when cloudy rainband reaches the windward side, torrential rains occur in the area due to the 
interaction between typhoon circulation and mountainous topography [24,25], with wind direction and speed being the major factors 
affecting rainfall pattern and intensity [26]; and (4) the spatiotemporal pattern of typhoon-induced heavy rain is dominated by moving 
track [27,28] and atmospheric environmental field [29]. Therefore, the success of typhoon rainfall modeling depends on whether 
diverse rain-making causal patterns are identified through spatiotemporal qualitative and quantitative analyses of various moving 
tracks. Subsequently, incorporating the information on high-resolution topography and cloud cover information can effectively 
improve torrential rainfall’s predictability [30,31]. 

In the hydrological statistical data-driven soft-computing (machine learning), some previous studies have applied artificial neural 
networks as tools to predict typhoon rainfall [15–18]. However, very few studies have developed pure mathematical derivation skills 
for an advanced multi-order optimized analytical solution based on the governing equations of the model for theoretical or meth-
odological research to describe and investigate rain-generating processes and evolutional mechanisms from atmospheric causes. 
Moreover, the selected optimizing algorithms for identifying multiple simulation parameters and optimization models largely affect 
prediction accuracy, computing performance, identified correctness, and occurrence of ill-posed problems. In machine-learning 
calculation, the logistic or tangent hyperbolic function is typically used descriptively because these functions fit well not only to 
the initial exponential rise and slow linear growth as saturation starts but also to eventual leveling off as the rainfall-generating 
environmental carrying capacity saturates. These logistic and tangent hyperbolic functions find applications in various fields, 
including ecology, biomathematics, chemistry, demography, geoscience, probability, and statistics. For instance, the logistic 
(hyperbolastic) function introduced by Pierre-Francois Verhulst has been devised as an exponential growth dynamic model in which 
the reproduced rate is proportional to the available resource capacity [32]. Subsequently, the equation was rediscovered for bacterial 
growth in broth and experimentally tested using a nonlinear parameterized estimation technique [33,34]. In addition, generalized 
logistic functions have been widely used to model COVID-19 infection trajectories [35]. Since environmental conditions affect 
rain-making carrying resource capacity, the causative model parameters are expected to vary over time. 

Parameter identification is an important step in simulation–optimization, and nonlinear programming has often been used as a 
model optimization tool. Newton’s method of nonlinear programming is a conventional identification algorithm that uses the initial 
predicted parameter sequence with the sensitivity coefficient (i.e., Jacobian) matrix to search for the root (optimal solution η*) of the 
first-order partial derivative of the objective function J′(η*) = 0. To improve the convergence speed of parameter identification, the 
Gauss–Newton method uses the second-order partial derivative composed of a square matrix of the objective function versus pa-
rameters (Hessian matrix) to describe the local curvature of parameter function and optimize parameters along a shorter and more 
direct path than Newton’s method [36]. However, calculating the inverse of a high-dimensional Hessian matrix is an expensive 
operation, which can be solved using various decomposition or approximate iterative methods. Moreover, the number of simulations 
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and memory required to calculate the Hessian matrix equals the squared number of parameters, which is infeasible for 
high-dimensional functions with multiple parameters [37]. Furthermore, if the Hessian is similar to the irreversible matrix, the 
inverted Hessian may be numerically unstable, and the solution may diverge. Therefore, certain quasi-Newton algorithms that 
construct the variant structure of modified gradient for Hessian approximation have been developed, including the Jacobian 
quasi-Newton, Levenberg–Marquardt algorithm (LMA), and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. However, the 
Jacobian quasi-Newton often overestimates the Hessian [37], which may not guarantee convergence and lead to an ill-posed problem; 
ultimately, the objective function reaches the minimum during optimization, but the identified parameter is not a correct solution. 
LMA adds a diagonal correction matrix that is more robust than the Jacobian quasi-Newton; however, the solution of LMA slowly 
converges to the global optimum only when the initial prediction is close to the global minimum [38]. The BFGS algorithm is only 
suitable for solving unconstrained optimization problems, and unless the function assumes quadratic Taylor expansion characteristics 
near the optimal position, Newton’s method and BFGS algorithm cannot guarantee convergence [37,39]. The primary reasons for the 
above shortcomings are the scalar nature of the step size of the Jacobian quasi-Newton, Marquardt damping factor of LMA, and the 
secant scale factor of the BFGS algorithm. Furthermore, the conventional quasi-Newtons minimize the objective function J =

f(ηk +αk · dk) through the scalar step size αk > 0. The search process first calculates the gradient descent direction dk of J to optimize 
how far the parameter vector ηk should move along this direction, thereby ensuring convergence [40]. If the selected computer 
program must repeatedly calculate the governing equations during optimization, time-saving advanced solving approaches for 
shrinking the step size interval are key to effective optimization. If the scalar step size is extended to the vector, the direction can be 
modified to approximate the Hessian better. 

The inverse problem includes ill-posed and well-posed. The difference is that ill-posed does not have a stable unique solution and 
does not satisfy that the solution continuously depends on the definite condition. The reason for this is the inverse problem in large- 
scale three-dimensional earth science problems; the number of observations is often less than that of identified parameters, causing the 
inverse problem is ill-posed. The solution is to constrain it with equations that conform to the laws and properties of geophysics, 
making it well-posed so that a correct and stable unique solution can be obtained. Most of the previously developed heuristic algo-
rithms optimized variables/parameters based on the mathematical approximation method, and the constraints that rarely considered 
sufficient physical conservation equations were insufficient. Hence, the purpose of this study is to use devised composite logical 
tangent hyperbolic functions as advanced nonlinear algebraic equations to construct a typhoon rain-generating simulation model, 
combined with a designed key–lock quasi-Newton approach to derive the analytical solution (lock) of the Hessian matrix, multi-order 
objective/mock functional derivatives and physical-based Newton’s conditional constraints for effectively identifying the causal rain- 
making quantity. Subsequently, we use vectorized limited switchable step size with the derived multi-order analytical solution to solve 
the rain-making spatiotemporal thresholds of various atmospheric factors and quantify the corresponding produced precipitation. The 
analytical derivation solved a few candidate solutions (keys) and referenced step size distribution to establish advanced functional 
multi-order exact double-bracketing approaches for vectorized step-size optimization configured with various parameters. The 
considered diverse rain-making variables for causal identification include (1) multi-layer cloudy cover/height; (2) monsoon co- 
accompanied effect; (3) terrain uplift effect; and (4) ceiling height, among others. In addition, this study specifically (1) identifies 
the rain-making DNAs of various typhoons and (2) uses fuzzy c-means clustering to characterize the spatiotemporal correlation 
structures of the identified rain-making causal compositions, moving paths, wind field structures, and cloudy rainbands. 

2. Material and methodology 

2.1. Overview 

This study uses composite logical tangent hyperbolic functions to construct the rain-generating simulation model during typhoons 
as advanced swarm nonlinear algebraic equations (described in section 2.5.1) with a designed key–lock quasi-Newton optimizing 
approach to (1) derive an advanced functional, analytical solution (lock) of the Hessian matrix and Newton’s conditional constraints of 
rainstorm causal decomposition (described in section 2.5.2); (2) solve the candidate solutions and referenced step size distribution 
satisfying Newton’s conditions using multi-order key–lock quasi-Newton analytical derivation, and (3) identify spatiotemporal rain- 
making threshold parameters configured with various typhoon atmospheric rain-making variables and the corresponding induced 
precipitation associated with vectorized limited switchable step size optimized using the proposed derivative-functionalized precise 
double-bracketing approach (described in section 2.6). Section 2.3 describes the established optimization model for rain-generating 
threshold identification, and section 2.4 discusses solving problems of traditional quasi-Newtons. Section 2.7 states the classifica-
tion principle of rainfall spatiotemporal causal characteristics using singular-value decomposed multi-rank loading scores under 
dimensionality reduction. Section 2.2 describes the research steps of the developed symmetric rank-four analytical key-lock quasi- 
Newton. 

2.2. Procedures 

This work comprises four parts: (1) derivation of the calculation mode of conventional quasi-Newton algorithms for solving the 
rain-making parameter optimization model; (2) establishment of the typhoon rain-generating simulation model and derivation of the 
analytical solution of the Hessian matrix and Newton’s conditional constraints; (3) calculation of parameter correction direction and 
optimization of vectorized step size using the key–lock quasi-Newton; and (4) estimation of rainfall multi-rank loading scores to 
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Fig. 1. Flowchart of the methodology.  
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analyze the spatiotemporal causal characteristic patterns associated with rain-making factors. The flowchart is shown in Fig. 1, and the 
steps are described below. 

Step 1-1. Establish the objective function and constraints of the optimization model for identifying rain-making causal parameters. 

Step 1–2. Derive the formulation of parameter optimization for the conventional quasi-Newton. 

Step 2. Use the designed key–lock quasi-Newton optimization to derive a symmetric rank-four multi-order derivative analytical 
solution of the objective function for estimating the parameter’s correction direction 

dk=
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(described in section 2.5). 

Step 2–1. Calculate rainfall-observed multi-rank loading scores using singular-value decomposition to characterize the rain-making 
causal component/mechanism. 

Step 2-2. Formulate the rain-generating simulation model Psim(ηk+1,χ) comprising swarm interactive logical tangent hyperbolic 
function as a nonlinear algebraic system, and subsequently perform Taylor expansion to approximate PTE

sim(ηk + Δηk,χ). 

Step 2–3. Derive the relationship between simulated precipitation Psim(Π(ηk), ⋅) and its derivative P′
sim. 

Step 2–4. Use Leibniz’s and chain rule to derive the advanced simulation function embedded in the objective function 
J(PTE

sim(ηk +Δηk,χ), Pobs) versus Δηk with a derivative of 0. 

Step 2–5. Compare architectural equation (3a) of the conventional quasi-Newton with the derived equation (22) of the key–lock 
quasi-Newton to obtain the advanced functional algebraic analytical solution of Hessian matrix Н(ηk, •) (lock) and Newton’s con-
straints, as expressed in equations (23)- (24). Subsequently, efficiently solve a few candidate solutions Δηk− (key) of parameter 
correction vectors and input Δηk− into Н(ηk,Δηk− ) to calculate a positive finite and numerically stable Hessian. 

step 2–6. Input Δηk− and Н(ηk, •) into equation (31) to estimate the referenced vectorized step size αk− distribution and the cor-
responding lower/upper bound [αk,κ

LB ,α
k,κ
UB], which meet Newton’s conditions. 

step 3. Optimize the vectorized step size αk+ ∈

[

αk+ ,κ
l

⃒
⃒
⃒
⃒

l = 1 ∼ L
κ = 1 ∼ Σ

]

by minimizing J(ηk +αk ∘dk) (described in section 2.6), and 
calculate the optimal correction vector Δηk+ using equation (31). 

step 3–1. Set the initial interval for the step size [αk,0
LB ,α

k,0
UB ] =

[
Min

{
αk− ∘

[
ι − 3(μ2)

1
2

]}
,Max

{
αk− ∘

[
ι + 3(μ2)

1
2

]}]
. 

step 3–2. Use the multi-order derivative functional precise double-position bracketing approach, i.e., the key–lock quasi-Newton- 
derived reference step size distribution αk− with vectorized Anderson–Björk/Illinois algorithm to optimize the shrinking vector and 
step size. 

Step 3-3. Project 11 types of atmospheric rain-making causal observations and optimized parameters to multiple characterized 
categories, combined with the swarm composite rain-generating function to simulate the rainfall spatiotemporal pattern. 

step 3–4. Calculate the bracketing midpoint step-size vector αk,κ
MP = [αk,κ

MP,l] with the maximum shrinkage rate and the same sign as 
J′(αk,κ

UB). Then, the new bracketing interval becomes [αk,κ+1
LB , αk,κ+1

UB ] = [αk,κ
LB , αk,κ

MP]. Let κ = κ + 1 and return to steps 3–2 until the 

bracketing interval 
⃦
⃦
⃦αk,κ+1

UB − αk,κ+1
LB

⃦
⃦
⃦ < tolerance. 

Step 3–5. Update ηk+1 = ηk − αk ∘ dk. Set k = k + 1 or parameter’s initial prediction η0 and return to steps 2–5 until the descending 
gradient of the objective function 

⃦
⃦∇f(ηk,αk)

⃦
⃦ and f(ηk + αk ∘dk) < tolerance. 

Step 4. Analyze the associated structural characteristics between rainfall patterns and various atmospheric–terrain–ocean factors 
using fuzzy c-means clustering. Estimate the spatiotemporal changes in rainfall intensity and the causal rain–generating patterns 
during typhoons. 

2.3. Establishment of an optimization model for identifying typhoon’s rain-generating parameters 

2.3.1. Objective function 
Conventional methods use a limited number of observations to optimize the spatiotemporal pattern of the parameter vector η. 

Considering that the sensitivity order of the major controlling factors affecting the magnitude of a typhoon’s rainfall differs largely, this 
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study uses the least-squares error (LSE) of the simulated and observed precipitation hyetographs (Psim
ts ,s and Pobs

ts ,s , respectively) as the 
objective function, as shown in equation (1), combined with the designed composite advanced rainfall simulation functions to 

Fig. 2. Schematic diagram of typhoon’s atmospheric rain-making variables, as measured by the Central Weather Bureau Observatory in Taiwan.  
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optimize the rain-generating threshold parameter η of various atmospheric rain-making factors. 

Minimize
η

J(η) =
[
Psim

t,s (η) − Pobs
t,s

]T[
Psim

t,s (η) − Pobs
t,s

]
=

=

∑S

s=1

∑T

t=1

(
Psim

t,s (η) − Pobs
t,s

)2
=
∑M

m=1

(
ϑsim

m

(
ηk) − ϑobs

m

)2
=
∑M

m=1
r2

m

(
ηk)

(1)  

where Psim
t,s (η) is the simulated precipitation and Pobs

t,s is the observed precipitation at the observation station s and time t according to 
the identified rain-generating threshold η. Equation (1) assumes that the atmospheric system has S number of surface observation 
stations and multiple rainfall time intervals (duration) T, which M = T× S. 

2.3.2. Decision variables and constraints for rain-making causal optimization 
The rain-making factorial decision variables measured by weather stations of the Central Weather Bureau of Taiwan are presented 

in Fig. 2, in which various spatiotemporal patterns were extracted from the Data Bank for Atmospheric & Hydrologic Research 
(https://dbar.pccu.edu.tw/). The considered candidate typhoon’s atmospheric rain-making factors include (1) the low-layer cloud 
height (LCH) hLC

t,s , (2) ceiling height (CH) hCCei
t,s , (3) low/total cloudy cover (LCC φLCC

t,s /TCC φTCC
t,s ), (4) atmospheric pressure (AP) ρAP

t,s , (5) 
monsoon co-accompanied effect, (6) topographic uplift effect, and (7) wind accelerator. The occurrence of monsoon convergent co- 
accompanied effect depends on the consistency between the typhoon’s maximum/average wind direction θMAWD

t,s and the mon-
soon’s wind direction φmon

t,s ; as such, in an area suffering the greater maximum/average wind speed νMAWS
t,s above a certain threshold, a 

more vigorous cloudy rainband is introduced by the co-accompanied effect [41–43]. When the average wind direction θAWD
t,s is facing 

the vertical direction of the mountainous windward slope φter
t,s , the transported cloudy rainband induces heavy rains on the observatory 

in the windward area, and the stronger average wind speed νAWS
t,s introduces more rainbands due to the terrain uplift effect [20,44,45]. 

Moreover, the stronger maximum/instantaneous wind speed νMIWS
t,s and the closer maximum/instantaneous wind direction θMIWD

t,s to the 
windward slope vertical direction φter

t,s or monsoon direction φmon
t,s bring a stronger driving force at the cloudy rainband transmitted by 

the increased gradient of wind speed [45,46]. 
Next, according to the typhoon’s windy–cloudy structure, we set the identified rain-generating threshold parameter vector η =

[ΠAP,VAWS,ΘAWD,VMAWS,ΘMAWD,VMIWS,ΘMIWD,HLC,ΦLCC,HCCei,ΦTCC], including measured air pressure (hPa) ΠAP =

{

ρAP
t,s

⃒
⃒
⃒
⃒
t = 1, ...,T
s = 1, ..., S

}

, 

average wind speed (m/s) VAWS =

{

νAWS
t,s

⃒
⃒
⃒
⃒
t = 1, ...,T
s = 1, ..., S

}

, the angle between average wind direction and mountainous vertical direction 

ΘAWD− ter =

{⃒
⃒
⃒θAWD

t,s − φter
t,s

⃒
⃒
⃒

⃒
⃒
⃒
⃒
t = 1, ...,T
s = 1, ..., S

}

, maximum average wind speed VMAWS = {νMAWS
t,s }, angle between the maximum average 

wind direction and monsoon direction ΘMAWD− mon = {

⃒
⃒
⃒θMAWD

t,s − φmon
t,s

⃒
⃒
⃒}, maximum instantaneous wind speed VMIWS = {νMIWS

t,s }, angle 

between the maximum instantaneous wind direction and monsoon/mountainous direction ΘMIWD =
{⃒
⃒
⃒θMIWD

t,s −
(

ω ·φmon
t,s +ϖ ·φter

t,s
ω+ϖ

)⃒
⃒
⃒

}
, low- 

layer cloud height (Km) HLC = {hLC
t,s }, low-layer cloud cover (10 components) ΦLCC = {φLCC

t,s }, ceiling height (Km) HCCei = {hCCei
t,s }, and 

total cloud cover (10 components) ΦTCC = {φTCC
t,s }, totaling 11 parameters (=N). The vector η contains L = T × S × N number of 

parameters. 
This optimization model contains the following constraints: (1) the spatiotemporal distribution of the water cycle between the 

typhoon’s rainbands, absorbed seawater, and rainfall should follow the conservation of mass and energy; and (2) the upper and lower 
bounds of cloudy structural and the wind-related rain-making threshold (e.g., cloud height/cover, ceiling height, wind speed, wind 
directional convergence angles) should conform to the on-site atmospheric–hydrological–topographic conditions. Typically, identi-
fying spatiotemporally distributed causal rain-making parameters under interdisciplinary exchange is a large-scale and highly non- 
linear optimization problem. 

2.4. Difficulties and problems of nonlinear simulation–optimization solving 

In nonlinear programming, Newton’s method attempts to find the root of J′ from the initial prediction η0 by constructing a sequence 
ηk, which converges to a certain parameter value η* under the condition that J′(η*) = 0. Here, η* is the stationary point of J, where the 
second-order Taylor expansion JT(η*) of the objective function J around ηk is shown in equation (2): 

JT
(
ηk+1)= JT

(
ηk +Δηk)≈ J

(
ηk)+ J′( ηk)T

·Δηk +
1
2
(
Δηk)TJ″( ηk) ·Δηk + HOT (2)  

Ideally, Δηk should be optimized such that ηk + Δηk is the stationary point of J. Then, using this Taylor expansion as an 
approximation, the root of the expanded derivative corresponding to Δηk can be solved as follows: 
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0=
d

dΔηk

(

J
(
ηk)+ J′( ηk)T

·Δηk +
1
2
(
Δηk)TJ″( ηk) ·Δηk

)

= J′( ηk)+ J″( ηk) ·Δηk (3a)  

⇒ Δηk = −
[
J″( ηk)]− 1J′( ηk) (3b)  

By replacing J′(ηk) with the gradient ∇J(ηk) and the reciprocal of the second-order derivative [J″(ηk)]
− 1 with the inverse of the 

Hessian matrix Н− 1(ηk), the above iterative method can be derived to multiple parameter dimensions, as shown in equation (4): 

ηk+1 =ηk − Н− 1( ηk)∇J
(
ηk), k ∈ N (4) 

If all second-order partial derivatives of J are present and are continuous in the functional domain, the Hessian matrix Н can be 
defined in equation (5): 

Н
(
ηk)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2J
∂η2

1

∂2J
∂η1∂η2

⋯
∂2J

∂η1∂ηL

∂2J
∂η2∂η1

∂2J
∂η2

2
⋯

∂2J
∂η2∂ηL

⋮ ⋮ ⋱ ⋮

∂2J
∂ηL∂η1

∂2J
∂ηL∂η2

⋯
∂2J
∂η2

L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5) 

At the local minimum of J, the Hessian matrix is positive and semi-definite. Each iteration of the Gauss–Newton method, JT(ηk), is 
approximated by a quadratic function around ηk using the scalar step size α ∈ (0, 1) to move toward the functional minimal value, as 
shown in equation (6). The Jacobian quasi-Newton uses the Jacobian matrix JD to iteratively approximate the Hessian matrix Н ≈

2JT
DJD, as shown in equation (6). LMA adds an identity matrix I to the Hessian matrix Н ≈ JT

DJD + λI and adjusts the scale ratio between 
iterations such that the incremental vector rotates toward the steepest slope, as shown in equation (6). Fletcher (1971) scaled gradient 
components according to the curvature (i.e., replaced the identity matrix with the diagonal matrix JT

DJD), which can avoid the slow 
convergence of small gradient direction, increase larger movement [37], and reduce the adverse effects of larger damping factor λ to 
solve the ill-posed problems, as shown in equation (6). The BFGS algorithm sets the searching direction dk = − Н− 1(ηk)∇J(ηk) ≈ −

A− 1(ηk)∇J(ηk) using the simulation solution of Newton’s equation to the unconstrained optimization problem, where A(ηk) is the 
approximate Hessian matrix, as shown in equation (6). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gauss − Newton : ηk+1 = ηk − αk[Н
(
ηk)J

(
ηk)]− 1

∇J
(
ηk), k ∈ N

Jacobian quasi − Newton : ηk+1 = ηk − αk[2JT
DJD
]− 1JT

Dr
(
ηk), k ∈ N

JT
D

(
ηk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ϑsim
1

∂η1

∂ϑsim
2

∂η1
⋯

∂ϑsim
m

∂η1
⋯

∂ϑsim
M

∂η1

⋮ ⋮ ⋮ ⋮

∂ϑsim
1

∂ηL

∂ϑsim
2

∂ηL
⋯

∂ϑsim
m

∂ηL
⋯

∂ϑsim
M

∂ηL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L×M

Levenberg − Marquardt

algorithm : ηk+1 = ηk −
[
JT

DJD + λI
]− 1JT

Dr
(
ηk), k ∈ N

Fletcher − modified LMA : ηk+1 = ηk −
[
JT

DJD + λdiag
(
JT

DJD
)]− 1JT

Dr
(
ηk), k ∈ N

BFGS quasi − Newton : ηk = ηk− 1 + A− 1( ηk) ·
[
∇J
(
ηk) − ∇J

(
ηk− 1)]

A(ηk) = A(ηk− 1)+ χkμk− 1( μk− 1)T
+ γkνk− 1( νk− 1)T

χk =
1

(
yk− 1)Tsk− 1

, γk = −
1

(
sk− 1)T

·A
(
ηk− 1) · sk− 1

, yk− 1 = ∇J
(
ηk) − ∇J

(
ηk− 1), sk− 1 = ηk − ηk− 1

(6)  

here JT
D(ηk) is the Jacobian sensitivity coefficient matrix of ϑsim

m , as defined in equation (6). In the BFGS algorithm, the Hessian 
approximate matrix A(ηk) must conform to symmetry and positive definiteness, in which χkμk− 1(μk− 1)

T and γkνk− 1(νk− 1)
T are both 

symmetric rank-one matrices and their sum is a rank-two updated matrix. 
The simulation time of a large-scale typhoon’s rain-generating model significantly increases as the number of atmospher-

ic–hydrogeographic parameters and controlled volumes increase. The multi-parameters of geomorphology, cloudy rainband, and wind 
field must be refined to imitate the complex rain-generating mechanism and precipitation. Therefore, direct calculation and storage of 
the complete Hessian matrix cannot be achieved, and the cost is very high. The Jacobian quasi-Newton often overestimates the 
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approximate state 
⃒
⃒
⃒rm

∂2rm
∂ηi∂ηj

⃒
⃒
⃒ ≪

⃒
⃒
⃒
∂rm
∂ηi

∂rm
∂ηj

⃒
⃒
⃒ and cannot guarantee its convergence [37]. In the case of multiple minima, LMA only converges 

to the global minimum when the initial prediction is close to the final solution [38], and its calculation speed is often slightly slower 
than that of the Jacobian quasi-Newton. The BFGS algorithm approximation must satisfy A(ηk+1) and curvature condition 
(sk− 1)

Tyk− 1 > 0 to be positive and definite. The reasons for the above shortcomings are the scalar properties of the step size of the 
Jacobian quasi-Newton αk, the damping factor λ of LMA, and the secant scale factors βk and γk of the BFGS algorithm. 

2.5. Rain-making causal analytical solving derivation of the hessian and Newton’s constraint 

2.5.1. Establishment of the rain-generating simulation model 
This study uses composite advanced atmospheric–hydrogeographic-related functions to design the typhoon’s rain-generating 

simulation model and embed it into the optimization model. First, the definite integral is extended to the designed multivariate 
rain-making causal composite function f(η) ∘ g(η), where g(η) is the unit rain-generating function and f(η) is the reactive scaling 
function under the interaction between atmospheric factors. Let the domain D of the decision variable η in the function f(η)∘ g(η)
conform to f ∘ g : D→R and consider the so-called half-open half-closed ϒ-dimensional rectangle area (ϒ ∈ N> 1), then the domain D 
can be divided into: 

D = C1 ∪ C2 ∪ ⋯ ∪ Ci ∪ ⋯ ∪ Cϒ =
[
ρAP

t,s , χAP
t,s

)
×
[
νAWS

t,s , χAWS
t,s

)
×
[⃒
⃒
⃒θAWD

t,s − φter
t,s

⃒
⃒
⃒,

⃒
⃒
⃒χAWD

t,s − φter
t,s

⃒
⃒
⃒

)
×

[

νMAWS
t,s , χMAWS

t,s

)

×

[⃒
⃒
⃒θMAWD

t,s − φmon
t,s

⃒
⃒
⃒,

⃒
⃒
⃒χMAWD

t,s − φmon
t,s

⃒
⃒
⃒

)

×

[

νMIWS
t,s , χMIWS

t,s

)

×

[⃒
⃒
⃒
⃒θ

MIWD
t,s −

(ω ·φmon
t,s + ϖ ·φter

t,s

ω + ϖ

)⃒
⃒
⃒
⃒,

⃒
⃒
⃒
⃒χ

MIWD
t,s −

(ω ·φmon
t,s + ϖ ·φter

t,s

ω + ϖ

)⃒
⃒
⃒
⃒

)

×

[

hLC
t,s , χLC

t,s

)

×

[

φLCC
t,s , χLCC

t,s

)

×

[

hCCei
t,s , χCCei

t,s

)

×

[

φTCC
t,s , χTCC

t,s

)

⊂Rϒ

(7) 

This study devises the three-variable (t, s, η) triple integral for the composite constant function f(η⋅,t,s) ∘ g(η⋅,t,s) = 1 between the 
above-curved surface to calculate the rainfall depth P(η⋅,t,s) at station s and time t while discretizing the multi-type rainfall causes η⋅,t,s to 
solve the multivariate functional definite integral. Since multiple integrals possess the properties of linearization, additivity, and 
monotonicity, among others, the definite integral of the Riemann integrable f(η) ∘ g(η) in the interval of D can be given by equation (7) 
using functional Riemann sum, as expressed in equation (8a). Considering the wind direction-related rain-making causes, this study 
uses an expanded multi-level modeling framework (i.e., hierarchical nonlinear mixed-effects model) with the designed composite 
growth functions, that is, the swarm logistic tangent hyperbolic function G(ζi

j, xi
j) associated with the modified Malthusian atmospheric 

inter-reactive scaler F(ζi
j, xi

j) to estimate the rain-generating trajectories from multiple causes/geneses η, in which the measured rain- 
making independent variable is converted to a hyperbolic angle, as shown in equation (8 b). In particular, the above calculations 
realize nonlinear/linear transformations by reducing/rotating the observed spatial(s)–temporal(t) variables χi

t,s and the rain-making 
threshold ηi,t,s to activate the unit rain-generating function, as shown in equations (10). The hyperbolic angle surrounding the map-
ping area associated with the designed superimposed-mixed linear-nonlinear composite function is used to simulate the complex, 
highly nonlinear rain-generating mechanism and approximate the high-order irregular objective functional solution space, as 
expressed in equation (9). 

P
(

η⋅,t,s,χ⋅
t,s

)
=

∫ t

t− ε1

∫ ψ1(s)

φ1(s)

∫ χAP
t,s

ρAP
t,s

[
f
(
η1,t,s

)
∘ g
(
η1,t,s

)]
dη1,t,sdsdt +

∫ t

t− ε2

∫ ψ2(s)

φ2(s)

∫ χAWS
t,s

νAWS
t,s

[
f
(
η2,t,s

)
∘ g
(
η2,t,s

)]
dη2,t,sdsdt  

+

∫ t

t− ε3

∫ ψ3(s)

φ3(s)

∫ |χAWD
t,s − φter

t,s |

|θAWD
t,s − φter

t,s |
f
(
η3,t,s

)
∘ g
(
η3,t,s

)
dη3,t,sdsdt +

∫ t

t− ε4

∫ ψ4(s)

φ4(s)

∫ χMAWS
t,s

νMAWS
t,s

f
(
η4,t,s

)
∘ g
(
η4,t,s

)
dη4,t,sdsdt+

∫ t

t− ε5

∫ ψ5(s)

φ5(s)

∫ |χMAWD
t,s − φmon

t,s |

|θMAWD
t,s − φmon

t,s |
f
(
η5,t,s

)
∘ g
(
η5,t,s

)
dη5,t,sdsdt+

∫ t

t− ε6

∫ ψ6(s)

φ6(s)

∫ χMIWS
t,s

νMIWS
t,s

f
(
η6,t,s

)
∘ g
(
η6,t,s

)
dη6,t,sdsdt+

∫ t

t− ε7

∫ ψ7(s)

φ7(s)

∫

⃒
⃒
⃒
⃒χ

MIWD
t,s −

(
ω ·φmon

t,s +ϖ ·φter
t,s

ω+ϖ

)⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒θ

MIWD
t,s −

(
ω ·φmon

t,s +ϖ ·φter
t,s

ω+ϖ

)⃒
⃒
⃒
⃒

f
(
η7,t,s

)
∘ g
(
η7,t,s

)
dη7,t,sdsdt+

∫ t

t− ε8

∫ ψ8(s)

φ8(s)

∫ χLC
t,s

hLC
t,s

f
(
η8,t,s

)
∘ g
(
η8,t,s

)
dη8,t,sdsdt+

∫ t

t− ε9

∫ ψ9(s)

φ9(s)

∫ χLCC
t,s

φLCC
t,s

f
(
η9,t,s

)
∘ g
(
η9,t,s

)
dη9,t,sdsdt+

∫ t

t− ε10

∫ ψ10(s)

φ10(s)

∫ χCCei
t,s

hCCei
t,s

f
(
η10,t,s

)
∘ g
(
η10,t,s

)
dη10,t,sdsdt+

∫ t

t− ε11

∫ ψ11(s)

φ11(s)

∫ χTCC
t,s

φTCC
t,s

f
(
η11,t,s

)
∘ g
(
η11,t,s

)
dη11,t,sdsdt (8a) 

C.-L. Huang et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e20478

10

≈ N − 1

{
∑Γ

j=1
F

(
∑ϒ

i=1
ζi,j,
∑ϒ

i=1
xi

j

)

·G

(
∑ϒ

i=1
ζi,j,
∑ϒ

i=1
xi

j

)}

(8b)  

≅

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N − 1

⎧
⎪⎨

⎪⎩

∑Γ

j=1

⎡

⎢
⎣aj ∘ e

θj∘γj∘
∑ϒ

i=1
xi

j
·

Kj

1 + αj ∘ e
− Bj∘
∑ϒ

i=1
xi

j

− aj ∘ e
θj∘γj∘
∑ϒ

i=1
ζi,j

·
Kj

1 + αj ∘ e
− Bj∘
∑ϒ

i=1
ζi,j

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

N − 1

⎧
⎪⎨

⎪⎩

∑Γ

j=1

⎡

⎢
⎣aj ∘ e

θj∘γj∘
∑ϒ

i=1
xi

j
·
e

Bj
∑ϒ

i=1
xi

j
− e

− Bj
∑ϒ

i=1
xi

j

e
Bj
∑ϒ

i=1
xi

j
+ e

− Bj
∑ϒ

i=1
xi

j

− aj ∘ e
θj∘γj∘
∑ϒ

i=1
ζi,j

·
e

Bj
∑ϒ

i=1
ζi,j

− e
− Bj
∑ϒ

i=1
ζi,j

e
Bj
∑ϒ

i=1
ζi,j

+ e
− Bj
∑ϒ

i=1
ζi,j

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

(9)  

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π
(

χi
t,s

)
=
∑ϒ

i=1
wi,j ·N

(
χi

t,s

)
+ bj =

∑ϒ

i=1
xi

j, Π
(
ηi,t,s

)
=
∑ϒ

i=1
wi,j ·N

(
ηi,t,s

)
+ bj =

∑ϒ

i=1
ζi,j

N
(

χi
t,s

)
=

⎧
⎪⎪⎨

⎪⎪⎩

χi
t,s − μi,s

1
(
μi,s

2
)1

2
=

χi
t,s − Е

t

[
χi

t,s

]

(
Е
t

[(
χi

t,s − μi,s
1

)2])1
2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

μi,s
2 = σ2 ≡ Е

t

[(
χi

t,s − μi,s
1

)2]

μi,s
1 ≡ Е

t

[
χi

t,s

]

⎫
⎪⎪⎬

⎪⎪⎭

N − 1{ • } =

{

F

(
∑ϒ

i=1
ζi,j,
∑ϒ

i=1
xi

j

)

G

(
∑ϒ

i=1
ζi,j,
∑ϒ

i=1
xi

j

)}

·
(
μj,s

2
)1

2 + μj,s
1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

μj,s
2 ≡ Е

t

[(
ςt,jφT

j,sDs − μj,s
1

)2]

μj,s
1 ≡ Е

t

[
ςt,jφT

j,sDs

]
, Pobs(t, s) =

∑Γ

j=1
ςt,jφT

j,sDs

(10)  

χ⋅
t,s ∈

⎧
⎨

⎩

χ1
t,s, χ2

t,s, χ3
t,s, χ4

t,s, χ5
t,s, χ6

t,s,

χ7
t,s, χ8

t,s, χ9
t,s, χ10

t,s , χ11
t,s

⎫
⎬

⎭
=

⎡

⎢
⎣

χAP
t,s , χAWS

t,s ,

⃒
⃒
⃒χAWD

t,s − φter
t,s

⃒
⃒
⃒, χMAWS

t,s ,

⃒
⃒
⃒χMAWD

t,s − φmon
t,s

⃒
⃒
⃒, χMIWS

t,s ,

⃒
⃒
⃒
⃒χ

MIWD
t,s −

(ω ·φmon
t,s + ϖ ·φter

t,s

ω + ϖ

)⃒
⃒
⃒
⃒, χ

LC
t,s , χLCC

t,s , χCCei
t,s , χTCC

t,s

⎤

⎥
⎦ (11)  

here χ is the atmospheric observed rain-making causal spatiotemporal vector composed of the 11 items in χi
t,s(i = 1, 2,...,11), known as 

explanatory variables considering multiple inputs, as shown in equation (11); εi is the travel time for measured precipitation during 
rain-growth process from rain-generation to falling on the ground surface; φi(s) and ψ i(s) are the spatial rain-making bounds of the ith 
cause at sth station; ηi,t,s is the rain-generating threshold of the ith rain-making cause at time t and station s; ϒ and Γ are the total 
number of rain-making causes and dimension-reduced spatiotemporal components through SVD, respectively; aj, θj, wji, and bj are 
model parameters to be fitted; Kj is the carrying capacity generated by the ith rain-making cause at the spatiotemporal component j; Bj 

is the logistic growth rate or curve steepness; αj is related to atmospheric preconditions and initial conditions of cause i down- 
dimensionally at component j; xi

j and ζi
j are the mapping dimension-reduced variables projected from the ith observed spatiotem-

poral variable χi
t,s and the rain-making threshold parameter ηi,t,s, respectively, through rotation, scaling, and linear and nonlinear 

transformation; N( •) is the nonlinearly normalized function for χi
t,s or ηi,t,s calculated using the first-order moment μi,s

1 = Е
t
[χi

t,s] and the 

second-order moment μi,s
2 = Е

t
[(χi

t,s − μi,s
1 )

2
]; and N− 1{ •} is the de-normalizing function for the simulated model output F(ζi

j, xi
j)G(ζi

j, xi
j)

using the first-order moment μj,s
1 ≡ Е

t
[c̃t,jFT

j,sDs] and the second-order moment μj,s
2 ≡ Е

t
[(c̃t,jFT

j,sDs − μj,s
1 )

2
], where c̃t,jFT

j,sDs is the dimension- 

reduced rainfall feature component j calculated through SVD of spatiotemporal precipitation observations Pobs(t, s). 
The integrals of all continuous non-negative convex functions are sigmoid (with an “S” shape), which are also called the “two-focus 

curve functions.” Therefore, the cumulative distribution function (e.g., error function) of many common probability distributions (e.g., 
normal distribution) is an S-shaped curve. Common sigmoid functions include generalized logistic, hyperbolic tangent, arctangent, 
Goodman, and smooth step functions, among others. Hyperbolic functions appear in the solutions of some important linear differential 
equations (e.g., define catenary and Laplace equation). However, few previous studies have used the generalized composite logistic 
and hyperbolic functions, which allow for generating more flexible sigmoid curves, to construct rain-generating simulation models. 
The causal rain-generating function in equation (9) is designed as a swarm hyperbolic tangent function, that is G(ζi,j, xi

j) ∈
{

e
Bj
∑

i
xi
j − e

− Bj
∑

i
xi
j

e
Bj
∑

i
xi
j +e

− Bj
∑

i
xi
j
, e

Bj
∑

i
ζi,j − e

− Bj
∑

i
ζi,j

e
Bj
∑

i
ζi,j+e

− Bj
∑

i
ζi,j

}

= {tanh(Bj
∑ϒ

i=1xi
j), tanh(Bj

∑ϒ
i=1ζi,j)}. If Kj = αj = Bj = 1 in equation (9), the logistic function be-

comes an offset and scaled hyperbolic tangent function, yielding G(ζi,j, xi
j) =

⎧
⎨

⎩
1

1+e
−

∑
i
xi
j
, 1

1+e
−

∑
i
ζi,j

⃒
⃒
⃒
⃒
⃒
⃒

Kj = 1
αj = 1
Bj = 1

⎫
⎬

⎭
=

{
1
2 + 1

2 tanh
(∑

i
xi

j
2 ,

∑
i
ζi,j

2

)}

. 

C.-L. Huang et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e20478

11

Quantitatively, the logistic curve shows early exponential growth for cause values near the threshold to trigger rainfall, indicating 
linear growth for an argument near the midpoint between the threshold and maximum, and then approaches K with an exponentially 
decaying gap. In addition, equation (10) first computes a linear combination of its input signals and applies a bounded logistic or 
hyperbolic tangent function as the simulator to the precipitation. Hence, this simulation model can be considered a “smoothed” variant 
approximating the complex, highly nonlinear rainfall mechanism and a high-order irregular objective function solution space. 

2.5.2. Key-lock quasi-Newton for solving model parameter optimization 
Next, we use mathematical analysis to derive the analytical solution of rain-generating parameter optimization, which embeds a 

simulation model. To optimize the rain-making threshold of each rainfall cause, we first converted the atmospheric factorial mea-
surement χ in equation (12) to a linear algebraic combination of the identified threshold solution ηk, correction vector Δηk, and 

observed steering vector ck of iteration (k), that is χ⋅
t,s = ηk

⋅,t,s + Δηk
⋅,t,s + ck

⋅,t,s

⃒
⃒
⃒
⃒
⃒

ck
⋅,t,s ∈ R

⋅→i = 1 ∼ ϒ
. The calculation methods of model- 

independent variable Π(χ⋅
t,s) = x* after nonlinear normalization N(χ⋅

t,s) and spatiotemporal linear conversion are shown in equa-
tions (15), respectively, where N(χ⋅

t,s) uses entry-wise products for matrix operations. F(ζi
j, xi

j) is the increase/decrease effect caused by 
the factorial inter-exchange reaction j = * = 1 ∼ Γ (as reflected by parameters a and γ) during rain generation, which can be regarded 
as the induced scaling factor for the rain-making cause i. As the inter-causal rain-generating reactive interaction is related to the 
atmospheric factorial intensity and gradient, this study designs explicitly γk

* as the rain-generating increase/decrease rate vector that is 
triggered by various rain-making causal reactions and devises θ* ∈ (− σ,+σ) as the positive/negative small supplement vector. 
Accordingly, by substituting the above-mentioned derivation into equation (12), the rain-generating spatiotemporal precipitation 
simulation can be derived using equation (13). However, according to the definition of sensitivity coefficient [47], the simulated 

precipitation P
(

ηk+1
⋅,•,s ,χ⋅

•,s

⃒
⃒
⃒
⃒
⋅→i = 1 ∼ ϒ
•→t = 1 ∼ T

)

will be approximately equal to its sensitivity (first-order derivative) ∂Pk+1
sim

∂ηk+1
⋅,•,s 

multiplied by ck
⋅,•,s, 

which can be calculated by subtracting the atmospheric rain-making causal measurement variable χ⋅
•,s from the rain-generating 

threshold ηk
⋅,•,s and correction vector Δηk

⋅,•,s, satisfying Newton’s conditional constraints (i.e., ck
⋅,•,s = χ⋅

•,s − ηk
⋅,•,s − Δηk

⋅,•,s), as shown 
in equation (14). 

P
(

η⋅,•,s,χ⋅
•,s

)
=N − 1

{
Psim

(
Π
(

ηk+1
⋅,•,s

)
,Π
(

χ⋅
•,s

))}
=N − 1

⎧
⎨

⎩
Psim

⎛

⎝wT
⋅,* ·N

(
ηk+1

⋅,•,s

)
+ b*,wT

⋅,*N
(

χ⋅
•,s

)
+ b*

⃒
⃒
⃒
⃒
⃒
⃒

⋅→i = 1 ∼ ϒ
*→j = 1 ∼ Γ
•→t = 1 ∼ T

⎞

⎠

⎫
⎬

⎭

= N − 1
{

Psim

(
Π
(

ηk+1
⋅,•,s

)
,Π
(

ηk
⋅,•,s +Δηk

⋅,•,s + ck
⋅,•,s

))}
= (12)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N − 1
{[

a* ∘ e
θ*∘γk

*∘Π(ηk+Δηk+ck)
MxΓ ·

(
K*

ι + α* ∘ e− B*∘Π(ηk+Δηk+ck)

)T

ΓxM

]

·υ − a*e
θ*γk

*Π(ηk+1)
MxΓ ·

(
K*

ι + α*e− B*Π(ηk+1)

)T

υ
}

N − 1

{

a* ∘ eθ*γk
*Π(ηk+Δηk+ck) ·

(
B*eΠ(ηk+Δηk+ck) − B*e− Π(ηk+Δηk+ck)

B*eΠ(ηk+Δηk+ck) + B*e− Π(ηk+Δηk+ck)

)T

·υ − a*eθ*γk
*Π(ηk+1) ·

(
B*eΠ(ηk+1) − B*e− Π(ηk+1)

B*eΠ(ηk+1) + B*e− Π(ηk+1)

)T

υ
} (13)  

≈

[
∂Pk+1

sim

∂ηk+1
⋅,•,s

]

M×L

[
ck

⋅,•,s

]

Lx1

⃒
⃒
⃒
⃒
⃒
⃒

⋅→i = 1 ∼ ϒ
j = 1 ∼ Γ
•→t = 1 ∼ T

, ηk
⋅,•,s + Δηk

⋅,•,s = ηk+1
⋅,•,s , ck

⋅,•,s =χ⋅
•,s − ηk

⋅,•,s − Δηk
⋅,•,s (14)  

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
(

χ⋅
t,s

)
=

⎧
⎪⎪⎨

⎪⎪⎩

χ⋅
t,s − μ⋅,s

1

(μ⋅,s
2 )

1
2

=
χ⋅

t,s − Е
t

[
χ⋅

t,s

]

(
Е
t

[(
χ⋅

t,s − μ⋅,s
1

)2])1
2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

μ⋅,s
2 ≡ Е

t

[(
χ⋅

t,s − μ⋅,s
1

)2]

μ⋅,s
1 ≡ Е

t

[
χ⋅

t,s

]

⎫
⎪⎪⎬

⎪⎪⎭

Π
(

χ⋅
t,s

)
= Π

(
ηk

⋅,t,s + Δηk
⋅,t,s + ck

⋅,t,s

)
= wT

⋅,* ·
[(

ηk
⋅,t,s + Δηk

⋅,t,s + ck
⋅,t,s

)
− μ⋅,s

1

]
· (μ⋅,s

2 )
− 1

2 + b* = x*

υ ∈

{

υ•

⃒
⃒
⃒
⃒
⃒

•→t = 1 ∼ T

M = T × S = T, S = 1

}

M×1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

⋮

ut

⋮

uT

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

ut = 1, if t = •

ut = 0, if t ∕= •

ut ∈ (0, 1)

∑T

t=1
ut = 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T×1

(15)  

where ck
⋅,t,s ∈ [ck

i,t,s] represents the potential induced precipitation caused by the ith atmospheric causal rain-making measured values 
exceeding the rain-generating threshold and υ• is the unit vector of the m = ⋅ th observed/simulated precipitation. To achieve the most 
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efficient convergence, the optimization procedure is expected to search for an optimal solution in the next iteration (k+1) th. If ηk+1
⋅,t,s is 

equal to the true (optimal) causal rain-making threshold (i.e., ηk+1
⋅,t,s = η@

⋅,t,s), the rain-generating function in equation (13) is expected to 

be equal to 0 (i.e., e
BjΠ(ηk+1

i,t,s )
− e

− BjΠ(ηk+1
i,t,s )

e
BjΠ(ηk+1

i,t,s )
+e

− BjΠ(ηk+1
i,t,s )

= 0 and Kj

1+αje
− BjΠ(ηk+1

i,t,s )
= 0). Similarly, according to the definition, if the iteratively identified rain- 

making threshold ηk
⋅,•,s is approaching the real value (i.e., ηk

⋅,t,s ≈ η@
⋅,t,s), then the rain-generating function ηk

⋅,•,s is expected to approx-

imate 0 (i.e., e
BjΠ(ηk

i,t,s ) − e
− BjΠ(ηk

i,t,s )

e
BjΠ(ηk

i,t,s )+e
− BjΠ(ηk

i,t,s )
≈ 0 and Kj

1+αje
− BjΠ(ηk

i,t,s )
≈ 0). Therefore, based on equations (13)–(15), P(η⋅,•,s,χ⋅

•,s) can be re-written as 

follows: 

P
(

η⋅,•,s,χ⋅
•,s

)
≈N − 1

{
Psim

(
Π
(

ηk
⋅,•,s

)
,Π
(

χ⋅
•,s

))}
=N − 1

{
Psim

(
Π
(

ηk
⋅,•,s

)
,Π
(

ηk
⋅,•,s +Δηk

⋅,•,s + ck
⋅,•,s

))}

≈

[
∂Pk

sim

∂ηk
⋅,•,s

]

M×L

[
Δηk

⋅,•,s + ck
⋅,•,s

]

Lx1
=

[
∂Pk

sim

∂ηk
⋅,•,s

]

M×L

[
χ⋅
•,s − ηk

⋅,•,s

]

Lx1
, ck

⋅,•,s =χ⋅
•,s − ηk

⋅,•,s − Δηk
⋅,•,s

(16) 

Equation (2) uses the second-order Taylor expansion technique to approximate the objective function J around ηk, differentiates the 
objective expansion JT(Psim(ηk+1,χ),Pobs) regarding Δηk, and solves the expanded derivative roots to expect the identified parameters 
ηk+1 = ηk + Δηk as the stationary point of J at the next iteration k+1 (i.e., optimal solution), as shown in equations (3a) and (3b). This 
front-door direct-solving approach assumes the structure and type of the correction vector Δηk composed of the first- and second-order 
derivatives of J can be identified. However, since J and the multi-variate variables Psim(ηk+1,χ) are multi-dimensional and highly 
nonlinear composite functions, when the number of parameters is large, and the simulated computation model is complex, the second 
derivative of J (i.e., the Hessian matrix) Н(JT(Psim(ηk,χ),Pobs)) cannot be directly calculated. To solve this problem, this study designs a 
backdoor feedback contrast derivation method. First, Psim(ηk+1,χ) is expressed as a systematic nonlinear algebraic equation, as shown 
in equations (12)–(13). Second, the roots of 0 = dJk+1

dΔηk are solved to derive algebraic formulation using calculus, as shown in equation 
(17). Third, the simulated precipitation Psim(ηk+1,χ) with the composite rain-generating function is used to approximate 
PTE

sim(ηk +Δηk,χ) using second-order Taylor expansion around ηk and Δηk; the differential derivation for ηk is expressed in equation 
(17). Fourth, using equations (12)–(16), the relationship between simulated precipitation Psim(Π(ηk), ⋅) and its derivative 
P′

sim(Π(ηk), ⋅) = dPsim(Π(ηk),⋅)
dηk is derived according to the composite function type and substituted into equation (18) to obtain an algebraic 

equation with replacement variables, as shown in equation (19). Fifth, using Leibniz’s and chain rules, the advanced functions of the 
derivative equaling 0 of the rain-generating simulation models Psim(Π(ηk), ⋅) composited by a logistic function (14a) or a tangent 
hyperbolic function (14 b) is derived, as shown in equations (20), respectively. Sixth, the variables of term 1 in equation (19) are 
replaced according to the multi-order derivative relationship derived from equations (12)–(16), and the definition in equation (24) is 
substituted with the higher-order Taylor’s expanded functional form J(PTE

sim(ηk+1,χ),Pobs), as expressed in equation (20). Seventh, the 
structural equation (3a) of the front-door direct-solving method is compared with the derived equation (22) of the backdoor feedback 
contrast method to derive the advanced algebraic analytical solution of the Hessian matrix, as expressed in equations (23), and the 
constrained equations (23) that satisfy Newton’s conditions to efficiently solve a finite number of candidate solutions for parameter 
correction vectors Δηk− . 

0=
dJk+1

dΔηk =
d

dΔηk
⋅,t,s

[
N − 1

{
Psim

(
Π
(

ηk+1
⋅,t,s

)
,Π
(

χ⋅
t,s

))}
− Pobs(t, s)

]T[
N − 1

{
Psim

(
Π
(

ηk+1
⋅,t,s

)
,Π
(

χ⋅
t,s

))}
− Pobs(t, s)

]

= 2
[
N − 1

{
Psim

(
Π
(

ηk+1
⋅,t,s

)
,Π
(

χ⋅
t,s

))}
− Pobs(t, s)

]T dN − 1
{

Psim

(
Π
(

ηk+1
⋅,t,s

)
,Π
(

χ⋅
t,s

))}

dΔηk
⋅,t,s

(17)  

Use Taylor expansion for the simulated precipitation Psim  

= 2
[
N − 1

{
PTE

sim

(
Π
(

ηk
⋅,t,s + Δηk

⋅,t,s

)
,Π
(

χ⋅
t,s

))}
− Pobs

]TdN − 1
{

Psim

(
Π
(

ηk
⋅,t,s + Δηk

⋅,t,s

)
,Π
(

ηk
⋅,t,s + Δηk

⋅,t,s + ck
⋅,t,s

)}

dΔηk
⋅,t,s  

≈ 2
[

N − 1
{

Psim
(
Π
(
ηk), ⋅

)
+ P′

sim

(
Π
(
ηk), ⋅

)
·Δηk +

1
2
(
Δηk)T d

dηk

(
dPsim(Π(ηk), ⋅)

dηk

)

·Δηk
}

− Pobs

]T

dN − 1{Psim(Π(ηk + Δηk),Π(ηk + Δηk + ck))}

dΔηk

(18) 
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According to the derived
conditions expressed in Equation (16) for P′

sim  

≈ 2

[{

N − 1[Psim
(
Π
(
ηk), ⋅

)]
+ N − 1[Psim

(
Π
(
ηk), ⋅

)]
[

1
χi

t,s − ηk
i,t,s

]T

1×L

Δηk +
1
2
(
Δηk)T d

dηk 

(

N − 1[Psim
(
Π
(
ηk), ⋅

)]
[

1
Δηk

i,t,s + ck
i,t,s

]T

1×L

)

Δηk

}

− Pobs

]T
dN − 1{Psim(Π(ηk + Δηk),Π(χ))}

dΔηk  

(19)  

Use Leibniz′s rule and chain rule for Psim being composite logistic function (14a) or tangent hyperbolic function (14b) under derivative= 0  

(20a)  

(20b)  

According to the derived order − relationship expressed in Equation (12) − (16) and
definition Equation  

(21)  

Derive
conditional constraints to compute correction vector and Hessian matrix of optimized parameter ηk by comparing Eq.(3a) with Eq.(21)

(22)  

where Δη in equation (18) is the parameter correction vector after first- and second-order moment nonlinear normalization, and its 

calculation is shown in equation (23); the permutated calculation methods of matrices 
[

1
χi

t,s − ηk
i,t,s

]T

1×L 
and 

[
1

Δηk
i,t,s+ck

i,t,s

]T

1×L 
in equation (19) 

are expressed in equation (22); [rk]
T
1xM in equations (20)–(22) is the spatiotemporal permutated matrix of simulated rainfall error, and 

its calculation algebra is expressed in equation (23); equation (23) sets the total percentage of rain-generated capacity K* after 
inputting each rain-making causal observation into the model with dimensionality-reduced spatiotemporal feature element 
(*= j= 1 ∼ Γ) as matrix ι composed of 1 = 100 %; N− 1{B*}1xL and N− 1(γk

*)1xL in equations (20) and (21) are computational algebraic 
matrices of the component element parameters of the model input after dimensionality-reduced projection, de-linearization, and de- 

normalization, as shown in equation (23); and the layout calculation methods of 
[

Γ− 1

wi,j

]T

Γxϒ 
and 

[
L− 1

Δηk

]T

1xL 
in equations (20)–(23) are 

expressed in equation (23). 
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(23)  

In equations (17)–(22), the designed key–lock quasi-Newton optimizing approach is used to derive the Hessian matrix Н(ηk) of the 
rain-generating simulated LSE as the advanced functional analytic solution composited by logic or tangent hyperbolic functions, in 

which terms 2[rk + κk]
T, 
[

ι
ι+α*e− B*Π(χ)

]T
·
[

α*e− B*Π(χ)

ι+α*e− B*Π(χ)

]
, ι −

[
eBΠ(χ) − e− BΠ(χ)

eBΠ(χ)+e− BΠ(χ)

]T[
eBΠ(χ) − e− BΠ(χ)

eBΠ(χ)+e− BΠ(χ)

]
, (B* − b*) ·

[
Γ− 1

wi,j

]T
, and 

[
L− 1

Δηk−

]T

1xL 
are derived to 

calculate the second-order derivative of the objective function and combined with term a*eθγkΠ(χ)
MxΓ to remove the atmospheric rain- 

generating error caused by an over-estimated Hessian from the Jacobian matrix inter-product in the conventional quasi-Newtons. 
The sum structure of the derived advanced high-order functional analytical solution Н(ηk) in equation (22) is a symmetric rank- 
four matrix. 

To accelerate convergence and escape from the local minimum, this study uses the vectorized limited switchable step size αk =

[αk
l |l=1∼L] to inversely identify the rain-making threshold and induced precipitation generated by various atmospheric causes at each 

time and observation station. To solve the problem that the sensitivity matrix used by the conventional quasi-Newton to approximate 

the Hessian (e.g., Н ≈ 2JT
DJD) often overestimates 

⃒
⃒
⃒rm

∂2rm
∂ηi∂ηj

⃒
⃒
⃒ ≪

⃒
⃒
⃒
∂rm
∂ηi

∂rm
∂ηj

⃒
⃒
⃒ for accurate calculation 

⃒
⃒
⃒rm

∂2rm
∂ηi∂ηj

⃒
⃒
⃒ =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

[

(B − b) ·
[

Γ− 1

w

]T

∘ (μ2)
1
2 + μ1

]T

Lx1

·2[rk + κk]
T
·N− 1

(

aeθγkΠ(χ)
MxΓ ·

[ ι
ι + αe− BΠ(χ)

]T
·

[
αe− BΠ(χ)

ι + αe− BΠ(χ)

]

·
[
(μ2)

− 1
2 ·w

]T

Γx1

)

·

[
L− 1

Δηk−

]T

1xL
∪

[

(B − b)
[

Γ− 1

w

]T

∘ (μ2)
1
2 + μ1

]T

Lx1

·2[rk + κk]
T
·N− 1

(

aeθγkΠ(χ)
MxΓ ·

(

ι −
[
eBΠ(χ) − e− BΠ(χ)

eBΠ(χ) + e− BΠ(χ)

]T[eBΠ(χ) − e− BΠ(χ)

eBΠ(χ) + e− BΠ(χ)

])

·
[
(μ2)

− 1
2 ·w

]T

Γx1

)

·

[
L− 1

Δηk−

]T

1xL

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=
⃒
⃒Н(ηk,Δηk− )

⃒
⃒, detect and approach the global optimum solution, and solve nonlinear ill-posed problems, this study describes a rain- 

generating simulator using composite tangent hyperbolic and logistic functions as high-order continuous differentiable functions, 
coupled with the designed key–lock quasi-Newton optimizing approach [equations (17)–(22)] for deriving the analytical solution of 
multi-order derivatives for a typhoon’s rainfall causal decomposition. This design can not only effectively calculate an accurate, 
positive definite, and numerically stable Hessian in equation (22) and parameter correction in equation (22) but also overcome the 
approximate overestimated problems, high computational cost, and slow convergence, only to the local minimum, and difficulty in 
meeting the curvature secant conditions in Jacobian, LMA, and BFGS quasi-Newtons by introducing a multi-order derivative 
approaching structure and solving the constrained nonlinear parameter optimization problem. 

Δηk+ =ηk+1 − ηk = − αk+ ∘
{[

Н
(
ηk,Δηk− )]− 1

·
(
JT

D

)k
· r
(
ηk)
}
, k ∈ N (24) 

Equations (22) are the derived constraints that satisfy Newton’s equational conditions, in which the candidate solutions Δηk− of 
1~4 sets of parameter correction vectors can be solved using equation (23a), and equation (22) can solve one set of candidate solutions 
Δηk− . Since the higher-order term (HOT) when using Taylor expansion to approximate JT(Psim(ηk+1,χ), Pobs) or PTE

sim(ηk+1,χ) can be 
omitted, the relationship between simulated precipitation Psim(Π(ηk), ⋅) and its derivative P′

sim(Π(ηk), ⋅) = dPsim(Π(ηk),⋅)
dηk derived using the 

composite function has some error at the incipient iteration, and the identified simulation model parameters (w、θ、a、γ、α、B、γ)
based on the typhoon’s atmospheric rain-making observation data has uncertainty; thus, the candidate solution Δηk− ,ω solved by mass 
conservation equation (22) after substituting into equation (22) may not be completely subject to the valued square matrix condition 
⎡

⎣
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

⎤

⎦ but only to the approximate state. The candidate solution Δηk− ,ε solved by the energy conservation equation (22) after 
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substituting into equation (22) may not be completely equal to the state of [0, 0, ...,0]. The candidate solution that is approximately 

subject to the conditional constraints in equations (22), Δηk− ∈

{

Δηk− ,ω,Δηk− ,ε
⃒
⃒
⃒
⃒
ω = 1 ∼ 4
ε = 1

}

, (key) is acceptable to enter equations (22) 

or (22) for calculating the Hessian analytic matrix Н(ηk,Δηk− ) (lock) presented as an advanced function and subsequently in equation 
(30) for calculating the relationship equation between the optimized parameter correction vector/direction and referenced step size 
vector Δηk− = − αk− ∘ {[Н(ηk,Δηk− )]

− 1
· (JT

D)
k
· r(ηk)}, including Taylor expansion error, derivative approximation error, and model 

parameter uncertainty. Therefore, up to five sets of referenced step size vectors αk− ∈

{

αk− ,ω,αk− ,ε
⃒
⃒
⃒
⃒
ω = 1 ∼ 4
ε = 1

}

= [αk− ,ω
l ,αk− ,ε

l |l=1∼L] can 

be solved using entry-wise division between Δηk− and {[Н(ηk,Δηk− )]
− 1

· (JT
D)

k
· r(ηk)}. According to the combination of inversely 

calculated referenced step size vector αk− , the maximum and minimum step sizes 

(αk,κ
UB = [αk,κ

UB,l] = Max
{

αk− ,ω
(

ι+3(μ2)
1
2

)
,αk− ,ε

(
ι+3(μ2)

1
2

)}
and αk,κ

LB = Min
{

αk− ,ω
(

ι − 3(μ2)
1
2

)
,αk− ,ε

(
ι − 3(μ2)

1
2

)}
) that approximately 

satisfies Newton’s conditional equations (22) and (22) can be estimated to efficiently identify the optimal vectorized step size αk+

(described in section 2.6) and the corresponding optimal parameter correction vector Δηk+ calculated using equation (24), where ±
3(μ2)

1
2 is the normalized independent variable anomaly of the sample’s cumulative probability density equaling 99 % in a standard 

normal distribution. 

2.6. Vectorized step size optimization using key–lock quasi-Newton analytical solved advanced functional double-bracketing approach 

This study identifies the typhoon’s rain-generating threshold and the produced precipitation by individual rain-making causes 
using a designed key–lock quasi-Newton optimizing approach with vectorized limited switchable step size corresponding to various 
atmospheric rain-making parameters. To adjust the searching direction, scale the correction vector, accelerate convergence, reduce the 
difference among heterogeneous parameters, and achieve a small error in the estimated parameter ηk+1 and rapid convergence of the 
objective function J(Psim(ηk+1, ⋅), Pobs), this study proposes the key–lock quasi-Newton analytical derivation to solve the candidate 
solution Δηk− and the referenced step size αk− using an advanced functional multi-order-derivative precise double-bracketing 
approach, which can ensure convergence and determine the vectorized step size. 

For more complex vectorized step size root-finding problems, the double-bracketing false-position approach, which typically only 
determines a scalar step size but can ensure convergence [40], is re-written in the following algebraic form: determine αk ∈ [αk,κ

+ |κ=1∼Σ]

during iterations κ such that J′(⋅,αk,κ
+ ) = 0 and the known conditions are J′(⋅,αk,κ

LB ) = b1 and J′(⋅,αk,κ
UB) = b2. If J′(⋅,αk,κ

+ ) is a non-linear 
continuous function and there are two vectors αk,κ

LB and αk,κ
UB such that each corresponding element of J′(⋅,αk,κ

LB ) and J′(⋅,αk,κ
UB) has opposite 

signs, then according to the intermediate value theorem, the function J′(⋅,αk,κ
+ ) has the root αk,κ

+ in the interval [αk,κ
LB ,α

k,κ
UB]. The vectorized 

bisection, Illinois, and Anderson–Björk algorithms use the systematic technique mp to calculate the midpoint vector αk,κ
MP to approach 

αk,κ
+ , as shown in equations (25), respectively. If J′(αk,κ

MP) has the same sign as J′(αk,κ
UB), the new bracketing interval is updated to [αk,κ+1

LB ,

αk,κ+1
UB ] = [αk,κ

LB , αk,κ
MP]. This study modifies the traditional scalar double-bracketing method using the multi-order derivatives of the 

objective function and the analytically derived reference step size distributions satisfying Newton’s conditions to calculate the halving 
shrinkage vector m and bracketing step size midpoint vector αk,κ

MP = [αk,κ
MP,l|l=1∼L], as shown in equation (25). 
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αk,κ
MP,l =

ζl ·
[
αk,κ

LB ∘ ∇J
(
⋅,αk,κ

UB
)
− mp ∘ αk,κ

UB ∘ ∇J
(
⋅,αk,κ

LB
)]

ζl ·
[
∇J
(
⋅,αk,κ

UB
)
− mp ∘ ∇J

(
⋅,αk,κ

LB
)]

Vectorized false − position method : m1 =

⎡

⎢
⎢
⎣

1

⋮

1

⎤

⎥
⎥
⎦

L×1

,

Vectorized Illinois

algorithm : m2 =

⎡

⎢
⎢
⎣

1/2

⋮

1/2

⎤

⎥
⎥
⎦

L×1

Vectorized Anderson − Bjork

algorithm : m3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
ζ1 · ∇J

(
⋅,αk,κ

MP
)

ζ1 · ∇J
(
⋅,αk,κ

UB
)

⋮

1 −
ζL · ∇J

(
⋅,αk,κ

MP
)

ζL · ∇J
(
⋅,αk,κ

UB
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L×1

if m > 0 , m3 =

⎡

⎢
⎢
⎣

1/2

⋮

1/2

⎤

⎥
⎥
⎦

L×1

else

Proposed key − lock shaping quasi − Newton analytical derivation − based vectorized double false − position method :

m4 =
J
(
ηk,αk,κ

LB
)

J
(
ηk,αk,κ

UB
) ·

⎡

⎢
⎢
⎣

1

⋮

1

⎤

⎥
⎥
⎦

L×1

,m5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϖ1

⋮

ϖl

⋮

ϖL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L×1

,ϖl ∈

[
αk− ,ω

l

αk,κ
UB,l

,
αk− ,ε

l

αk,κ
UB,l

, 1/2, 1

]

(25)  

where ζl is the lth unit vector; m1, m2, and m3 are the halving vectors of the vectorized traditional double-bracketing false-position 
approach, Illinois algorithm, and Anderson–Björk algorithm, respectively; m4 is the halving vector of the zero-order derivative double- 
bracketing approach; m5 is the proposed double-bracketing halving vector based on the referenced step size distributions 

2.7. Dimensional reduction and characterization of rain-making causes and feature components 

This study considers the swarm composite rain-generating function of 11 types of atmospheric rain-making causes to simulate the 
spatiotemporal patterns of typhoon precipitation. To characterize the causal rain-generating mechanisms and feature components, this 
study uses multi-rank loading scores of rainfall spatiotemporal patterns calculated through SVD to project the various rain-making 
observations into the dimension-reduced component/classification j (* →j= 1 ∼ Γ) and to establish the precipitation simulator 

under interactive response using the devised composite function (
[
a* ∘eθ*∘γk

*∘Π(χk)

MxΓ ·
(

K*

ι+α*∘e− B* ∘Π(χk )

)T

ΓxM

]
or a*eθ*γk

*Π(χk) ·
(

B*eΠ(χk ) − B*e− Π(χk )

B*eΠ(χk )+B*e− Π(χk )

)T
). 

Extending equation (24), Δηk+ = − αk+ ∘
{
[Н(J(Psim(ηk),Pobs),Δηk− )]

− 1
·
(

∂Psim

∂ηl

)k
· r(Psim(ηk), Pobs)

}
; thus, the SVD-calculated multi- 

rank loading scores from the precipitation space-time matrix SVD
(

Pobs
ts ,s

⃒
⃒
⃒
⃒
ts = 1 ∼ Ts
s = 1 ∼ S

)

can not only characterize the rain-making causes 

and classify rain-generating mechanisms but also approximate a more accurate Hessian matrix while significantly reducing the number 
of simulations. 

Before SVD, the average precipitation as and standard deviation εs of the sth observation station are used to normalize the pre-
cipitation space–time matrix [Pobs

t,s ]. The analyzed matrix X can be expressed in equation (26a): 

X=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
Pobs

1,• − a
)T

(
Pobs

2,• − a
)T

⋮
(

Pobs
Ts ,•

− a
)T

| •→s = 1 ∼ S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

1/ε1 0 ⋯ 0
0 1/ε2 0 ⋮
⋮ 0 ⋱ 0
0 ⋯ 0 1/εS

⎤

⎥
⎥
⎦ (26a)  

where a = μ1 ∈

{

as =
1
Ts

∑Ts
ts=1Pobs

ts ,s

}

is the average vector composed of s number of elements and 
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(μ2)
1
2 ∈

{

εs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

(Ts − 1)
∑Ts

ts=1(P
obs
ts ,s − as)

2
√

}

is the standard deviation vector. This study decomposes the deviation of the observed 

precipitation space-time matrix X = [(Pobs
ts ,•

− a)T
|ts=1∼Ts

] into a series of rain-generating components using SVD, as expressed in 
equation (26b): 

X=UΣVT (26b)  

where the row vector of U(= Ts ×S) is an orthonormal left singular vector {u1,•,...,uTs ,•}, that is, eigenvector UTU = I; Σ = diag(σ1,...,

σS), σ1 ≥ ... ≥ σS ≥ 0 is the singular value, where σj can calculate the eigenvalue τj = 1
Ts − 1σ2

j = (FT
j,•) · (Fj,•); and the row vector of 

V(= S×S) is an orthonormal right singular vector {v1,•, ..., vS,•}, VVT = VTV = I. Let φj,s be the correlation coefficient between the 
observed precipitation at the sth station and jth principal component (PC) coefficient, called factor loading, and its set is the S×
S-order matrix F = [φj,s]. Since X contains standardized data, using the following substitutions X = XD− 1, Λ1/2 = 1̅̅̅̅̅̅̅̅

Ts − 1
√ Σ, C =

XVΛ− 1/2, and S = 1
Ts − 1XTX = VΛVT, the below calculations in equation (27) can be derived: 

F=
1

Ts − 1
XTC=

1
Ts − 1

(
D− 1XT)

(
XVΛ− 1/2

)
=D− 1SVΛ− 1/2 =D− 1(VΛVT)VΛ− 1/2

= D− 1VΛΛ− 1/2 =D− 1VΛ1/2 =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
Ts − 1

√ D− 1VΣ
(27) 

Principal component analysis is applied to construct a rain-generating descriptive model for the observed spatiotemporal pre-
cipitation matrix associated with the atmospheric rain-making factors. The spatiotemporal deviation matrix X can be decomposed into 
multiple temporal feature components (factor score C) and the spatial variable (loading F), as derived in equation (28): 

(28) 

The element of ΨT
j,•,• is calculated from the score (C*,•) and loading (FT

*,•) decomposed by SVD
(

Pobs
t,s

⃒
⃒
⃒
⃒
t = 1 ∼ Ts
s = 1 ∼ S

)

, as shown in 

equation (28), and D• = diag(ε1, ..., εS) is the diagonal standard deviation matrix. In this study, model parameters μ⋅,s
1 , (μ⋅,s

2 )
1
2, wT

⋅,*, and 
b* are used to project multiple rain-making factors into the dimension-reduced rainfall spatiotemporal feature unit ΨT

j,•,• for estab-

lishing the composite swarm rain-generating simulation functions, and the analytically derived Н(ηk,Δηk− ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

(B − b) ·
[

Γ− 1

w

]T

∘ (μ2)
1
2 + μ1

]T

Lx1

· 2[rk + κk]
T
·N− 1

(

aeθγkΠ(χ)
MxΓ ·

[ ι
ι + αe− BΠ(χ)

]T
·

[
αe− BΠ(χ)

ι + αe− BΠ(χ)

]

·
[
(μ2)

− 1
2 ·w

]T

Γx1

)

·

[
L− 1

Δηk−

]T

1xL
∪

[

(B − b)
[

Γ− 1

w

]T

∘ (μ2)
1
2 + μ1

]T

Lx1

·2[rk + κk]
T
·N− 1

(

aeθγkΠ(χ)
MxΓ ·

(

ι −
[
eBΠ(χ) − e− BΠ(χ)

eBΠ(χ) + e− BΠ(χ)

]T[eBΠ(χ) − e− BΠ(χ)

eBΠ(χ) + e− BΠ(χ)

])

·
[
(μ2)

− 1
2 ·w

]T

Γx1

)

·

[
L− 1

Δηk−

]T

1xL

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is used to calculate the approximated Hessian matrix and explore multiple local minima locations. 
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2.8. Application 

Spanning a total area of 36,188 km2, Taiwan is located at the junction of Northeast and Southeast Asia, bordered by the Pacific 
Ocean to the east, the Taiwan Strait to the west, the Bashi Strait to the south, and Okinawa to the northeast. The terrain comprises 
mountains, plains, and hills/basins/tablelands, accounting for 31.5 %, 31.3 %, and 37.2 % of the total area. From east to west, the 

Fig. 3. Rain-making DNAs of category 1 typhoons in Taipei: PC rank versus cause (− 2) related to the moving path (− 1) of typhoons (a) Dujuan, (b) 
Soudelor, (c) Nanmadol, (d) Morakot, (e) Sinlaku, and (f) Sepat. 
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mountains can be divided into Coast, Central, Snow, Yushan, and Alishan mountain ranges, as shown in Fig. 2. The Tropic of Cancer 
(23.5◦N) passes through middle-southern Taiwan. According to the Köppen classification, the Taiwanese climate is divided into four 
types: southern tropical monsoon, northern humid and warm, western humid and hot summer, and mountainous humid and cool 
summer climates. Meteorological development in Taiwan originated from the Japanese ruling the country in 1896, who first built 
seven official observatories for weather forecasts and storm warnings. The northeast monsoon prevailing between October and April is 
strong due to the enormous pressure gradient. The southwest monsoon prevails between May and September, with relatively low wind 
spend. June to October marks the typhoon season, often triggering rainstorms, floods, and landslides. The annual average rainfall is 
approximately 2467 mm, unevenly distributed in time and space, with nearly 78 % concentrated from May to October. Considering the 
completeness of atmospheric rain-generating factorial observations during typhoons, this study selected seven representative mete-
orological observatories to identify rain-making causes and quantity. Among these, Taipei and Taichung belong to the basin topog-
raphy, Hualien and Taitung to coastal hills/tablelands, Chuzihu to mountains, and Yilan and Kaohsiung to plains. 

Fig. 4. Rain-making DNAs of category 2 typhoons in Taipei: PC rank versus cause (− 2) related to the moving path (− 1) of typhoons (a) Aere, (b) 
Krosa, (c) Jangmi, (d) Soulik, and (e) Haitang. 
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3. Results and discussion 

3.1. Adopted typhoon events for analysis 

Considering the observed spatiotemporal integrity of the typhoon atmospheric and weather observatories, 11 super typhoons that 
hit Taiwan and caused heavy rains were selected for rain-generating simulation and rain-making factorial identification-optimization. 
The event information is provided in Table S1; the typhoon duration ranged between 53 and 96 h. 

3.2. Classified typhoon categories using fuzzy c-means clustering 

The present study uses fuzzy c-means clustering [48] to analyze the associated characteristics of moving paths, atmospheric 
structures, and rainfall patterns of historical typhoons. The classified factors included the observed time series of the typhoon’s central 
location, 11 atmospheric rain-making factors, and rainfall hydrographs in Taipei and Kaohsiung. Figs. S1(a–c) shows the spatio-
temporal distribution of the moving trajectories and average near-center maximum wind speed (MAWS) for each category. Based on 
this, the rain-making factor-induced rainfall patterns can be divided into two categories, and typhoon wind/rain prediction may 
improve accuracy derived from the azimuth-wind field-rainfall analyzed results. While hitting Taiwan, the moving direction of ty-
phoons in category 1 did not change much (between 272◦ and 339◦), and after passing through Taiwan, the moving path turned to 
head between 318◦ and 32◦. Before hitting Taiwan, typhoons in category 2 were generally heading northwest (between 296◦ and 323◦) 
and turned to head west at landfall. After passing through the Central and Snow mountain ranges, 63 % turned to head between 285◦

and 6◦. Crossing the five major mountain ranges seriously damaged the typhoon’s structure and intensity. Since the average moving 
speed of the typhoons in category 1 (17.3 km h− 1) was significantly faster than that of typhoons in category 2 (11.7 km h− 1), the 
weakening damage of the structural wind speed for category 1 was relatively slight. After crossing the mountains, the MAWS (39 m 
s− 1) of typhoons in category 1 was moderately stronger than those in category 2 (32 m s− 1). 

3.3. Identified rain-making DNAs of typhoons in the characteristic categories 

We performed SVD on the spatiotemporal rainfall patterns of typhoons characteristically classified in section 3.2. Then we 
calculated Pearson’s correlation coefficients between each component and rain-making variable to determine the causative rain- 
making DNAs (− 2), which are associated with paths of typhoons (− 1) in categories 1 and 2 in Taipei are shown in Fig. 3(a–f) and 
Fig. 4(a–e), respectively and those in Kaohsiung are shown in Fig. S2(a–f) and S3 (a–e), respectively. Analytical results show that the 
different typhoons were unique in their observatory’s rain-making DNA, and the identified multi-rank rain-generating components 
from each specific wind/cloud factor can improve prediction accuracy in rainfall patterns and causal parameters. Specifically, DNAs 
for category 1 typhoons in Taipei were mainly concentrated on PCs 1, 3, 4, and 7, which DNAs of typhoons Dujuan and Soudelor, 
Nanmadol and Sepat as well as of Morakot and Sinlaku were very similar. Comparison of paths reveals that the more similar the rain- 
making DNA, the more similar the moving direction and trajectory. The rainfall features of category 2 typhoons in Taipei were 
concentrated on PCs 1, 2, and 5; specifically, the DNAs of typhoons Aere, Soulik, and Haitang were approximately similar, and those of 
Krosa and Jangmi were partially similar; for these typhoons, causal components on PC1 were related to wind speed and cloud dis-
tribution (LCH and CH); those on PC2 were related to specific wind factors; and those on PC5 were mostly generated by cloud cover 
distribution (LCH, LCC, CH, and TCC). 

For category 1 typhoons in Kaohsiung, the rain-making DNAs in multi-rank components were more diverse than those in Taipei. 
Specifically, the DNAs of typhoons Dujuan and Soudelor were very similar; moreover, their moving path and direction were very 
similar, with rainfall features mainly concentrated on PC1 and PC3, closely related to wind factors. Further, the DNAs of typhoons 
Nanmadol and Morakot were similar, with rain-making factors concentrated on PCs 1, 2, and 4, which were closely related to wind 
force/direction. The two typhoons moved in a similar direction during their landing in Taiwan. However, Nanmadol, which invaded 
southern Taiwan, lacked the rain-making source on PC6, compared to Morakot, which invaded the north. Additionally, the DNAs of 
Sinlaku, which crossed northern Taiwan, were more abundant than those of Sepat, which crossed the south, indicating rather diverse 
rain-making sources. In Kaohsiung, the DNA features and moving directions of category 2 typhoons Aere, Jangmi, and Krosa were 
similar before invading Taiwan. Their rain-making factors for wind force/direction and cloud cover were distributed on PC1. In 
particular, high-rank components for Aere, which traveled westward after invading Taiwan, were mainly concentrated on PCs 2 and 5; 
those for Jangmi, which traveled northwest, were concentrated on PCs 2 and 6; and those for Krosa, which traveled east, were 
concentrated on PCs 2, 3, and 5. The moving directions and DNAs of Soulik and Haitang were very similar, with primary factors 
concentrated on PCs 1 and 2 and secondary on PC4 and PC5. Overall, for category 2 typhoons in Kaohsiung, wind force and direction 
triggered more rainfall than cloud cover distribution. 

3.4. Rain-generating modeling results and discussion 

Given that the number of simulation model parameters in this study is not more than the number of observations with no risk of 
occurring ill-posed problem, BFGS quasi-Newton and CG algorithms [37] were used with cross-validation to identify rain-generating 
model parameters for typhoons with similar rain-making DNAs in section 3.3. Comparison of simulated and observed rainfall 
hydrographs after model calibration for the Taipei and Kaohsiung observatories are presented in Figs. S4 and S5, respectively, in which 
the shown typhoon events occurred during heavy rains at the corresponding observatories. For rainfall during typhoons Soudelor and 

C.-L. Huang et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e20478

21

Fig. 5. Identified temporal patterns (− 1) and overall averaged charts (− 2) of causal rainfall-making degree composition for typhoons (a) Soudelor, 
(b) Dujuan, (c) Aere, and (d) Soulik in Taipei. 
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Dujuan in Taipei, simulated MAE values are 2.132 and 3.066 mm h− 1, and CC values are respectively 0.936 and 0.696. For Aere and 
Soulik, simulated MAEs are respectively 1.802 and 1.273 mm h− 1, and CCs are respectively 0.905 and 0.734. The changing trends of 
simulated and observed rainfall hydrographs are similar, indicating that the selected rain-making factors could realistically simulate 
the generated rainfall. For rainfall during typhoons Soudelor, Dujuan, Morakot, Sepat, Haitang, and Jangmi in Kaohsiung, simulated 
MAEs are respectively 1.549, 0.239, 3.098, 0.489, 1.261, and 1.028 mm h− 1 and CCs are respectively 0.915, 0.876, 0.922, 0.925, 
0.950, and 0.933. Overall, the established rain-generating model with the designed swarm response functions could effectively 
simulate fluctuating trajectories and yield accurate rainfall hydrographs under various rain-making factorial interactions with 
different invasive paths, structures, intensity, and cloud cover distribution. 

3.5. Identified multi-causal rain-making thresholds during typhoons 

By identifying the distribution of various causal rain-making thresholds while invading Taipei and Kaohsiung using the designed 
key–lock quasi-Newton optimization, as shown in Fig. S6(1–10) and S7 (1–10), the rain-generating mechanisms and characteristics of 
various typhoon’s atmospheric conditions are illustrated. The induced rainfall with occurrence timing may predict more accurately 
according to these identified threshold parameters and observed/simulated atmospheric variables. While invading Taipei, the results 
for typhoons Aere and Soulik were as follows. (1) The rain-making thresholds for MAWS, MIWS, CH, and TCC presented a steady state, 
and the ranges of MAWS were respectively 10.20–10.53 and 7.83–8.11 m s− 1 (2) Thresholds for the angle between AWD and 
geomorphic notch axis, angle between MAWD and monsoon, LCH, and LCC presented an approximate steady-state; ranges of the 
converging accompanied maximum angle of monsoon were respectively 51.16◦–53.20◦ and 49.62–51.42◦, and the thresholds for LCC 
were respectively 9.07–9.26 and 7.70–7.88. (3) Thresholds for AP and AWS presented a similar steady-state; AP threshold ranges were 
996.99–999.44 and 993.47–998.39 hPa, respectively. These characteristics can be attributed to small changes in the moving direction 
of Aere and Soulik while invading Taiwan, paths not passing through the mountain ranges, and small damage to the wind/cloud 
structure. In contrast, when hitting Taipei, only the TCC of Soudelor and Dujuan presented a similar steady-state, whereas the 
remaining variables were unsteady, even with a gradual transition. For these typhoons, ranges of rain-making thresholds for MAWS 
were respectively 11.23–15.35 (average = 12.73) m⋅s− 1 and 8.38–11.92 m s− 1; those of monsoon’s co-accompanying maximum angle 
were respectively 54.59◦–66.88◦ (average = 58.19◦) and 48.89◦–61.09◦; those of LCC were 7.27–8.64 and 8.54–9.80; and those of AP 
were 994.36–999.38 and 1000.92–1004.26 hPa. These changes in rain-making thresholds when invading Taiwan can be attributed to 
significant changes in moving direction and paths crossing towering mountains, resulting in severe damage to the atmospheric 
structure. Overall, the fluctuating and multi-peak rain types of Soudelor and Dujuan were more obvious than those of Aere and Soulik. 

As opposed to the trends in Taipei, when hitting Kaohsiung, the rain-making thresholds for AWS, the angle between AWD and 
mountainous vertical axis, MAWS, the angle between MAWD and monsoon, MIWS, LCH, LCC, CH, and TCC of typhoons Dujuan, 
Haitang, Jangmi, and Sepat were steady (Fig. S7(1–10)). For these typhoons, the rain-making thresholds for monsoon’s co- 
accompanying maximum angles were respectively 46.51◦, 50.87◦, 79.36◦, and 44.14◦; those for MAWS were respectively 8.53, 
8.57, 4.76, and 5.87 m s− 1; and those for LCC were respectively 9.26, 8.23, 7.71, and 6.91. The thresholds for Jangmi were overall 
lower than those for the other three typhoons because it carried a large cloud cover and high wind speed while traveling between 
northwest and north-northwest, introducing strong monsoon airstreams. The rain-making thresholds for AP were as follows. (1) For 
Morakot and Haitang, AP presented an unsteady gradual transition, with thresholds of respectively 985.43–1006.34 and 
990.06–1001.79 hPa, because of severe topographical damage to the wind/cloud structure and large atmospheric environmental 
changes during typhoons. (2) For Dujuan, Jangmi, and Sepat, AP presented a steady-state, with thresholds of 1001.60, 1002.12, and 
996.34 hPa. Except for LCH, the other 10 rain-making factors for Soudelor showed a similar steady-state, and the thresholds for 
monsoon’s co-accompanying maximum angle, MAWS, LCC, and AP were respectively 58.06◦, 6.70 m s− 1, 5.07, and 991.21–995.24 
hPa, because of the strong and rarely damaged wind/cloud structure and linear moving path at the time of invading Taiwan. Morakot 
differed from the other typhoons in that all rain-making factorial distributions of this typhoon showed large gradient transitions and 
were unsteady; specifically, thresholds for monsoon’s co-accompanying maximum angle, MAWS, and LCC were respectively 
38.72◦–59.22◦, 7.90–11.04 m s− 1, and 6.48–8.74. When crossing from the north of Kaohsiung at a slow speed and traveling between 
northwest and north-northwest, southwest monsoon airflow was introduced, and the multi-layer cloud cover was very abundant and 
thick, which triggered the largest typhoon rainfall event in history [31]. 

3.6. Spatiotemporal rain-making causal composition 

The identified time distributed composition (− 1) of causal rain-making degree and event-based space–time–integrated affected 
percentages (− 2) for four typhoons that caused heavy rainfalls in Taipei, namely Soudelor, Dujuan, Aere, and Soulik, are presented in 
Fig. 5(a–d). These meticulously analyzed results can enhance the causal understanding of rain-generating processes and rain-making 
hot zones with detailed magnitude by each factor. The range of monsoon co-accompanying rain-making percentage was 16.47%– 
18.96 %, with a relatively unsteady distribution and intermittent producing characteristics because the rain-making amount is related 
to wind direction and the angle between typhoon and monsoon. The terrain uplift rain-making degree was between 17.96 % and 22.47 
%, and rain-making was related to the angle between the wind field and the mountain axis. Since the mountainous ridgeline is fixed, 
but the monsoon’s direction/intensity is time-varying, the rain-making distribution of terrain uplift was relatively stable and uniform. 
The affected degree of LCC and wind accelerator (MIWS + MIWD) was related to the observatory on the windward or leeward side. 
Overall, after crossing mountains, rainfall within the storm radius produced by LCC and wind accelerator was slightly higher than that 
at peripheral circulation before invading Taiwan. Figs. S8(a–g) shows the identified causal rain-making degree of the remaining 
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typhoons (Nanmadol, Sepat, Morakot, Sinlaku, Haitang, Jangmi, and Krosa) that caused low rainfall in Taipei, illustrating the rain- 
making percentage of the monsoon’s co-accompanying effect, terrain uplift effect, LCC, and wind accelerator (12.81%–18.96 %, 
13.30%–22.47 %, 7.23%–11.29 %, and 14.05%–20.72 %, respectively). 

Fig. 6(a–f) shows the identified causal rain-making composition and event-based average affected degree for typhoons Soudelor, 
Dujuan, Morakot, Sepat, Haitang, and Jangmi that caused heavy rains in Kaohsiung, illustrating the rain-making percentages of 
monsoon’s co-accompanying and terrain uplift effects (14.75%–19.13 % and 16.76%–20.25 %, respectively); among these, distri-
bution during Dujuan, Sepat, Haitang, Jangmi tended to be uniform. When crossing between the west-northwest and north-northeast 
of Kaohsiung, rainfall produced by the monsoon’s convergent effect tended to increase because the above typhoons stably traveled 
between west-northwest and north-northwest at the time of invading Taiwan without major structural damage after crossing the 
mountains. During Soudelor and Morakot, large atmospheric changes led to the sharp turning of the moving path; thus, the rain- 
making hydrograph showed a non-uniform distribution. For the above six typhoons, the rain-making degree of LCC and wind 
accelerator ranged from 7.86 % to 9.89 % and from 15.95 % to 19.62 %, respectively; as such, the rain-making distribution between 
LCC and TCC and that between LCH and CH showed a mutual exchange, indicating strong horizontal convection and vertical exchange 
of cloud cover. In addition, when Sepat, Morakot, and Soudelor crossed the mountains, the atmospheric structure near the storm radius 
was disturbed, damaged, and pulled by the terrain. The rain-making supply of the wind accelerator was temporarily weakened but 
resumed after crossing the mountains and reorganization. Figs. S9(a–e) shows the event-averaged causative rain-making percentages 
of monsoon’s co-accompanied effect, terrain uplift effect, LCC, and wind accelerator for the remaining typhoons (Nanmadol, Sinlaku, 
Krosa, Soulik, and Aere) that caused light rains in Kaohsiung were 14.96%–20.80 %, 15.77%–20.83 %, 9.16%–13.21 %, and 15.39%– 
20.20 %, respectively. 

Furthermore, to explore in detail the causal relationships of the various rain-generating evolutional characteristic distributions 
with atmospheric, geomorphic, and oceanic environmental distributions, this study elaborately analyzed the spatiotemporal rain- 
making degree patterns of the terrain uplift effect, monsoon’s co-accompanied effect, wind accelerator, and LCC during category 1 
and 2 typhoons in Taipei and displayed rain-making hot zones with mechanisms, as shown in Figs. S10, S11, S12, and 7. As shown in 
Fig. S10(1-a – 1-f) and S10 (2-a – 2-e), when traveling between the northeast and south-southeast of Taipei, the multi-layer rainy cloud 
cover entrained by the wind field was transmitted along the Tamsui River Valley to the windward-sided Taipei Basin of the Snow 
Mountains, subsequently condensing moisture and producing rainfall, as observed in the case of typhoons Soudelor, Dujuan, Sepat, 
Sinlaku, Haitang, Krosa, and Aere. Additionally, when these typhoons were located in the hot zone between the west-southwest and 
north-northwest of Taipei, the rainy cloud airflow carried by the counterclockwise cyclone was transmitted along the Dahan Valley to 
the windward side of the Yangming Mountain, thereby producing heavy rainfall. Moreover, from event-based spatiotemporal rain- 
making distributions of MAWD shown in Fig. S11(1-a – 1-f) and S11 (2-a – 2-e), when the typhoons were located between the east- 
northeast and southwest of Taipei, their wind fields converged with gradient and geostrophic winds to transport airflow clouds and 
produce significant rainfall. Moreover, when Morakot, Haitang, and Aere were located between the west-southwest and north-north- 
west of Taipei, their wind fields converged with the southwest monsoon to introduce cloudy airflow and produce heavy rains. 
Furthermore, when located between the east-southeast and south-southeast of Taipei, the autumn typhoons Krosa, Jangmi, and Dujuan 
were in the northeast monsoon’s co-accompanied rain-making hot zones. Furthermore, as shown in Fig. S12(1-a – 1-f) and S12 (2-a – 2- 
e), before the landfall of the center in Taiwan, the rain-making degree of MIWS was the largest, with a stable supply. While crossing 
mountains, the wind structure and cloud distribution are damaged; thus, the rainfall produced by MIWS after the typhoon leaves 
Taiwan is significantly lower than that at the time of landfall (e.g., for Soudelor, Dujuan, Soulic, Krosa, and Aere). Alternatively, 
Morakot, Sepat, Haitang, and Jangmi assume an unstably broken reforming state (e.g., Morakot, Sepat, Haitang, and Jangmi). 
Similarly, as shown in Fig. 7(1-a – 1-f) and 7 (2-a – 2-e), the rain-making degree of LCC before the landfall of the storm radius and at the 
time of invading Taiwan was significantly greater after crossing the mountains and heading toward the Taiwan Strait. All events 
indicated that cloudy rainbands were blocked by mountains when landing in and crossing Taiwan, and produced rain. The damaged 
wind field and cloud structure after crossing Taiwan were reorganized, which greatly reduced rain-making by LCC. 

Contrary to the trends observed in Taipei, when traveling between the northwest and northeast of Kaohsiung, multi-layer clouds 
with rainbands carried by the typhoons’ wind fields were transmitted along the Kaoping River Estuary to the windward Kaohsiung of 
Yushan Mountains, carrying condensed water vapor to produce rainfall, as observed in the case of Soudelor, Dujuan, Morakot, Sepat, 
Sinlaku, Jangmi, and Krosa (Fig. S13). In addition, when located between the west-southwest and northeast of Kaohsiung, the wind 
fields of typhoons converged with the southwest monsoon to introduce airflow with rainbands, causing its hot zone to have a 
particularly high monsoon’s co-accompanied rain-making degree, as observed in the case of Soudelor, Morakot, Sepat, Haitang, and 
Aere (Fig. S14). When crossing between east-southeast and southwest of Kaohsiung, the wind fields of typhoons converged with 
gradient and geostrophic winds or the northeast airflow and carried cloudy rainbands to the catchment to produce heavy rains, as 
observed in the case of Nanmadol and Sepat. Furthermore, three trigger scenarios with hot zones can be illustrated from the Kaohsiung 
rain-making spatiotemporal distribution of MIWS in Fig. S15(1-a – 1-f) and S15 (2-a – 2-e). (1) After crossing the mountains, the cloud 
structure and rain-making intensity weakened, and after traveling toward the Taiwan Strait and reorganizing, the rain-making in-
tensity of MIWS increased again, as in the case of Nanmadol, Sepat, Morakot, and Aere. (2) The intensity did not weaken significantly 
after crossing Taiwan and continued to supply rain-making amounts until the storm radius left Kaohsiung, as in the case of Soudelor, 
Haitang, and Jangmi. (3) Rain-making supply was available only during landfall in Taiwan and ceased after leaving the country, as in 

Fig. 6. Identified temporal patterns (− 1) and overall averaged charts (− 2) of causal rain-making degree composition for typhoons (a) Soudelor, (b) 
Dujuan, (c) Morakot, (d) Sepat, (e) Haitang, and (f) Jangmi in Kaohsiung. 
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Fig. 7. Identified rain-making degree spatiotemporal patterns of LCC for category (1-) typhoons Soudelor (-a), Dujuan (-b), Nanmadol (-c), Morakot 
(-d), Sepat (-e), Sinlaku (-f) and category (2-) typhoons Soulic (-a), Haitang (-b), Jangmi (-c), Krosa (-d), Aere (-e) in Taipei. 
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Fig. 8. Identified rain-making spatiotemporal patterns of LCC for category (1-) typhoons Soudelor (-a), Dujuan (-b), Nanmadol (-c), Morakot (-d), 
Sepat (-e), Sinlaku (-f) and category (2-) typhoons Soulic (-a), Haitang (-b), Jangmi (-c), Krosa (-d), Aere (-e) in Kaohsiung. 
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the case of Dujuan, Sinlaku, Soulic, and Krosa. Similarly, from the rain-making spatiotemporal distribution of LCC in Kaohsiung shown 
in Fig. 8(1-a – 1-f) and 8 (2-a – 2-e), three stochastic hot types can be illustrated. (1) The cloud structure was not damaged by the terrain 
when crossing the mountains, and after crossing, LCC continued to supply stable rainfall until the storm radius left, as in the case of 
Soudelor, Sepat, and Jangmi. (2) When landing in Taiwan, the rain-making degree of LCC increased and subsequently peaked. The 
cloud structure was moderately damaged when crossing the mountains, greatly weakening rain-making after moving toward the 
Taiwan Strait and showing intermittent supply and unstable reorganization, as in the case of Nanmadol, Morakot, Haitang, Krosa, and 
Aere. (3) LCC only caused rain during landfall in Taiwan. When crossing the mountains, the cloud structure was severely damaged and 
intercepted, and after moving toward the ocean, LCC could not produce rainfall in Kaohsiung, as in the case of Dujuan, Sinlaku, and 
Soulic. 

4. Conclusions 

Accurate spatiotemporal identification of typhoons’ co-evolving rain-making causes and parameters with diverse dynamics is 
difficult. To precisely approximate the Hessian matrix, solve the nonlinear ill-posed problem, and reduce the simulated computational 
cost, this study uses composite logical tangent hyperbolic functions as systematic nonlinear advanced algebraic equations to construct 
the rain-generating simulation model, combined with a designed key–lock quasi-Newton optimizing derivation based on mathematical 
analysis to derive the Hessian matrix of high-dimensional multi-order derivatives of the objective function for rainfall cause 
decomposition into advanced functionalized algebraic analytical solution (lock) and constrained equations that satisfy Newton’s 
condition. Specifically, the rank-two approximate structure of the LM and BFGS quasi-Newton algorithms are modified as that a 
symmetric rank-four structure, which could efficiently calculate an accurate, positive definite, and numerically stable Hessian, solve 
the constrained nonlinear optimization problem of rain-making threshold parameters, and quantify the rain-generating amount of 
every cause. The functional module specifically projects the observed variables of various atmospheric rain-making factors (e.g., multi- 
layer cloud height/cover, monsoon co-accompanied effect, terrain uplift effect, and ceiling height, among others) into multi-rank rain- 
loading scores calculated through SVD to classify rain-generating causes/mechanisms and characterize feature components under 
dimension reduction. To accelerate directional convergence, detect and escape the local minimum, approach the global optimum, and 
modify the search direction, this study devises vectorized limited switchable step size combined with a derived multi-order analytical 
solution to solve the rain-making cause threshold, reduce the difference of heterogeneous parameters, and eliminate the Hessian 
element value overestimated by the conventional quasi-Newtons. The candidate parameter correction vector (key) and the reference 
step-size distributed bounds solved by the analytically derived Newton’s conditional constraints combined with an advanced func-
tional precise double-bracketing approach could rapidly optimize the vectorized step size configured with various rain-making factors. 
Inputting the candidate solution into the Hessian analytical solution allow for calculating a Hessian that precisely satisfies Newton’s 
conditions and determining the referenced parameter correction direction, including Taylor expansion error, derivative approximate 
error, and parameter uncertainty. Particularly, DNAs of various typhoons are identified to characterize the associated structure of 
moving tracks and rain-making causal degrees using fuzzy c-means clustering. 

This study selects Taipei, Kaohsiung, and five other stations for typhoons’ rain-making causal identification. Fuzzy c-means 
clustering revealed that the triggered rainfall could be characterized by two categories. The invasive angle of category 1 typhoons 
ranged from 272◦ to 339◦, and their paths turned between the north-northwest and north-northeast after crossing Taiwan. For category 
2 typhoons, this angle was between 296◦ and 323◦ before invading Taiwan, and their path turned 63 % toward the north-northwest 
after crossing mountains. The identified rain-making DNAs revealed that typhoons with similar DNAs move in similar directions and 
show a close correlation with specific factorial components; for instance, in Taipei, rainfall DNAs of category 1 typhoons were 
concentrated on PCs 1, 3, 4, and 7, which were related to wind and cloud height, while those of category 2 typhoons were concentrated 
on PCs 1, 2, and 5, which were related to cloud-cover distribution. Moreover, in Kaohsiung, the diverse rain-making DNAs of category 
1 typhoons were concentrated primarily on PCs 1 and 3 and secondarily on PCs 2 and 4, which were correlated with wind force/ 
direction. The calibrated rain-generating simulation model illustrated that the CCs between simulated and observed rainfall among 
training and validation at Taipei and Kaohsiung were 0.696–0.936 and 0.876–0.950, respectively, indicating that the designed swarm 
response functions could effectively simulate the changing trends of rainfall for different typhoons. The identified Taipei rain-making 
thresholds of typhoons with a constant direction and structure demonstrated steady-state; specifically, the thresholds for MAWS, 
monsoon convergent maximal angle, and LCC were 7.83–10.53 m s− 1, 49.62◦–53.20◦, and 7.70–9.26, respectively. Meanwhile, ty-
phoons with changed direction and damage, which produced multi-peak rainfall hydrographs, showed unsteady thresholds; specif-
ically, their thresholds for MAWS, monsoon convergent maximal angle, and LCC were 8.38–15.35 m s− 1, 48.89◦–66.88◦, and 
7.27–9.80, respectively. In contrast, 83 % of the typhoons in Kaohsiung with introduced southwest airflow showed steady but lower 
thresholds (4.76–8.57 m/s, 44.14◦–58.06◦, and 5.07–9.26, respectively). 

The identified causal rain-making composition showed during typhoons in Taipei (Kaohsiung), the affected degree for the monsoon 
convergent effect, terrain uplift effect, LCC, and wind accelerator was 12.81%–18.96 % (14.75%–20.80 %), 13.30%–22.47 % 
(15.77%–20.83 %), 7.23%–11.89 % (7.86%–13.21 %), and 14.05%–20.72 % (15.39%–20.20 %), respectively. The monsoon 
convergent effect was the largest when the typhoons crossed between west-northwest and north-northeast of Kaohsiung, and the time- 
varying angle between the typhoon and monsoon caused a non-uniform rain-making distribution, with LCC, TCC, LCH, and CH 
showing strong horizontal convection and vertical exchange. The rain-generating causal time–space evolving analysis showed that in 
Taipei, rains were produced when the typhoons traveled (1) between northeast and south-southeast of Taipei, where the rainy clouds 
carried by the wind field were transmitted along the Tamsui River valley; (2) between west-southwest and north-northwest, where the 
cloud cover carried by the counterclockwise cyclone was transported to the windward Taipei along the Dahan Valley; and (3) between 
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east-northeast and southwest, where the wind field converged with the gradient and geostrophic winds. In contrast, rains occurred in 
Kaohsiung when the typhoons traveled (1) between northwest and northeast, where the wind field carried cloudy rainbands along the 
Kaoping River Estuary; (2) between west-southwest and northeast, where the typhoon merged with the southwest monsoon to 
introduce rainbands; and (3) between east-southeast and southwest, where the typhoon merged with gradient and geostrophic winds 
or northeast airflow. MIWS and LCC showed three stochastic patterns in Kaohsiung: (1) undamaged structure when crossing the 
mountains continued rain-making until the storm radius left; (2) rain-making was the highest before crossing the mountains, but 
subsequently, structural and rain-making intensity weakened after the storm left (same as that in Taipei); and (3) rain-making only 
occurred at the time of landfall, because the cloud structure was damaged and intercepted by the mountains. 

Future studies should use more advanced three-dimensional high-resolution cloud cover/height, wind speed/field, and other 
typhoon atmospheric remote sensing data in the simulation-optimization calculation to improve the accuracy of key–lock quasi- 
Newton multi-order computation and reduce the limitations of high-dimensional rainstorm causal decomposition. 
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