Hindawi

Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 5636844, 19 pages
https://doi.org/10.1155/2022/5636844

Research Article

Modeling and Analysis of Breast Cancer with Adverse
Reactions of Chemotherapy Treatment through

Fractional Derivative

Tao-Qian Tang,">>*> Zahir Shah (»,° Ebenezer Bonyah (),” Rashid Jan®,?
Meshal Shutaywi .2 and Nasser Alreshidi®'

'International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan

Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan

3School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan

*Department of Family and Community Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan

*Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

®Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, 28420 KPK, Pakistan

"Department of Mathematics Education, University of Education Winneba Kumasi (Kumasicompus), Kumasi 00233, Ghana
Department of Mathematics, University of Swabi, Swabi, 23561 KPK, Pakistan

°King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia

"“Department of Mathematics College of Science Northern Border University, Arar 73222, Saudi Arabia

Correspondence should be addressed to Ebenezer Bonyah; ebbonya@gmail.com

Received 12 July 2021; Accepted 19 January 2022; Published 12 February 2022

Academic Editor: Jesus Pico

Copyright © 2022 Tao-Qian Tang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The abnormal growth of cells in the breast is called malignancy or breast cancer; it is a life-threatening and dangerous cancer in
women around the world. In the treatment of cancer, the doctors apply different techniques to stop cancer cell development,
remove cancer cells through surgery, or kill cancer cells. In chemotherapy treatment, powerful drugs are used to kill abnormal
cells; however, it has adverse reactions on the patient heart which is called cardiotoxicity. In this paper, we formulate the
dynamics of cancer in the breast with adverse reactions of chemotherapy treatment on the heart of a patient in the fractional
framework to visualize its dynamical behaviour. We listed the fundamental results of the fractional calculus for the analysis of
our model. The model is then analyzed for the basic properties, and the existence and uniqueness of the proposed breast
cancer system are investigated through fixed point theory. Furthermore, the Adams-Bashforth numerical technique is
presented for the solution of fractional-order system to illustrate the time series of breast cancer model. The dynamical
behaviour of different stages of breast cancer is then highlighted numerically to show the effect of fractional-order 9 and to
visualize the role of input parameter on the dynamics of breast cancer.

1. Introduction

Medical experts reported that breast cancer is the abnormal
growth of cells in the breast which is a life-threatening dis-
ease and is mostly found in women. It is reported in [1] that
breast cancer has the highest incidence rate as compared to
the other cancer types. It destroys breast tissue and breast
cells to grow out of control and to change the breast to

abnormal shape. After lung cancer, breast cancer is declared
to be the largest cancer in the globe, and every woman may
be infected by this infection. It is stated by the WHO that
about 8 to 9 percent of the women are infected by breast
cancer in the world; moreover, the root cause is not yet
explored by the medical experts. However, several risk fac-
tors are predicted which increase the risk of breast cancer
in women which include dietary arrangements, drinking
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alcohol, smoking, being a woman, dense breast, lack of exer-
cise, pregnancy history, genetic, breastfeeding history, race,
menstrual history, life history, weight, certain breast
changes, personal history of breast cancer, and age. The
main symptoms of breast cancer are swollen lymph node
nipple discharge, pulling in of the nipple, breast or nipple
pain, flaky skin on the breast or nipple, irritation of the skin,
dimpled skin red, a change in the size or shape of a breast,
thickening of part of a breast, and full or partial swelling.
Figure 1 is the representation of breast or milk making fac-
tory for the newly baby child with cancer cells which further
grow and damage the body of infected individuals.

Medical authorities assess cancer condition of a patient
by using stages, and these stages are tumor, node, and metas-
tasis which determine the chances of recovery from cancer.
The early the stage, the greater the chances of recovery.
Numerous treatment techniques have been developed for
prevention of cancer which includes surgery, gene therapy,
bisphosphonates, immunotherapy, targeted cancer drugs,
hormone therapy, bone marrow transplants and stem cell,
cancer drugs, radiotherapy, and complementary and alterna-
tive therapies. The most common treatment of the above is
chemotherapy which involves the use of drugs to kill cancer
cells. In chemotherapy, the drugs are either injected to the
patient or are used orally which have some effectiveness
but may hurt the heart. This bad side effect is called cardio-
toxicity and affects children and adults [2]. The failure of
patient heart is reported and observed during oncological
treatment of anthracyclines and trastuzumab [3]. It is still
a challenge for cancer expert and cardiologists to prevent
cardiotoxicity experience during chemotherapy treatment.
In chemotherapy treatment, anthracycline drugs are used
which affect the heart of the patient and lead to cardiotoxi-
city illustrated in Figure 2.

Mathematical frameworks are used to conceptualize the
intricate dynamics of diseases and to provide accurate results
for the control and prevention of these infections [4, 5]. In
modeling of cancer, the journey starts from 1954 [6] to
explain cancer, and then, the researcher studies different
aspects of cancer and tumor growth [7, 8]. A mathematical
model of chemotherapy treatment for cancer has been devel-
oped by Dixit et al. [9]; the authors represent the treatment
procedure for tumor cancer. The dynamics of cancer repre-
sent the interactions of tumor cell energy and tumor cell
density and the effect of chemotherapy drugs. Recently, a
mathematical model has been formulated for low-dose che-
motherapy with minimal parameters; they studied angio-
genic signals between vasculature and tumors [10]. In [11],
a compartmental model has been developed by Jordao and
Tavares; they consider cancerous and healthy cells to analyze
the proposed model of cancer. The role of time delay on the
dynamic of tumor system has been investigated by S. Kha-
janchi and Nieto [12]. Another important model was devel-
oped by Mahlbacher et al. [13] to conceptualize the
interactions between immune and tumor and predict better
suggestions about cancer. In the literature, several mathe-
matical models have been developed and formulated to
study, conceptualize, and visualize the transmission phe-
nomena of cancer [14-17].
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Ficure 1: Hllustration of milk making (lobules) and shuttling
(ducts) glandular epithelial cells anchored by connective tissue.

Recent advancement of fractional calculus showed that
the results of fractional operators are more accurate, pre-
cious, and reliable as compared to the system of classical
derivatives [18, 19]. Novel fractional operators are developed
which modeled real-world problem in mathematics, biology,
engineering, economics, physics, and other areas of science
and technology [20-23]. In fractional calculus, a variety of
fractional operators are introduced for the study of real-
world issues. These operators, on the other hand, have a
power law kernel and can only simulate physical problems
to a limited extent. To solve these challenges and limitations,
Caputo and Fabrizio presented a new fractional operator
with an exponential decay kernel. Because of its nonsingular
kernel, this unique operator is a revolutionary fractional
derivative operator that has piqued the interest of many
scholars. The results of this novel operator are more suitable
and have many applications [24, 25]. To be more specific,
the transmission phenomena of cancer with treatment and
unknown parameters have been successfully represented
through CF derivative [26, 27]. To get more realistic find-
ings, we choose to depict the transmission mechanism of
breast cancer with side effects on patient heart during che-
motherapy through CF fractional derivative.

These accurate results and outcomes of fractional cal-
culus motivate us to inspect and interrogate the dynamics
of breast cancer with adverse reactions of chemotherapy
treatment on patient heart through Caputo-Fabrizio (CF)
fractional operator. In Section 1 of the article, we represent
the fundamental idea of fractional calculus for the analysis
of our system. In Section 2, a fractional model is formu-
lated for breast cancer with the adverse reactions of che-
motherapy treatment on the heart of a patient in
fractional framework. The proposed model of breast can-
cer is then investigated through mathematical skills. The
existence and uniqueness of the solution of the formulated
FO model of breast cancer patients through the fixed point
theorem are presented in Section 3 of the article. The
dynamics of proposed cancer model is then analyzed with
the variation of different input parameters numerically in
Section 4. Finally, concluding remarks and suggestions
are presented in the last section.
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FiGuRre 2: Effect of anthracyclines on the heart of a patient during cancer chemotherapy.

2. Formulation of the Model

In the formulation of the model, we consider the population
of breast cancer patients in a hospital where we categorized
the total population of breast cancer patient into stage 1,
stage 2, stage 3, and stage 4 subpopulations during the first
medical report. It is assumed that all the patient are treated
with chemotherapy treatment in the hospital where the
patients are passing with different stages during treatment,
some patients experience cardiotoxicity, and some patients
experience recovery while some getting worse condition of
the disease during chemotherapy process. A compartmental
model of five subgroups is formulated having subcompart-
ments of stages 1 and 2 (€,), stage 3 (), stage 4 (€,),
disease-free state (%), and cardiotoxic (%) subgroups
where the number of cancer patients in stages 1 and 2 is
smaller than the other stages; therefore, they are placed in
one subgroup.

New patients identified to suffer in stages 1 and 2 cancer
are assumed to be 7; while for stage 3 and stage 4 are
assumed to be 77, and 7, respectively. The subgroup €, hav-
ing chemotherapy may either move worse subgroup € with
8 45 or recover with a rate 8 4. The patients of the subgroup
% who are first treated in the hospital are recruited with a
rate #,. This subgroup is more intensive chemotherapy as
compares to €, where the patient die from cancer with a
rate y,, move to the recover subgroup with a rate Opp,
become more worse with a rate 8z, and at a rate Opg
become cardiotoxicity. The patients of cancer are recruited
to subgroup @ with a rate #, during the treatment. In this
case, the rate of recovery &, is smaller than the first two
and rate 8 towards cardiotoxicity is greater than the rate
of the subgroup % due to intensive chemotherapy effect.
We assume y, to be the death rate of cancer patient in this
subgroup. In the forth subgroup, the population increased
from the first three subgroups and lose recovery at &§pp,

Spe» and O to the subgroups €5, €, and G, respectively.
The patient in (€%) comes from (€p), (€) and (€p) and
taste cardiac death with ratey,. Then, the dynamics of breast
cancer with chemotherapy treatment with the above
assumptions is given by the following system of ODEs:

de

ditA =1, —84pG4 — 045G,

dé,

ar Ny +8,5C 4 +0ppCp —0ppCp —0pc Gy —8ppCp— ¥,
de

d_tc =13+ 855+ OpcCp—8cpCc—8cpCc—V;6cs

de,

9 OapCa+ppEp+08cpEc—OppEp—OpcCp —OprEis
de

d—tE =08ppCp+0cEc+0p,65— 7,6

(1)
with appropriate initial condition for vector

©4(0) > 0,%;(0) = 0,B(0) = 0,8 (0) >0, %;(0) > 0.
(2)

It is well-know that fractional system provides more
accurate results of the dynamics of a system developed from
natural phenomena. There are several fractional operators in
the literature of fractional calculus with power law kernel
and have limitations to mimic real-world problems. There-
fore, we applied Caputo-Fabrizio operator to our problem
which represents the dynamics of mathematical model
through exponential decay kernel to overcome these chal-
lenges and limitations. The dynamics of breast cancer



through CF fractional derivative can be expressed as follows:

i) = 15 [ Wy e |91 e o

a

A detailed discussion of this operator has been presented
in the upcoming section of the article. We represent the sys-
tem (1) of breast cancer with the help of the above definition
of CF derivative as

9

gFDt Ca=1,—0spCs— 045 s>
9

gFDt Cp=1, 04564 +0ppCp —OppCp —OpcCp —0prCs —v,€p
9

gFD: Cc=1;+0pcEp+0pcCp—OcpCc—0csCc— ;60

9
gFDt Cp=04pCs +0ppCs+0cpCc—Ops€p — OpcEp — SppEps

9
gFDt Cp=0ppGp+0c5Cc+ 0565 —V,Cp
(4)

where 9 is the order of CF fractional derivative such that
0 <9< 1 and the unit of the above fractional system is [9] .
In the next subsection, we will list some basic definitions and
statements related to CF fractional derivative for further
analysis of the model.

2.1. Rudimentary Knowledge. In this subsection of the article,
the fundamental results and definitions of fractional Caputo-
Fabrizio (CF) is presented for the analysis of our breast can-
cer model with chemotherapy treatment. The basic defini-
tions and results are given below:

Definition 1. Let us suppose h € H'(a, b), where b is greater
than g; then, the CF derivative [28] of order 9 is given by

DY(h(1)) = %Jth'(x) exp [—9%] d, ()

a

where 9 €[0,1] and U(7) denotes normality with U(0)
= U(1) =1 [28]. In the case, when h ¢ H'(a, b), then the fol-
lowing fractional derivative is obtained:

t—x

Dh(0) = g [ (hie) ~h) exp [—sm} dx. (6)

Remark 2. Let us take a=1-9/9€[0,00) and 9=1/1+a €
[0,1]; then, equation (6) can be written in the following
form:

D} (h(t)) = Mi“) Jth’<x>e[“7‘] dx, M(0) = M(c0) = 1. (7)
Furthermore,

a—0 ¢

lim > exp [—t?Tx} —8(x-1). (8)
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In [29], the authors introduced the concept of fractional
integral which is defined as follows:

Definition 3. Let h be a given function; then, the fractional
integral is defined in the following manner:

h(u)du, t >0,

©)

o 2(1-9) 29t
R0 550" 550w

0

where 0<9<1 is the order of the above fractional
integral.

Remark 4. From the above Definition 3, we can conclude
that

2(1-9) 29
2-90(9)  (2-9)0(9

=1, (10)

which gives U(9)=2/2-9, 0<9<1. A new Caputo
derivative of order 9 was introduced by Losada and Nieto
in [29] by using equation (10) and is given by

DY(h(t)) = ﬁj;h'(x) exp {9%] dx,0<9<1. (11)

For the equilibrium point of breast cancer model (4), we
set all the fractional derivative of model (4) to zero and
obtain the equilibrium point given by &,= (%}, €5, €¢»
€1, €5). The equilibrium point exists and is

* 7]1 * @ * ﬁ
€= G= — Gh= T,
ATk TP T RA ST KA
§
&= > 12
hTra (12)
oV
%E_kl/\%)

where,

a = (ksdpp + (Opg + Opc) Y3 + (Ope + Opc)dck + Oppdep),04s
+ (k3ny +8¢ptt3)Opp + 1, (8pe + Opc) Y3 + (Ope + Opc)dce
+0ppOcp)0ap + Oap((k30pp + (Opg + Opc)ys
+(8pg +8pc)Ock + OpScep)t, + (ks +8cpis)Opp)s

B=(ky8pc + (Opp +Opg)dpc + (v, +Opp + Opr)Opg
+0pg(V, +8pp) ki1t + (11 +11,)8c + (v, + 8pp + Opp)1y
+0pp1,)0pc + (1,0pE + Opp(11y +112))08c)0ap
+((8pc +0pp)0pc + (Opp + OpE)dpc) (11 +11,)0 s



Computational and Mathematical Methods in Medicine

&= ((kyn, + (1, +113)0pp + Oty +15(¥, + 8pc + Opp)Scp
+ ((katy + 85p1,) (V5 +8ck)))8ap + 84p((Osc + 8pp)my
+ (1, +13)0pp + Opct, + 115(V2 + 8pc + 8p5)0cp
+8pp (1, +11,)(v3 +0cp))s

v=((m + 1, +13)08 + (V2 + Opc + Opp)11y + (pc + Opp ),
+73(y3 + Opc + 0pp))OpeapScr + (Opg + Opc) (1, + 11, +113) 05
+((8pp +0pc)dpc + Opc (Y2 +8pp)my
+((8p +0pc)dpc + 0pp0pc), + ((Ops +Opc)Opc + ¥20p5
+0pc(Vy +8pp))M304pScr + (1,71, +113)0pg
+ (8¢ +8pp)11y + (8pc + Opp )11, +115(y, + Opc
+05p))0pp)8apScE + ((Spp + Opc) (M + 11, +13) 88
+(8pp +6pc)0pc + 85pOpc)ny )Sapdcr
+ (((8pp + 6pc)dpc + OpOpc)t,
+((8pg +0pc)Opc + V20 + Opc(V2 + Opp))3)0upScr
+0pbap(((vs +0cp)ty + (Vs +0cp)t, +130¢p)05e
+(¥3+ 0cp) (V2 + Opc + 8pp) )1y + (8¢ + Opp)Opc + ¥308p)1,
+1138¢p (V2 + 6pc + 05p))8ppdap + Ops((V5 + 0cp)Opsmh
+(8ppdcp +V3(8pp +8pc) ) +138cp0pE)8ap
+0,458pp(((v3 + Ocp)m + (¥5 +Ocp)ty
+130¢p)0pp((8pc + Opp)Scp + V308p)1,)
+8,50pp(((8pc + Opp)Scp +¥308p)1,
+138¢p(¥; + Opc +0pp)) + 8Os ((Spbep
+¥3(8ps + Opc) + ((8psdcp + ¥3(8sp + Opc) 1 + 130 cpOpa)>

A=k ky0pg + ((Opp +Opc) Y + (Ops + Opc)Ope + OpcOpp
+ (8¢ + 0pp)Opc)ys + ((Ops + Opc) Y,
+ (8pp +6pc)8pr + OpcOpp + (8pc + Opp)Opc)Sce
+0cpOpp(V, +Opp),
(13)

in which k; =8, + 8,5k, =8pp + 0pc + Opp + 75, and
ks =08cp + Ocp + y5. Here, for equilibrium of our fractional-
order breast cancer model, we have the following conclusion.
The disease-free equilibrium point can be easily determined
by taking the steady state of our system without infection.
These equilibrium points are important for the analysis of
the proposed fractional model of cancer with chemotherapy
treatment and can predict sufficient condition for the con-
trol and spread of the infection. We have the following result
based on the above investigation:

Theorem 5. There exists an equilibrium of the proposed frac-
tional model (4) of breast cancer without any condition.

3. Interrogation of Fractional System

Here, the solution of the proposed breast cancer model will
be investigated for existence through fixed point theory.
We use the concept of CF fractional derivative on the system

(4) and get the following:

&Y
t
=
=
|
o
=
=
1}
°0
k>l
—
o
S
]
]
X
S|
+
[
q
=21
|
(9]
+
2
=
tr
X
=+
|
=
S

(14)
By applying the idea presented in [29], we get

2(1-9)

Ca(t) —C4(0) = 2-900)

29 g 15
(M) = OupCs —Oap€al + J (15)

(2-9)U(9)
[, = 0apC a4 —0aC4]dy,

0

2(1-9)
(2-9)U(9)
—8pp€p—0pcCp — Opp 65—y,

€y(t) - €p(0) = (M, +0,5C 4 +0pp€p

29 t
+ mjﬂ [, +645€ s +0pp6p

—8pp G — OpcCp — Opp€ — v, 5] dy,
(16)

2(1-9)
2-9)U(®)
—8cpCc—0cpCc— ;€]

Co(t) —€c(0) = [+ 0pcCp +OpcEp

29 t
+ WJ (M5 +8pcEp +OpcEh
0

=8cpCc—0cpCc—v,Ccldy,
(17)

2(1-9)
2-9U@)
—08pp€p —Opc€p — Opp )
2 Jt [8,p%. + 850Gy

2-9U®) Jo
+0cp€c —Opp€p —OpcCp — Opp€pldy,
(18)

€p(t) - €p(0) = [6ap€ 4 +0ppEp+OcpEe

2(1-9)

Cp(t) - Cp(0) = Z-9)0(9) [Ope€p + e+ 0pp€p
29 t
— Y, G + mj [0pe€p +0cECc
0

+ 06—y, Gl
(19)
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In the next step, we proceed in the following manner: Further simplification of Eq. (19) implies
Ly(6C ) =1y = 04 s — 045G Ga(t) = Ea(1)(0) + (22_(19"5()9) L(66A0) + 7= ;)SU(S) J‘ (L1 Ga(1)))dy
Z,(t,Cp) =1, +8,5C 5 + OppEp — OppCp — OpcCp ~ Ops Gy — 1,6, 21-9) 29 [0
Z5(t,Cc) =15+ 8pcCp + OpcCp —~ cpCc = 8csCc — v3€ 0 () =)0+ 2-9HUE) L) 2-9UE) .lo(gzo,’ FONY
La(t:Ep) =058 + 0Ty +dcp e~ 8T ~ OpcBp ~ Ops Gy Folt) =Fl0)(0)+ g s 250 Ea0) + g | (206
Z5(t,Cp) = OppCp +0cpCc +0p €~ ¥, 2(1-9) 29 (i
(20) E(t) = o))+ 5 g9 7 OO g0 10(3’40" Ep(1)))dy
Elt) =Bo0)0)+ (5ol Za(0 G0+ g [ (Fn )y

Theorem 6. If the following condition satisfies

(26)
0= (04p +0ap) <1, (21) Its recursive form is given by
then, the kernels &, %, %5, %, and Z5 assure the (1-9) 9 ‘
Lipschitz condition. Eanlt)=2 2-9)U(9) Zi (t’ <g"("’”) 2 (2-9)U(9) Jo (3)1 (y’ %A(”’U))dy
B (1-9) 9 *
Proof. For the proof of Theorem 7, we first take €, and € 4, Eu(t) =2 2-9U(9) 320’ %W’U) 2 2-9U(9) Ju(yz (y’ %B(”*”))dy
and start from &, in the following manner: (1-9) 9 :
enll) =2 290> (t’ gc(”*”) MR L (33 (y’ %W*”))dy’
_, (1-9 9 '
Zy(6€s) =21 (1 C 1) = =046 +04pBa (22) Eon) =250 Z4(6 o) +2 2-9009) L (Z4(»Gor)) ) B
— 0,56, + 60,4564 (1-9) 9 g
! Cpn(t) =2 2-90(9 Zs (t’ %E(nfl)) +2 2-90(9) jo (35 (J’ Crn1) )d)’
27
Here, apply norm on Eq. (19) and simplify; we get the 27)
following:
with proper initial conditions
[Z1(t,€,4) = Z1(6Ca)|| < [|-04pEa +04pC i | . . .
+|=845C 4 +0,5Bu1|| <Oapl|Bs — C ol (23) Gy(t) Z%A(O)>%%(t) =@5(0), €c(t) = €c(0), Ep(1)
+ 0,45 €a —Carll < (Bap +04p) (€4 — Carll- = ©p(0), F5 (1) = 5 (0)-
(28)
At this stage, we assume p, = (8, + 0,5); then, the fol-
lowing result is obtained: Here, the succeeding difference form is
IL1(8 €)= Li(b Cp )| <o 1€ (t) = Ca(t)l. - (24)  p _ _ 2(1-9)
ln(t) %An(t) %A )(t) (2 —S)U(S)
)
Thus, the Lipschitz condition is fulfilled for &; in addi- : (3 1 (l‘, %A(,,_l)) -Z, (l‘, %A(,,_z))) + ZW
tion to this, the condition 0 < (8,, + 8,5) < 1 assure that the .
contraction is also satisfied. In the same way, the Lipschitz ) J 2 (v, € —2 (€ dy,
conditions for the other cases of our system are determined 0< 1(}/ A<"_1>) 1()’ A("_2)>) y
as
156, %0) - (G| < 151 Ga(6) - Gl o) = € (0)= Ea ()= s
1Z3(t:Cc) = Z5(t Ce)l| < s €c(t) = Ec(ty)l; 9
A2y (t.C501) - Lo (6Cn ) ) 42
[Z4(t: €p) = Z4(t, Epn)|| <ty € (1) = En(t1)]; ( 2< H 1)) 2< H 2))) 2-9U()
t
|Z5(6: €)= Zs(t, Cp1)|| < s | €e (1) = Br(t1)]- . J (522 (y, %B(”’l)) Z, <y, Cpn2 ))dy,
0

(25)
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2(1-9)

Pan() = Eenlt) = Cown() = g5 (5)

: (33 (t> %C(n—1)> ~Z5 (t’ %C(n—Z))) +2ﬁ

. J; (523 ()’> %C(n—l)> -, (y, %C(n—Z)) ) dy,

2(1-9)
(2-9U(V)

9
: (554 (t> %D(n—l)) —$4<t, %D(n—Z))) +2m

[ o) -0

Pyn(t) = Cpn(t) = Cpyon)(t) =

2(1-9)
@900

: (35 (t’ %E(n—1)> ~Zs (t) %E(n—Z))) +2(2T9)U(9)

[ i) - #8200

hs,,(t) = Cpy(t) = Cp o) (t) =

Here, we observe the following:

(30)
Following the same way, we have

[ (8) | = |Ban(t) = Baguony 1)

+2 ﬁ[; (31 (}” %A(n—l)) - (}” %A(nfz)))d)’

(31)
By triangular inequality, Eq. (31) becomes
H%An( %Anl()H<2(2(ﬁHg (t %Anl)
31(%“2)“” 2= 92 U
‘ ‘ ;(Sf (y’%An 1) 31( G a(n-2 ))d)’H
(32)

Lipschitz condition leads us to

-9
Wmm—%nﬁwﬂag5%5”%mﬂ‘%wﬂ
9 t
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Next, we have
(1-9)
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Taking the same steps, we get
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Theorem 7. Exact coupled solutions of the proposed breast
cancer model (4) exists if the below mentioned condition sat-
isfies. That is, one can find t, in a way that

, (1=9) b2 ty<1 (39)
2-9uE T TzmguEt T

Proof. As the state variables €, (t), €(t), € (1), €p(t), and
@p(t) are bounded. Moreover, we have shown that the
Lipschitz condition is fulfilled by the kernels; Eqs. (34) and
(38) give the following by applying the recursive technique:
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(40)

As a result, the existence of solutions of the breast cancer
model and its continuity are achieved. In addition to this, we
will show that that the above is a solution of system (4) and
proceed as follows:

Ca(t) =€, (0) = Cpn(1) = M1,(1),

@p(t) = Cp(0) = Can(t) = M2,(1),
Ge(t) = Cc(0) =Ceu(t) = M3,(1), (41)
@p(t) = Cp(0) = Cp,(t) - M4,(1),

C(t) = C(0) = Gy (1) — AM5,(t)

Thus, we have
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Following the technique, we proceed as
2(1-9) 29 o
el < (5o * o) A
(43)
Then, the following is obtained at t,:
(1 _‘9) 29 i n+l
(44)
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Eq. (44) implies that
o421, (8)]| — 0,7 — co. (45)

Following the same procedure, we obtain that /2, (t),
M3,(t), M4, (t),and M5, (t) approaches to 0 as n tends to
0. O

In the next step, we focus on the uniqueness of the solu-
tion of system (4); on contrast, we assume that (€, (¢),
Gy (1), Gy (t), €4 (1)) is another solution of system (4);
then, we have

2(1-9)

Calt) - Z-9009)

%Al(t): (gl(t’ €4) _31(13 %m))

~Z1(y,Cu1)) dy.

(46)
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Applying the properties of norm, the above (46) con-
verted into the following:

1Ga() - B (0)] < % 1226 %) - 21 (6 B0
9 t
+ oo * 12080 - 20l

(47)

Here, Lipschitz condition of kernel gives the following:
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which gives
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(49)

Theorem 8. There exists a unique solution of breast cancer
system (4) if

2(1-9) 29
(1_ (2—,9)(](9)‘”1_ (2—9)U(9)‘”1t) > 0. (50)

Proof. For the required result, we assume that the above
condition (50) holds true; then, (49) implies that

[€4(t) = Car(1)]| =0 (51)
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FIGURE 7: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order &g, i.e., 8gp =

0.531,0.631,0.731.
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FiGure 8: Competitive analysis of ordinary model and fractional model where the curve of blue dots illustrates ordinary model while the
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Figure 9: Ilustration of dynamical behaviour of our proposed fractional-order model (4) of breast cancer with the variation of input
parameter O¢p, i.e., 8 =0.358,0.458,0.558.
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FIGURE 11: Time series of our proposed fractional-order model (4) of breast cancer with the variation of fractional-order &y, i.e., Spp =

0.311,0.422,0.533.
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As a result of this, we have the following:
G4(t) = (t). (52)

Following similar steps, we attain

4. Simulations and Discussions

In this section of the article, we perform several simulations
to examine the complex dynamics of our proposed breast
cancer model with adverse reaction of chemotherapy treat-
ment at population level of patients in a hospital through
the Adams-Bashforth two-step method [?]. These simula-
tions are important in order to identify the most significant
input parameters that highly disturb the population level of
cancer patients. The dynamical behaviour of the fractional
breast cancer system is investigated numerically to provide
more accurate picture of breast cancer chemotherapy
patients. The values of parameters are assumed for simula-
tion purposes in numerical analysis of the system.

Here, we perform seven simulations to conceptualize the
effect of the input parameters on the dynamical behaviour of
the system. Figures 3 and 4 illustrate the dynamics of breast
cancer with the variation of fractional-order 9. We observed
that the index of memory 9 has significant influence on the
solution pathway of breast cancer model and the control of
9 can highly control the dynamics of breast cancer in all
the subgroups. The solution pathway of the proposed
fractional-order model (4) of breast cancer with the varia-
tion of input parameter §,,, is shown in Figure 5. We
noticed in the second scenario that the increase of parameter
8 ,p decreases the level of €, and €y while increases the
level of €, €, and €. In this case, the increase of the level
of subgroups € and @}, is critical in the sense to increase
the cancer-induced and cardiac death rates in the patients.
In the third scenario presented in Figure 6, we illustrate
the dynamical behaviour of our proposed fractional-order
model (4) of breast cancer with the variation of input
parameter 8. It is clear that the increase of this parameter
Opp will decrease the number of patients @ and will
increase the number of patients in the subgroup €, which
is effective. However, the population level of € and €
increases slightly. In Figure 7, we represent the solution
pathway of the fractional-order model (4) with the variation
of input parameter 8. We observed that the increase of this
parameter decreases the level of cancer patients in €5 and
% which implies that the death rate of cancer will be
decreased. However, the increase of 85 increases the level
of patients in €, and as a result, the cardiac death rate will
be increased. We perform numerical comparison of ordinary
model (1) and fractional model (4) in Figure 8 with frac-
tional order 0.9 which illustrate that fractional results are
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better than the ordinary one in the sense to decrease the level
of different cancer stages.

In the fifth scenario presented in Figure 9, we demon-
strate the time series of breast cancer model with the varia-
tion of input parameter 8. It is noticed that the increase
of 8.p increases the cardiac death rate while decreases the
cancer death rate. In Figures 10 and 11, we visualize the
solution pathway of fractional-order breast cancer model
with the variation of 85 and &, respectively. We observed
that similar to the fifth scenario, the level of cancer patient
decreases which leads to a decrease in the cancer death rate,
while the level of cardiotoxic patient increases which
increase cardiac death rate. The roles of parameters are visu-
alized through these simulations, and one can easily under-
stand how to lower cancer and cardiac death rate in the
hospital of cancer patient. Furthermore, we observed that
the control of fractional order can control the number of
cancer patients, and as a result, the cancer and cardiac death
rate will be controlled. Therefore, the index of memory 9 is
suggested to the policy makers and medical experts for the
control of cancer and cardiac death.

5. Conclusion

It is eminent that the treatment and vaccination play a vital con-
tribution to overcome the infectious diseases. However, some-
times the treatment and vaccination are not fully fruitful and
have adverse reactions on the patient. Chemotherapy treatment
is the most common treatment for breast cancer where the use
of drugs affects the heart of a patient which leads to cardiotoxi-
city. In this article, we formulated a mathematical model for
breast cancer with chemotherapy treatment at population level
of patients in fractional framework to investigate the adverse
reaction of chemotherapy on the heart of a patient. The pro-
posed fractional model of breast cancer is then investigated
for the basic properties through fractional calculus. The exis-
tence and uniqueness of the proposed breast cancer system
are investigated through fixed point theory. Moreover, we
highlighted the dynamical behaviour of our fractional system
of breast cancer with the help of the Adams-Bashforth method.
We have shown the dynamical behaviour of different stages of
breast cancer model with variation of fractional-order 9. Our
findings suggest that the index of memory 9 is an important
input parameter and recommended to the policy makers.
Finally, the dynamical behaviour of different stages of breast
cancer is highlighted numerically to show the influence of sev-
eral input parameters on the time series of breast cancer. The
impact of input parameters of the breast cancer system has been
illustrated the most critical factors highlighted for the control
and prevention of breast cancer. In future study, we will extend
our model using delay differential equations to investigate the
significance of time delay in breast cancer dynamics. We will
also incorporate some control measures to lessen the progres-
sion of breast cancer to different stages in our future work.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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