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The abnormal growth of cells in the breast is called malignancy or breast cancer; it is a life-threatening and dangerous cancer in
women around the world. In the treatment of cancer, the doctors apply different techniques to stop cancer cell development,
remove cancer cells through surgery, or kill cancer cells. In chemotherapy treatment, powerful drugs are used to kill abnormal
cells; however, it has adverse reactions on the patient heart which is called cardiotoxicity. In this paper, we formulate the
dynamics of cancer in the breast with adverse reactions of chemotherapy treatment on the heart of a patient in the fractional
framework to visualize its dynamical behaviour. We listed the fundamental results of the fractional calculus for the analysis of
our model. The model is then analyzed for the basic properties, and the existence and uniqueness of the proposed breast
cancer system are investigated through fixed point theory. Furthermore, the Adams-Bashforth numerical technique is
presented for the solution of fractional-order system to illustrate the time series of breast cancer model. The dynamical
behaviour of different stages of breast cancer is then highlighted numerically to show the effect of fractional-order ϑ and to
visualize the role of input parameter on the dynamics of breast cancer.

1. Introduction

Medical experts reported that breast cancer is the abnormal
growth of cells in the breast which is a life-threatening dis-
ease and is mostly found in women. It is reported in [1] that
breast cancer has the highest incidence rate as compared to
the other cancer types. It destroys breast tissue and breast
cells to grow out of control and to change the breast to

abnormal shape. After lung cancer, breast cancer is declared
to be the largest cancer in the globe, and every woman may
be infected by this infection. It is stated by the WHO that
about 8 to 9 percent of the women are infected by breast
cancer in the world; moreover, the root cause is not yet
explored by the medical experts. However, several risk fac-
tors are predicted which increase the risk of breast cancer
in women which include dietary arrangements, drinking
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alcohol, smoking, being a woman, dense breast, lack of exer-
cise, pregnancy history, genetic, breastfeeding history, race,
menstrual history, life history, weight, certain breast
changes, personal history of breast cancer, and age. The
main symptoms of breast cancer are swollen lymph node
nipple discharge, pulling in of the nipple, breast or nipple
pain, flaky skin on the breast or nipple, irritation of the skin,
dimpled skin red, a change in the size or shape of a breast,
thickening of part of a breast, and full or partial swelling.
Figure 1 is the representation of breast or milk making fac-
tory for the newly baby child with cancer cells which further
grow and damage the body of infected individuals.

Medical authorities assess cancer condition of a patient
by using stages, and these stages are tumor, node, and metas-
tasis which determine the chances of recovery from cancer.
The early the stage, the greater the chances of recovery.
Numerous treatment techniques have been developed for
prevention of cancer which includes surgery, gene therapy,
bisphosphonates, immunotherapy, targeted cancer drugs,
hormone therapy, bone marrow transplants and stem cell,
cancer drugs, radiotherapy, and complementary and alterna-
tive therapies. The most common treatment of the above is
chemotherapy which involves the use of drugs to kill cancer
cells. In chemotherapy, the drugs are either injected to the
patient or are used orally which have some effectiveness
but may hurt the heart. This bad side effect is called cardio-
toxicity and affects children and adults [2]. The failure of
patient heart is reported and observed during oncological
treatment of anthracyclines and trastuzumab [3]. It is still
a challenge for cancer expert and cardiologists to prevent
cardiotoxicity experience during chemotherapy treatment.
In chemotherapy treatment, anthracycline drugs are used
which affect the heart of the patient and lead to cardiotoxi-
city illustrated in Figure 2.

Mathematical frameworks are used to conceptualize the
intricate dynamics of diseases and to provide accurate results
for the control and prevention of these infections [4, 5]. In
modeling of cancer, the journey starts from 1954 [6] to
explain cancer, and then, the researcher studies different
aspects of cancer and tumor growth [7, 8]. A mathematical
model of chemotherapy treatment for cancer has been devel-
oped by Dixit et al. [9]; the authors represent the treatment
procedure for tumor cancer. The dynamics of cancer repre-
sent the interactions of tumor cell energy and tumor cell
density and the effect of chemotherapy drugs. Recently, a
mathematical model has been formulated for low-dose che-
motherapy with minimal parameters; they studied angio-
genic signals between vasculature and tumors [10]. In [11],
a compartmental model has been developed by Jordao and
Tavares; they consider cancerous and healthy cells to analyze
the proposed model of cancer. The role of time delay on the
dynamic of tumor system has been investigated by S. Kha-
janchi and Nieto [12]. Another important model was devel-
oped by Mahlbacher et al. [13] to conceptualize the
interactions between immune and tumor and predict better
suggestions about cancer. In the literature, several mathe-
matical models have been developed and formulated to
study, conceptualize, and visualize the transmission phe-
nomena of cancer [14–17].

Recent advancement of fractional calculus showed that
the results of fractional operators are more accurate, pre-
cious, and reliable as compared to the system of classical
derivatives [18, 19]. Novel fractional operators are developed
which modeled real-world problem in mathematics, biology,
engineering, economics, physics, and other areas of science
and technology [20–23]. In fractional calculus, a variety of
fractional operators are introduced for the study of real-
world issues. These operators, on the other hand, have a
power law kernel and can only simulate physical problems
to a limited extent. To solve these challenges and limitations,
Caputo and Fabrizio presented a new fractional operator
with an exponential decay kernel. Because of its nonsingular
kernel, this unique operator is a revolutionary fractional
derivative operator that has piqued the interest of many
scholars. The results of this novel operator are more suitable
and have many applications [24, 25]. To be more specific,
the transmission phenomena of cancer with treatment and
unknown parameters have been successfully represented
through CF derivative [26, 27]. To get more realistic find-
ings, we choose to depict the transmission mechanism of
breast cancer with side effects on patient heart during che-
motherapy through CF fractional derivative.

These accurate results and outcomes of fractional cal-
culus motivate us to inspect and interrogate the dynamics
of breast cancer with adverse reactions of chemotherapy
treatment on patient heart through Caputo-Fabrizio (CF)
fractional operator. In Section 1 of the article, we represent
the fundamental idea of fractional calculus for the analysis
of our system. In Section 2, a fractional model is formu-
lated for breast cancer with the adverse reactions of che-
motherapy treatment on the heart of a patient in
fractional framework. The proposed model of breast can-
cer is then investigated through mathematical skills. The
existence and uniqueness of the solution of the formulated
FO model of breast cancer patients through the fixed point
theorem are presented in Section 3 of the article. The
dynamics of proposed cancer model is then analyzed with
the variation of different input parameters numerically in
Section 4. Finally, concluding remarks and suggestions
are presented in the last section.

Breast cancer

Cancer

Lymph nodes

Lobules Ducts

Figure 1: Illustration of milk making (lobules) and shuttling
(ducts) glandular epithelial cells anchored by connective tissue.
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2. Formulation of the Model

In the formulation of the model, we consider the population
of breast cancer patients in a hospital where we categorized
the total population of breast cancer patient into stage 1,
stage 2, stage 3, and stage 4 subpopulations during the first
medical report. It is assumed that all the patient are treated
with chemotherapy treatment in the hospital where the
patients are passing with different stages during treatment,
some patients experience cardiotoxicity, and some patients
experience recovery while some getting worse condition of
the disease during chemotherapy process. A compartmental
model of five subgroups is formulated having subcompart-
ments of stages 1 and 2 (CA), stage 3 (CB), stage 4 (CC),
disease-free state (CD), and cardiotoxic (CE) subgroups
where the number of cancer patients in stages 1 and 2 is
smaller than the other stages; therefore, they are placed in
one subgroup.

New patients identified to suffer in stages 1 and 2 cancer
are assumed to be η1 while for stage 3 and stage 4 are
assumed to be η2 and η3, respectively. The subgroup CA hav-
ing chemotherapy may either move worse subgroup CB with
δAB or recover with a rate δAD. The patients of the subgroup
CB who are first treated in the hospital are recruited with a
rate η2. This subgroup is more intensive chemotherapy as
compares to CA, where the patient die from cancer with a
rate γ2, move to the recover subgroup with a rate δBD,
become more worse with a rate δBC , and at a rate δBE
become cardiotoxicity. The patients of cancer are recruited
to subgroup CC with a rate η3 during the treatment. In this
case, the rate of recovery δCD is smaller than the first two
and rate δCE towards cardiotoxicity is greater than the rate
of the subgroup CB due to intensive chemotherapy effect.
We assume γ3 to be the death rate of cancer patient in this
subgroup. In the forth subgroup, the population increased
from the first three subgroups and lose recovery at δDB,

δDC , and δDE to the subgroups CB, CC , and CE, respectively.
The patient in (CE) comes from (CB), (CC) and (CD) and
taste cardiac death with rateγ1. Then, the dynamics of breast
cancer with chemotherapy treatment with the above
assumptions is given by the following system of ODEs:

dCA

dt
= η1 − δADCA − δABCA,

dCB

dt
= η2 + δABCA + δDBCD − δBDCB − δBCCB − δBECB − γ2CB,

dCC

dt
= η3 + δBCCB + δDCCD − δCDCC − δCECC − γ3CC ,

dCD

dt
= δADCA + δBDCB + δCDCC − δDBCD − δDCCD − δDECD,

dCE

dt
= δDECD + δCECC + δBECB − γ1CE,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

with appropriate initial condition for vector

CA 0ð Þ ≥ 0,CB 0ð Þ ≥ 0,CC 0ð Þ ≥ 0,CD 0ð Þ ≥ 0,CE 0ð Þ ≥ 0:
ð2Þ

It is well-know that fractional system provides more
accurate results of the dynamics of a system developed from
natural phenomena. There are several fractional operators in
the literature of fractional calculus with power law kernel
and have limitations to mimic real-world problems. There-
fore, we applied Caputo-Fabrizio operator to our problem
which represents the dynamics of mathematical model
through exponential decay kernel to overcome these chal-
lenges and limitations. The dynamics of breast cancer
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Figure 2: Effect of anthracyclines on the heart of a patient during cancer chemotherapy.
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through CF fractional derivative can be expressed as follows:

CF
0 D

ϑ

t h tð Þð Þ = U ϑð Þ
1 − ϑ

ðt
a
h′ xð Þ exp −ϑ

t − x
1 − ϑ

� �
dx: ð3Þ

A detailed discussion of this operator has been presented
in the upcoming section of the article. We represent the sys-
tem (1) of breast cancer with the help of the above definition
of CF derivative as

CF
0 D

ϑ

tCA = η1 − δADCA − δABCA,
CF
0 D

ϑ

tCB = η2 + δABCA + δDBCD − δBDCB − δBCCB − δBECB − γ2CB,
CF
0 D

ϑ

tCC = η3 + δBCCB + δDCCD − δCDCC − δCECC − γ3CC ,
CF
0 D

ϑ

tCD = δADCA + δBDCB + δCDCC − δDBCD − δDCCD − δDECD,
CF
0 D

ϑ

tCE = δDECD + δCECC + δBECB − γ1CE ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

where ϑ is the order of CF fractional derivative such that
0 < ϑ ≤ 1 and the unit of the above fractional system is ½ϑ�−1.
In the next subsection, we will list some basic definitions and
statements related to CF fractional derivative for further
analysis of the model.

2.1. Rudimentary Knowledge. In this subsection of the article,
the fundamental results and definitions of fractional Caputo-
Fabrizio (CF) is presented for the analysis of our breast can-
cer model with chemotherapy treatment. The basic defini-
tions and results are given below:

Definition 1. Let us suppose h ∈H1ða, bÞ, where b is greater
than a; then, the CF derivative [28] of order ϑ is given by

Dϑ
t h tð Þð Þ = U ϑð Þ

1 − ϑ

ðt
a
h′ xð Þ exp −ϑ

t − x
1 − ϑ

� �
dx, ð5Þ

where ϑ ∈ ½0, 1� and UðτÞ denotes normality with Uð0Þ
=Uð1Þ = 1 [28]. In the case, when h ∉H1ða, bÞ, then the fol-
lowing fractional derivative is obtained:

Dϑ
t h tð Þð Þ = ϑU ϑð Þ

1 − ϑ

ðt
a
h tð Þ − h xð Þð Þ exp −ϑ

t − x
1 − ϑ

� �
dx: ð6Þ

Remark 2. Let us take α = 1 − ϑ/ϑ ∈ ½0,∞Þ and ϑ = 1/1 + α ∈
½0, 1�; then, equation (6) can be written in the following
form:

Dϑ
t h tð Þð Þ = M αð Þ

α

ðt
a
h′ xð Þe −t−x

α½ �dx,M 0ð Þ =M ∞ð Þ = 1: ð7Þ

Furthermore,

lim
α⟶0

1
α
exp −

t − x
α

� �
= δ x − tð Þ: ð8Þ

In [29], the authors introduced the concept of fractional
integral which is defined as follows:

Definition 3. Let h be a given function; then, the fractional
integral is defined in the following manner:

Iϑt h tð Þð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ h tð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
h uð Þdu, t ≥ 0,

ð9Þ

where 0 < ϑ < 1 is the order of the above fractional
integral.

Remark 4. From the above Definition 3, we can conclude
that

2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ +

2ϑ
2 − ϑð ÞU ϑð Þ = 1, ð10Þ

which gives UðϑÞ = 2/2 − ϑ, 0 < ϑ < 1. A new Caputo
derivative of order ϑ was introduced by Losada and Nieto
in [29] by using equation (10) and is given by

Dϑ
t h tð Þð Þ = 1

1 − ϑ

ðt
0
h′ xð Þ exp ϑ

t − x
1 − ϑ

� �
dx, 0 < ϑ < 1: ð11Þ

For the equilibrium point of breast cancer model (4), we
set all the fractional derivative of model (4) to zero and
obtain the equilibrium point given by Ee = ðC∗

A,C∗
B,C∗

C ,
C∗

D,C∗
EÞ: The equilibrium point exists and is

C∗
A =

η1
k1

,C∗
B =

α

k1λ
,C∗

C =
β

k1λ
,

C∗
D = ξ

k1λ
,

C∗
E =

v
k1λγ1

,

ð12Þ

where,

α = k3δBD + δDE + δDCð Þγ3 + δDE + δDCð ÞδCE + δDEδCDð Þη2δAB
+ k3η1 + δCDη3ð ÞδDB + η1 δDE + δDCð Þγ3 + δDE + δDCð ÞδCE
+ δDEδCDÞδAB + δAD k3δDB + δDE + δDCð Þγ3ðð
+ δDE + δDCð ÞδCE + δDEδCDÞη2 + k3η1 + δCDη3ð ÞδDBÞ,

β = k2δDC + δDB + δDEð ÞδBC + γ2 + δBD + δBEð ÞδDEð
+ δDB γ2 + δBEð ÞÞk1η3 + η1 + η2ð ÞδBC + γ2 + δBD + δBEð Þη1ðð
+ δBDη2ÞδDC + η2δDE + δDB η1 + η2ð Þð ÞδBCÞδAD
+ δBC + δBDð ÞδDC + δDB + δDEð ÞδBCð Þ η1 + η2ð ÞδAB,
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ξ = k2η1 + η1 + η3ð Þð δBD + δBCη2 + η3 γ2 + δBC + δBEð ÞδCDð
+ k2η1 + δBDη2ð Þ γ3 + δCEð Þð ÞÞδAD + δAB δBC + δBDð Þη1ð
+ η2 + η3ð ÞδBD + δBCη2 + η3 γ2 + δBC + δBEð ÞδCD
+ δBD η1 + η2ð Þ γ3 + δCEð ÞÞ,

v = η1 + η2 + η3ð ÞδBE + γ2 + δBC + δBDð Þη1 + δBC + δBDð Þη2ð
+ η3 γ2 + δBC + δBDð ÞÞδDEδADδCE + δDB + δDCð Þ η1 + η2 + η3ð ÞδBE
+ δDB + δDCð ÞδBC + δDC γ2 + δBDð Þη1ð
+ δBD + δDCð ÞδBC + δBDδDCð Þη2 + δDB + δDCð ÞδBC + γ2δDBð
+ δDC γ2 + δBDð ÞÞη3δADδCE + η+η2 + η3ð ÞδBEðð
+ δBC + δBDð Þη1 + δBC + δBDð Þη2 + η3 γ2 + δBCð
+ δBDÞÞδDEÞδABδCE + δDB + δDCð Þ η1 + η2 + η3ð ÞδBEð
+ δDB + δDCð ÞδBC + δBDδDCÞη1ÞδABδCE
+ δDB + δDCð ÞδBC + δBDδDCð Þη2ð
+ δDB + δDCð ÞδBC + γ2δDB + δDC γ2 + δBDð Þð Þη3ÞδABδCE
+ δDEδAD γ3 + δCDð Þη1 + γ3 + δCDð Þη2 + η3δCDð ÞδBEð
+ γ3 + δCDð Þ γ2 + δBC + δBDð ÞÞη1 + δBC + δBDð ÞδDC + γ3δBDð Þη2ð
+ η3δCD γ2 + δBC + δBDð ÞÞδDEδAD + δBE γ3 + δCDð ÞδDBη1ð
+ δDBδCD + γ3 δDB + δDCð Þð Þη2 + η3δCDδDBÞδAD
+ δABδDE γ3 + δCDð Þη1 + γ3 + δCDð Þη2ðð
+ η3δCDÞδBE δBC + δBDð ÞδCD + γ3δBDð Þη1Þ
+ δABδDE δBC + δBDð ÞδCD + γ3δBDð Þη2ð
+ η3δCD γ2 + δBC + δBDð ÞÞ + δBEδAB δBDδCDðð
+ γ3 δDB + δDCð Þη1 + δDBδCD + γ3 δBD + δDCð Þðð Þη2 + η3δCDδDBÞ,

λ = k1k2δDE + δDB + δDCð Þγ2 + δDB + δDCð ÞδBE + δBCδDBð
+ δBC + δBDð ÞδDCÞγ3 + δDB + δDCð Þγ2ð
+ δDB + δDCð ÞδBE + δBCδDB + δBC + δBDð ÞδDCÞδCE
+ δCDδDB γ2 + δBEð Þ,

ð13Þ

in which k1 = δAD + δAB, k2 = δBD + δBC + δBE + γ2, and
k3 = δCD + δCE + γ3: Here, for equilibrium of our fractional-
order breast cancer model, we have the following conclusion.
The disease-free equilibrium point can be easily determined
by taking the steady state of our system without infection.
These equilibrium points are important for the analysis of
the proposed fractional model of cancer with chemotherapy
treatment and can predict sufficient condition for the con-
trol and spread of the infection. We have the following result
based on the above investigation:

Theorem 5. There exists an equilibrium of the proposed frac-
tional model (4) of breast cancer without any condition.

3. Interrogation of Fractional System

Here, the solution of the proposed breast cancer model will
be investigated for existence through fixed point theory.
We use the concept of CF fractional derivative on the system

(4) and get the following:

CA tð Þ −CA 0ð Þ = CF
0 I

ϑ

t η1 − δADCA − δABCA½ �,
CB tð Þ −CB 0ð Þ = CF

0 I
ϑ
t η2 + δABCA + δDBCD − δBDCB − δBCCB − δBECB − γ2CB½ �,

CC tð Þ −CC 0ð Þ = CF
0 I

ϑ

t η3 + δBCCB + δDCCD − δCDCC − δCECC − γ3CC½ �, c
CD tð Þ −CD 0ð Þ = CF

0 I
ϑ

t δADCA + δBDCB + δCDCC − δDBCD − δDCCD − δDECD½ �,
CE tð Þ −CE 0ð Þ = CF

0 I
ϑ

t δDECD + δCECC + δBECB − γ1CE½ �:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

By applying the idea presented in [29], we get

CA tð Þ −CA 0ð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

η1 − δADCA − δABCA½ � + 2ϑ
2 − ϑð ÞU ϑð Þ

ðt
0

η1 − δADCA − δABCA½ �dy,

ð15Þ

CB tð Þ −CB 0ð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ η2 + δABCA + δDBCD½

− δBDCB − δBCCB − δBECB − γ2CB�
+ 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
η2 + δABCA + δDBCD½

− δBDCB − δBCCB − δBECB − γ2CB�dy,
ð16Þ

CC tð Þ −CC 0ð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ η3 + δBCCB + δDCCD½

− δCDCC − δCECC − γ3CC�
+ 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
η3 + δBCCB + δDCCD½

− δCDCC − δCECC − γ3CC�dy,
ð17Þ

CD tð Þ −CD 0ð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ δADCA + δBDCB + δCDCC½

− δDBCD − δDCCD − δDECD�
+ 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
δADCA + δBDCB½

+ δCDCC − δDBCD − δDCCD − δDECD�dy,
ð18Þ

CE tð Þ −CE 0ð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ δDECD + δCECC + δBECB½

− γ1CE� +
2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
δDECD + δCECC½

+ δBECB − γ1CE�:
ð19Þ
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In the next step, we proceed in the following manner:

L1 t,CAð Þ = η1 − δADCA − δABCA,
L2 t,CBð Þ = η2 + δABCA + δDBCD − δBDCB − δBCCB − δBECB − γ2CB,
L3 t,CCð Þ = η3 + δBCCB + δDCCD − δCDCC − δCECC − γ3CC ,
L4 t,CDð Þ = δADCA + δBDCB + δCDCC − δDBCD − δDCCD − δDECD,
L5 t,CEð Þ = δDECD + δCECC + δBECB − γ1CE:

8>>>>>>>><
>>>>>>>>:

ð20Þ

Theorem 6. If the following condition satisfies

0 ≤ δAD + δABð Þ < 1, ð21Þ

then, the kernels L1,L2,L3,L4, and L5 assure the
Lipschitz condition.

Proof. For the proof of Theorem 7, we first take CA and CA1
and start from L1 in the following manner:

L1 t,CAð Þ −L1 t,CA1ð Þ = −δADCA + δADCA1
− δABCA + δABCA1:

ð22Þ

Here, apply norm on Eq. (19) and simplify; we get the
following:

L1 t,CAð Þ −L1 t,CA1ð Þk k ≤ −δADCA + δADCA1k k
+ −δABCA + δABCA1k k ≤ δAD CA −CA1k k
+ δAB CA −CA1k k ≤ δAD + δABð Þ CA −CA1k k:

ð23Þ

At this stage, we assume μ1 = ðδAD + δABÞ; then, the fol-
lowing result is obtained:

L1 t,CAð Þ − L1 t,CA 1ð Þk k ≤ μ1 CA tð Þ −CA t1ð Þk k: ð24Þ

Thus, the Lipschitz condition is fulfilled for L1; in addi-
tion to this, the condition 0 ≤ ðδAD + δABÞ < 1 assure that the
contraction is also satisfied. In the same way, the Lipschitz
conditions for the other cases of our system are determined
as

L2 t,CBð Þ −L2 t,CB1ð Þk k ≤ μ2 CB tð Þ −CB t1ð Þk k,
L3 t,CCð Þ −L3 t,CC1ð Þk k ≤ μ3 CC tð Þ −CC t1ð Þk k,
L4 t,CDð Þ −L4 t,CD1ð Þk k ≤ μ4 CD tð Þ −CD t1ð Þk k,
L5 t,CEð Þ −L5 t,CE1ð Þk k ≤ μ5 CE tð Þ −CE t1ð Þk k:

ð25Þ

Further simplification of Eq. (19) implies

CA tð Þ = CA tð Þ 0ð Þ + 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL1 t,CA tð Þð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L1 y,CA tð Þð Þð Þdy,

CB tð Þ =CB tð Þ 0ð Þ + 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL2 t,CB tð Þð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L2 y,CB tð Þð Þð Þdy,

CC tð Þ =CC tð Þ 0ð Þ + 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL3 t,CB tð Þð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L3 y,CC tð Þð Þð Þdy,

CD tð Þ =CD tð Þ 0ð Þ + 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL4 t,CD tð Þð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L4 y,CD tð Þð Þð Þdy,

CE tð Þ =CE tð Þ 0ð Þ + 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL5 t,CE tð Þð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L5 y,CE tð Þð Þð Þdy:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð26Þ

Its recursive form is given by

CAn tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL1 t,CA n−1ð Þ

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L1 y,CA n−1ð Þ

� �� �
dy,

CBn tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL2 t,CB n−1ð Þ

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L2 y,CB n−1ð Þ

� �� �
dy,

CCn tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL3 t,CC n−1ð Þ

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L3 y,CC n−1ð Þ

� �� �
dy,

CDn tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL4 t,CD n−1ð Þ

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L4 y,CD n−1ð Þ

� �� �
dy,

CEn tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð ÞL5 t,CE n−1ð Þ

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L5 y,CE n−1ð Þ

� �� �
dy,

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð27Þ

with proper initial conditions

C0
A tð Þ =CA 0ð Þ,C0

B tð Þ =CB 0ð Þ,C0
C tð Þ =CC 0ð Þ,C0

D tð Þ
=CD 0ð Þ,C0

E tð Þ =CE 0ð Þ:
ð28Þ

Here, the succeeding difference form is

ℏ1n tð Þ =CAn tð Þ −CA n−1ð Þ tð Þ =
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

� L1 t,CA n−1ð Þ
� �

−L1 t,CA n−2ð Þ
� �� �

+ 2 ϑ

2 − ϑð ÞU ϑð Þ
�
ðt
0
L1 y,CA n−1ð Þ

� �
−L1 y,CA n−2ð Þ

� �� �
dy,

ℏ2n tð Þ =CBn tð Þ −CB n−1ð Þ tð Þ =
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

� L2 t,CB n−1ð Þ
� �

−L2 t,CB n−2ð Þ
� �� �

+ 2 ϑ

2 − ϑð ÞU ϑð Þ
�
ðt
0
L2 y,CB n−1ð Þ

� �
−L2 y,CB n−2ð Þ

� �� �
dy,
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ℏ3n tð Þ =CCn tð Þ −CC n−1ð Þ tð Þ =
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

� L3 t,CC n−1ð Þ
� �

−L3 t,CC n−2ð Þ
� �� �

+ 2 ϑ

2 − ϑð ÞU ϑð Þ
�
ðt
0
L3 y,CC n−1ð Þ

� �
−L3 y,CC n−2ð Þ

� �� �
dy,

ℏ4n tð Þ =CDn tð Þ −CD n−1ð Þ tð Þ =
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

� L4 t,CD n−1ð Þ
� �

−L4 t,CD n−2ð Þ
� �� �

+ 2 ϑ

2 − ϑð ÞU ϑð Þ
�
ðt
0
L4 y,CD n−1ð Þ

� �
−L4 y,CD n−2ð Þ

� �� �
dy,

ℏ5n tð Þ =CEn tð Þ −CE n−1ð Þ tð Þ =
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ

� L5 t,CE n−1ð Þ
� �

−L5 t,CE n−2ð Þ
� �� �

+ 2 ϑ

2 − ϑð ÞU ϑð Þ
�
ðt
0
L5 y,CE n−1ð Þ

� �
−L5 y,CE n−2ð Þ

� �� �
dy:

ð29Þ

Here, we observe the following:

CAn tð Þ = 〠
n

i=1
ℏ1i tð Þ,CBn tð Þ = 〠

n

i=1
ℏ2i tð Þ,CCn tð Þ = 〠

n

i=1
ℏ3i tð Þ,

CDn tð Þ = 〠
n

i=1
ℏ4i tð Þ,CEn tð Þ = 〠

n

i=1
ℏ5i tð Þ:

8>>>><
>>>>:

ð30Þ

Following the same way, we have

ℏ1n tð Þk k = CAn tð Þ −CA n−1ð Þ tð Þ
��� ���

=

1 − ϑð Þ
2 − ϑð ÞU ϑð Þ L1 t,CA n−1ð Þ

� �
−L1 t,CA n−2ð Þ

� �� �

+2 ϑ

2 − ϑð ÞU ϑð Þ
ðt
0
L1 y,CA n−1ð Þ

� �
−L1 y,CA n−2ð Þ

� �� �
dy

����������

����������
ð31Þ

By triangular inequality, Eq. (31) becomes

CAn tð Þ −CA n−1ð Þ tð Þ
��� ��� ≤ 2 1 − ϑð Þ

2 − ϑð ÞU ϑð Þ L1 t,CA n−1ð Þ
� ����

−L1 t,CA n−2ð Þ
� ���� + 2 ϑ

2 − ϑð ÞU ϑð Þ
�

ðt
0
L1 y,CA n−1ð Þ

� �
−L1 y,CA n−2ð Þ

� �� �
dy

����
����:

ð32Þ

Lipschitz condition leads us to

CAn tð Þ −CAn−1 tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ1 CA n−1ð Þ −CA n−2ð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ1 ×
ðt
0
CA n−1ð Þ −CA n−2ð Þ

��� ���dy:
ð33Þ

Next, we have

ℏ1n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ1 ℏ1 n−1ð Þ tð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ1
ðt
0
ℏ1 n−1ð Þ yð Þ

��� ���dy:
ð34Þ

Taking the same steps, we get

ℏ2n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ2 ℏ2 n−1ð Þ tð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ2
ðt
0
ℏ2 n−1ð Þ yð Þ

��� ���dy,
ð35Þ

ℏ3n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ3 ℏ3 n−1ð Þ tð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ1
ðt
0
ℏ3 n−1ð Þ yð Þ

��� ���dy,
ð36Þ

ℏ4n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ4 ℏ4 n−1ð Þ tð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ4
ðt
0
ℏ4 n−1ð Þ yð Þ

��� ���dy,
ð37Þ

ℏ5n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ5 ℏ5 n−1ð Þ tð Þ

��� ���
+ 2 ϑ

2 − ϑð ÞU ϑð Þμ5
ðt
0
ℏ5 n−1ð Þ yð Þ

��� ���dy:
ð38Þ

Theorem 7. Exact coupled solutions of the proposed breast
cancer model (4) exists if the below mentioned condition sat-
isfies. That is, one can find t0 in a way that

2
1 − ϑð Þ

2 − ϑð ÞU ϑð Þμ1 + 2
ϑ

2 − ϑð ÞU ϑð Þ μ1t0 < 1: ð39Þ

Proof. As the state variables CAðtÞ, CBðtÞ, CCðtÞ,CDðtÞ, and
CDðtÞ are bounded. Moreover, we have shown that the
Lipschitz condition is fulfilled by the kernels; Eqs. (34) and
(38) give the following by applying the recursive technique:
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ℏ1n tð Þk k ≤ CAn 0ð Þk k 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ1

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ μ1t
� �� �n

,

ℏ2n tð Þk k CBn 0ð Þk k 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ2

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ μ2t
� �� �n

,

ℏ3n tð Þk k ≤ CCn 0ð Þk k 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ3

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ μ3t
� �� �n

,

ℏ4n tð Þk k ≤ CDn 0ð Þk k 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ4

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ μ4t
� �� �n

,

ℏ5n tð Þk k ≤ CEn 0ð Þk k 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ5

� �
+ 2 ϑ

2 − ϑð ÞU ϑð Þ μ5t
� �� �n

:

ð40Þ

As a result, the existence of solutions of the breast cancer
model and its continuity are achieved. In addition to this, we
will show that that the above is a solution of system (4) and
proceed as follows:

CA tð Þ −CA 0ð Þ =CAn tð Þ −M1n tð Þ,
CB tð Þ −CB 0ð Þ =CAn tð Þ −M2n tð Þ,
CC tð Þ −CC 0ð Þ =CCn tð Þ −M3n tð Þ,
CD tð Þ −CD 0ð Þ =CDn tð Þ −M4n tð Þ,
CE tð Þ −CE 0ð Þ =CEn tð Þ −M5n tð Þ:

ð41Þ

Thus, we have

Hn tð Þk k = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ L1 t,CAnð Þ −L1 t,CA n−1ð Þ

� �� �����
+ 2ϑ

2 − ϑð ÞU ϑð Þ ×
ðt
0
L1 y,CAnð Þ −L1 y,CA n−1ð Þ

� �� �
dy
����,

≤
2 1 − ℓð Þ
2 − ℓð ÞU ℓð Þ L1 t,CA nð Þð − L1 t,CA n−1ð Þ

� ��
+ 2ϑ

2 − ϑð ÞU ϑð Þ
×
ðt
0

L1 y,CAð Þ −L1 y,CA n−1ð Þ
� �� ���� ���dy,

≤
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ1 CAn −CA n−1ð Þ

��� ���
+ 2ϑ

2 − ϑð ÞU ϑð Þ μ1 CAn −CA n−1ð Þ
��� ���t:

ð42Þ

Following the technique, we proceed as

M1n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ + 2ϑ

2 − ϑð ÞU ϑð Þ t
� �n+1

μn+11 a:

ð43Þ

Then, the following is obtained at t0:

M1n tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ +

2ϑ
2 − ϑð ÞU ℓð Þ t0

� �n+1
μn+11 a:

ð44Þ

Eq. (44) implies that

M1n tð Þk k⟶ 0, n⟶∞: ð45Þ

Following the same procedure, we obtain that M2nðtÞ,
M3nðtÞ,M4nðtÞ, andM5nðtÞ approaches to 0 as n tends to
∞.

In the next step, we focus on the uniqueness of the solu-
tion of system (4); on contrast, we assume that ðCA1ðtÞ,
CB1ðtÞ,CC1ðtÞ,CA1ðtÞÞ is another solution of system (4);
then, we have

CA tð Þ −CA1 tð Þ = 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ L1 t,CAð Þ −L1 t,CA1ð Þð Þ

+ 2ϑ
2 − ϑð ÞU ϑð Þ

×
ðt
0
L1 y,CAð Þ −L1 y,CA1ð Þð Þ dy:

ð46Þ

Applying the properties of norm, the above (46) con-
verted into the following:

CA tð Þ −CA1 tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ L1 t,CAð Þ −L1 t,CA1ð Þk k

+ 2ϑ
2 − ϑð ÞU ϑð Þ ×

ðt
0
L1 y,CAð Þ −L1 y,CA1ð Þk kdy:

ð47Þ

Here, Lipschitz condition of kernel gives the following:

CA tð Þ −CA1 tð Þk k ≤ 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þ μ1 CA tð Þ −CA1 tð Þk k

+ 2ϑ
2 − ϑð ÞU ϑð Þ ×

ðt
0
μ1t CA tð Þ −CA1 tð Þk kdy,

ð48Þ

which gives

CA tð Þ −CA1 tð Þk k 1 − 2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þμ1 −

2ϑ
2 − ϑð ÞU ϑð Þμ1t

� �
≤ 0:

ð49Þ

Theorem 8. There exists a unique solution of breast cancer
system (4) if

1 −
2 1 − ϑð Þ
2 − ϑð ÞU ϑð Þμ1 −

2ϑ
2 − ϑð ÞU ϑð Þμ1t

� �
> 0: ð50Þ

Proof. For the required result, we assume that the above
condition (50) holds true; then, (49) implies that

CA tð Þ −CA1 tð Þk k = 0: ð51Þ
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Figure 3: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order ϑ, i.e., ϑ = 0:6,0:8,1:
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Figure 4: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order ϑ, i.e., ϑ = 0:4,0:5,0:7.
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Figure 5: Illustration of dynamical behaviour of our proposed fractional-order model (4) of breast cancer with the variation of input
parameter δAD, i.e., δAD = 0:0351,0:0651,0:0951.
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Figure 6: Illustration of dynamical behaviour of our proposed fractional-order model (4) of breast cancer with the variation of input
parameter δBD, i.e., δBD = 0:242,0:442,0:642.
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Figure 7: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order δBE , i.e., δBE =
0:531,0:631,0:731.
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Figure 8: Competitive analysis of ordinary model and fractional model where the curve of blue dots illustrates ordinary model while the
curve of red dots illustrates the fractional model of breast cancer.
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Figure 9: Illustration of dynamical behaviour of our proposed fractional-order model (4) of breast cancer with the variation of input
parameter δCD, i.e., δCD = 0:358,0:458,0:558:
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Figure 10: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order δCE , i.e., δCE =
0:296,0:396,0:496.
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Figure 11: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order δDE , i.e., δDE =
0:311,0:422,0:533:
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As a result of this, we have the following:

CA tð Þ =CA1 tð Þ: ð52Þ

Following similar steps, we attain

CB tð Þ =CB1 tð Þ,CC tð Þ =CC 1 tð Þ,
CD tð Þ =CD1 tð Þ,CE tð Þ =CE1 tð Þ:

ð53Þ

4. Simulations and Discussions

In this section of the article, we perform several simulations
to examine the complex dynamics of our proposed breast
cancer model with adverse reaction of chemotherapy treat-
ment at population level of patients in a hospital through
the Adams-Bashforth two-step method [?]. These simula-
tions are important in order to identify the most significant
input parameters that highly disturb the population level of
cancer patients. The dynamical behaviour of the fractional
breast cancer system is investigated numerically to provide
more accurate picture of breast cancer chemotherapy
patients. The values of parameters are assumed for simula-
tion purposes in numerical analysis of the system.

Here, we perform seven simulations to conceptualize the
effect of the input parameters on the dynamical behaviour of
the system. Figures 3 and 4 illustrate the dynamics of breast
cancer with the variation of fractional-order ϑ. We observed
that the index of memory ϑ has significant influence on the
solution pathway of breast cancer model and the control of
ϑ can highly control the dynamics of breast cancer in all
the subgroups. The solution pathway of the proposed
fractional-order model (4) of breast cancer with the varia-
tion of input parameter δAD is shown in Figure 5. We
noticed in the second scenario that the increase of parameter
δAD decreases the level of CA and CB while increases the
level of CC ,CD, and CE. In this case, the increase of the level
of subgroups CC and CE is critical in the sense to increase
the cancer-induced and cardiac death rates in the patients.
In the third scenario presented in Figure 6, we illustrate
the dynamical behaviour of our proposed fractional-order
model (4) of breast cancer with the variation of input
parameter δBD. It is clear that the increase of this parameter
δBD will decrease the number of patients CB and will
increase the number of patients in the subgroup CD which
is effective. However, the population level of CB and CE
increases slightly. In Figure 7, we represent the solution
pathway of the fractional-order model (4) with the variation
of input parameter δBE. We observed that the increase of this
parameter decreases the level of cancer patients in CB and
CC which implies that the death rate of cancer will be
decreased. However, the increase of δBE increases the level
of patients in CE , and as a result, the cardiac death rate will
be increased. We perform numerical comparison of ordinary
model (1) and fractional model (4) in Figure 8 with frac-
tional order 0:9 which illustrate that fractional results are

better than the ordinary one in the sense to decrease the level
of different cancer stages.

In the fifth scenario presented in Figure 9, we demon-
strate the time series of breast cancer model with the varia-
tion of input parameter δCD. It is noticed that the increase
of δCD increases the cardiac death rate while decreases the
cancer death rate. In Figures 10 and 11, we visualize the
solution pathway of fractional-order breast cancer model
with the variation of δCE and δDE, respectively. We observed
that similar to the fifth scenario, the level of cancer patient
decreases which leads to a decrease in the cancer death rate,
while the level of cardiotoxic patient increases which
increase cardiac death rate. The roles of parameters are visu-
alized through these simulations, and one can easily under-
stand how to lower cancer and cardiac death rate in the
hospital of cancer patient. Furthermore, we observed that
the control of fractional order can control the number of
cancer patients, and as a result, the cancer and cardiac death
rate will be controlled. Therefore, the index of memory ϑ is
suggested to the policy makers and medical experts for the
control of cancer and cardiac death.

5. Conclusion

It is eminent that the treatment and vaccination play a vital con-
tribution to overcome the infectious diseases. However, some-
times the treatment and vaccination are not fully fruitful and
have adverse reactions on the patient. Chemotherapy treatment
is the most common treatment for breast cancer where the use
of drugs affects the heart of a patient which leads to cardiotoxi-
city. In this article, we formulated a mathematical model for
breast cancer with chemotherapy treatment at population level
of patients in fractional framework to investigate the adverse
reaction of chemotherapy on the heart of a patient. The pro-
posed fractional model of breast cancer is then investigated
for the basic properties through fractional calculus. The exis-
tence and uniqueness of the proposed breast cancer system
are investigated through fixed point theory. Moreover, we
highlighted the dynamical behaviour of our fractional system
of breast cancer with the help of the Adams-Bashforth method.
We have shown the dynamical behaviour of different stages of
breast cancer model with variation of fractional-order ϑ. Our
findings suggest that the index of memory ϑ is an important
input parameter and recommended to the policy makers.
Finally, the dynamical behaviour of different stages of breast
cancer is highlighted numerically to show the influence of sev-
eral input parameters on the time series of breast cancer. The
impact of input parameters of the breast cancer system has been
illustrated the most critical factors highlighted for the control
and prevention of breast cancer. In future study, we will extend
our model using delay differential equations to investigate the
significance of time delay in breast cancer dynamics. We will
also incorporate some control measures to lessen the progres-
sion of breast cancer to different stages in our future work.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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