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Abstract
Background: Plasmodium infection has been shown to compromise the fitness of the mosquito
vector, reducing its fecundity and longevity. However, from an evolutionary perspective, the impact
of Plasmodium infection as a selective pressure on the mosquito is largely unknown.

Results: In the present study we have addressed the effect of a continuous Plasmodium berghei
infection on the resistance to infection and global gene expression in Anopheles gambiae.

Exposure of A. gambiae to P. berghei-infected blood and infection for 16 generations resulted in a
decreased susceptibility to infection, altered constitutive expression levels for approximately 2.4%
of the mosquito's total transcriptome and a lower basal level of immune genes expression, including
several anti-Plasmodium factors. The infection-responsiveness for several defense genes was
elevated in the P. berghei exposed mosquito colonies.

Conclusion: Our study establishes the existence of a selective pressure exerted by the parasite
P. berghei on the malaria vector A. gambiae that results in a decreased permissiveness to infection
and changes in the mosquito transcriptome regulation that suggest a decreased constitutive
immune gene activity but a more potent immune response upon Plasmodium challenge.

Background
Plasmodium, the causative agent of malaria, exploits the
female mosquito's need for human blood as a means of
spreading the disease. After the ingestion of an infected
blood meal, Plasmodium undergoes a complex life cycle in
the mosquito that lasts for 14–18 days, leading to the
development of infectious sporozoites in the salivary
glands. The efficacy of Plasmodium infection in the mos-
quito is usually low but still adequate to permit transmis-
sion; the great majority of parasites are eliminated at

various stages of development, and the mosquito's innate
immune system has been linked with this killing. Thus,
the mosquito's innate immune system is a determinant of
vector competence. Some studies have documented an
impact of Plasmodium infection on mosquito physiology
and fitness in the wild; under laboratory conditions, the
artificially high infection levels that can be achieved are
frequently associated with significant mortality at the time
when ookinetes invade the midgut epithelium [1]. A vari-
ety of mosquito biological processes are also affected by
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ingestion of infected blood, even in the absence of ooki-
nete invasion of the midgut, suggesting that the specific
biochemical composition and various constituents of
infected blood are sensed by the mosquito's immune sys-
tem and present a differential stimulus to the mosquito,
when compared to normal non-infected blood [2-4].

Anopheles mosquitoes can easily be genetically selected for
differential resistance to Plasmodium. Two major mecha-
nisms for refractoriness to infection have been described.
The first corresponds to a reduction in the number of par-
asites or their complete elimination during their invasion
of the mosquito's midgut cells [5]. Dead ookinetes appear
to be surrounded by granular and filamentous material,
and they finally break, releasing hemozoin pigment gran-
ules into the host cells. The second refractory mechanism
occurs when the ookinetes reach the basal lamina; this
reaction is responsible for melanotic encapsulation of the
humoral type [6]. Several studies have also shown varia-
bility in the mosquito's artificial selection in terms of its
refractoriness or susceptibility to various Plasmodium par-
asite species and strains [6-15].

Disease resistance traits often have high heritability and
high levels of additive genetic variation [16,17]. Several
studies have examined the quantitative genetics of
immune defense in invertebrates and have found signifi-
cant levels of additive genetic variation in a range of traits,
such as antibacterial activity, phenoloxidase (PO) activity,
encapsulation ability, hemocyte density and hemocyte
phagocytotic activity [18,19].

The anti-pathogen specificity and efficacy of the insect's
innate immune system are shaped by its particular micro-
bial exposure, which can vary significantly between differ-
ent ecological niches. The magnitude and specificity of the
selective pressure imposed by the Plasmodium exposure on
its mosquito vectors is unclear but has been shown to
affect the frequencies of certain immune genes alleles.
However, the level of exposure is rather low in the wild,
since only a few percent of all mosquitoes are ever infected
with Plasmodium [20,21].

Gene transcription is intimately related to function and
can therefore be used to study the functional responses of
an organism to various stimuli, including infection. As is
true for gene sequences, gene regulation also responds to
selective pressure with adaptations that reflect changes in
the expression levels of the genes involved in the physio-
logical systems affected by the imposed parameters.

Here we have used a mass selection approach to assess the
selective (evolutionary) impact of exposure to Plasmo-
dium-infected blood and infection on mosquito permis-
siveness to parasite infection and global gene expression.

A. gambiae mosquitoes were maintained on malaria-
infected blood through several generations and then stud-
ied with regard to their Plasmodium susceptibility and
changes in global gene expression patterns, comparing
them to those in mosquitoes maintained on normal non-
infected blood. Our study shows that continuous expo-
sure to Plasmodium-infected blood and infection leads to
adaptations that include a decreased permissiveness to
infection and a lower basal expression level of anti-Plas-
modium and other immune-related genes.

Results and Discussions
Continuous Plasmodium exposure results in a decreased 
permissiveness to infection
After 16 successive generations of continuously feeding
on P. berghei-infected mouse blood (exposed A. gambiae
lines A and B) or normal non-infected mouse blood (non-
exposed control line C), we found no significant differ-
ences in mortality, size or other visible characteristics
between the exposed and control lines. The mortality
ranged from 15%–50% (Additional File 1 Table), and
death mostly occurred between 24 and 48 h after feeding.
However, the permissiveness to Plasmodium infection at
the pre-mature oocyst stage differentiated substantially
between the exposed lines and the control line.

After 13 generations, differences at the infection pheno-
type could already be detected between the continuously
exposed and the control lines (Fig. 1a). The exposed lines
showed a general tendency toward a lower permissiveness
to Plasmodium, with a few deviations for some generations
and lines (Fig. 1). The levels of infection of generations
13, 14, and 15 of the exposed line B were significantly
lower than those of the control line (43%, 74%, and 64%,
respectively). Generation 16 displayed only a 27%
decrease in infection level (Fig. 1b and Additional File 3
Table). For the same generations (13–16), the exposed
line A showed a reduction in the number of oocysts of
10%, 44%, 14%, and 57%, respectively (Fig. 1b and Addi-
tional File 3 Table).

The statistically insignificant (27%, 10% and 14%) reduc-
tion in Plasmodium permissiveness observed for some of
the generations of the exposed lines could be due to a
number of factors, such as small differences in feeding
behavior and the general nutritional and health status of
the mosquitoes that can be greatly influenced by rearing
conditions such as larval densities. Due to the labor
intense nature of rearing several independent mosquito
colonies only a limited number (15–40) of mosquitoes
were assayed for oocysts number. This could partly also
have contributed to this trend of insignificance. However,
the exposed lines never displayed a higher permissiveness
to Plasmodium than that of the control line in any of the
assayed generations.
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Divergence in the constitutive transcriptome of A. 
gambiae occurs during continuous exposure to 
Plasmodium
The differences observed in infection phenotype between
control and exposed mosquitoes suggest that continuous
exposure to Plasmodium-infected blood and infection
reduces the permissiveness of mosquitoes to Plasmodium
at the pre-mature oocyst stage. This reduction could be
attributed to differences in the transcription levels of
genes that can control Plasmodium infection. Therefore, we
sought to determine the effect of continuous malaria
exposure on the global transcriptome of naïve non-blood
fed mosquitoes which had been raised on P. berghei
infected blood (exposed) for thirteen and more consecu-

tive generations. For this purpose, we used microarray
analysis to compare mRNA abundance between RNAs
from naïve 4-days-old female mosquitoes of the exposed
lines (generations 13, 15, and 16 of line A and generations
14 and 15 of line B) and the non-exposed control line
(generations 15 and 16) that had been raised on non-
infected blood.

Fig. 2 shows the functional class distribution of those
genes that showed significant differential expression
between naïve non-blood-fed mosquitoes of the exposed
lines (generations 14 and 15 of line B and 13, 15 and 16
of line A) and the control line (pooled generations 15 and
16). In all, continuous exposure to malaria-infected blood
and infection caused a significant change in the constitu-
tive transcription level of 2.39% of the total predicted
transcriptome (16,148 genes, according to the version
35.2 annotation); 0.83% (124) of these transcripts
showed a higher level of expression in the exposed lines,
and 1.56% (230) had a higher expression level in the non-
exposed control line (Fig. 2, Additional Files 4 and 5
Tables). Among the putative immune genes, only 7 were
expressed at higher levels in the exposed lines, while 26
were expressed at higher levels in the non-exposed control
line (Fig. 2, Additional Files 4 and 5 Tables). A similar pat-
tern was observed for genes encoding cytoskeletal and
structural components, with 7 showing a higher expres-
sion in the exposed lines and 18 a higher expression in the
control non-exposed line. For the other functional gene
groups, no such differences in expression levels were
observed; for instance the digestion-related genes group
(33 vs 49) and the genes with putative roles in metabo-
lism (5 vs 6). To validate the robustness of the microarray
results, we analyzed eight genes from the immunity-,
redox/stress-, and transport-related functional groups by
qRT-PCR (from Fig. 2, Additional Files 4 and 5 Tables),
comparing the expression of these genes between naïve
adults of the two exposed lines to the control line. The
cDNA templates were normalized to the A. gambiae S7
gene, and the -fold differences were calculated as
described in Experimental Procedures. These analyses
showed a highly significant correlation (Pearson coeffi-
cient = 0.91; best-fit linear regression, R2 = 0.84; slope of
the regression line, m = 0.85) between the qRT-PCR and
the microarray log2-transformed values (Fig. 3 and Addi-
tional File 6 Table).

The majority of the differentially expressed genes have no
known function, and 45 of these showed a higher expres-
sion in the exposed lines, while 115 had a higher level of
expression in the control line (Additional Files 4 and 5
Tables). This expression pattern is similar to that of puta-
tive immune gene group (7 vs 26) (Pearson's Chi-square
p = 0.415) and may therefore indicate an infection-related
functional bias for many of these unknown genes. In the

Oocysts numbers in four different generations (13–16) of control (C) and exposed lines (A and B) of Anopheles gambiae after infection with Plasmodium bergheiFigure 1
Oocysts numbers in four different generations (13–16) of 
control (C) and exposed lines (A and B) of Anopheles gambiae 
after infection with Plasmodium berghei. a: Individual values 
(each dot represents the oocysts number in the midgut of 
each mosquito). b: Average and standard error of each group 
of individual values for generations 13–16. Asterisks indicate 
statistically significant differences (Mann-Whitney test) with 
respect to control values (*P < 0.05). (see Additional File 3 
Table).
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assays reported here, gene expression was monitored in
the entire mosquito, as opposed to specific tissues and cell
types that may be more or less affected by and involved in
limiting infection. It is likely that some gene expression
signatures related to decreased permissiveness to Plasmo-
dium infection in the exposed lines are specific for partic-

ular tissues and were not identified in our assays because
of a dilution effect related to our use of total mosquito
RNA. Nevertheless, the assays showed consistent differ-
ences in expression of specific functional gene groups that
are likely to relate to the observed differences in infection
phenotype between the exposed and control lines. Gene
expression was also compared between generation 10 and
16 of the control line with the regular insectary colony of
the same mosquito strain to test whether the differential
gene expression patterns could have resulted from a
potential genetic drift of the control line, rather than the
exposure to Plasmodium. These assays did not identify
any significant overlap with the genes that were differen-
tially expressed between the control and the exposed lines
(data not shown), and thereby confirm the impact of
exposure to Plasmodium as the selective pressure respon-
sible for the observed differences.

Divergence of immune and stress-related gene expression
A notable number of immune genes showed elevated
expression in the non-exposed lines (Fig. 2 and Addi-
tional File 4 Table). These genes belonged to a variety of
functional classes, such as pattern recognition receptors,
signal amplification cascade components, and immune
signaling pathway components. The pattern recognition
receptors group is dominated by thioester-containing pro-
tein (TEP) and fibrinogen domain immunolectins (FBN).
Interestingly, five of these putative immune proteins,
TEP1, FBN9, infection responsive putative short peptide 1
(IRSP1), IRSP2, and Gram-negative bacteria binding pro-
tein (GNBPB1) have been shown in RNAi gene-silencing

Validation of the microarray data by real-time PCR (qRT-PCR)Figure 3
Validation of the microarray data by real-time PCR (qRT-
PCR). Log2-transformed values from the microarray and 
qRT-PCR analyses of the TEP1, TEP4, two GSTs, one cyto-
chrome P450, cecropin 3, and apolipoprotein D genes, from 
naïve mosquitoes of the exposed lines A and B, from genera-
tions 13–16 (see Additional File 6 table).

Pie charts showing functional gene class distributions of dif-ferentially expressed genes between naïve non-blood fed mosquitoes of the exposed lines (generations 13 to 16) and the non-exposed control lines (generations 15 and 16)Figure 2
Pie charts showing functional gene class distributions of dif-
ferentially expressed genes between naïve non-blood fed 
mosquitoes of the exposed lines (generations 13 to 16) and 
the non-exposed control lines (generations 15 and 16). The 
genes are classified in seven different groups according to 
their predicted functions and shown in two subdivisions, (A) 
genes that have higher expression levels in the naïve non-
blood fed non-exposed control lines and (B) genes that have 
consistent higher expression levels in the generations 13 to 
16 of the exposed lines. [CS: cytoskeletal and structural 
genes, DIG: digestion-related genes, IMM: immune genes, 
MET: genes involved in metabolism, RED/STR: redox and 
stress-related genes, R/T/T: replication/transcription/transla-
tion related genes, TRP: transport-related genes]. (see Addi-
tional Files 4 and 5 tables).
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assays to possess anti-Plasmodium activity [4,22-24]. TEP1
is involved in phagocytosis of bacteria and anti-Plasmo-
dium defense at the stage of ookinete invasion of the mos-
quito midgut [22,23]. FBN9 belongs to the fibrinogen
domain immunolectin gene family, which is represented
by at least 61 FBNs in the A. gambiae genome [4,25,26].
IRSP1 and IRSP2 are putative short secreted peptides of
unknown function [4]. IRSP1 has homology to the sali-
vary gland secreted peptide gVAG [27]. GNBPs are
thought to participate in the immune response of Anophe-
les against Plasmodium infection [2,28,29] and were first
isolated from Bombyx mori through their capacity to bind
to the surface of Gram-negative bacteria [30]. In D. mela-
nogaster, a GNBP has been linked to the activation of the
TOLL pathway, together with a peptidoglycan recognition
protein (PGRP) [31,32]. The silencing of GNBPB3 and
GNBPB4, as well as GNBPB1 in the mosquito, signifi-
cantly increases the number of oocysts in the midgut after
P. berghei infection (Dimopoulos lab, unpublished data).
The majorities of the other putative immune genes have
never been tested for anti-Plasmodium activity but belong
to functional classes with members that are known to be
involved in the defense against Plasmodium. For instance,
leucine rich repeats (LRRs) are found in a variety of mos-
quito immune genes, such as the TOLL-like receptors
(TLRs) and the anti-Plasmodium factors LRIM1, LRRD7,
and APL1 [4,24,33,34]. Several A. gambiae CLIP domain
serine proteases have been shown to be responsive to bac-
terial and Plasmodium infections [4,25,33]. Finally, trans-
ferrin also showed a lower level of expression in the
exposed lines. Several studies have previously shown that
transferrin is induced upon challenge [25,35]; this protein
seems to be implicated in limiting bacterial growth by
sequestering iron [35].

Putative immune genes that showed higher constitutive
expression in the exposed lines than in the control line
(Fig. 2, Additional File 5 Table) included TEP15, FBN30,
CED6, cecropin 3, PGRPLC1, C type lectin MA1
(CTLMA1), and a TOLL-like precursor. Of these genes
only cecropin has been experimentally linked with anti-
Plasmodium activity [36]. CED-6 is an adaptor molecule
that acts in a signal transduction pathway that specifically
mediates the recognition and engulfment of apoptotic
cells in C. elegans [37]. The four-fold higher expression in
the naïve adults of the exposed lines suggests that its reg-
ulation was strongly affected by the adaptation to Plasmo-
dium exposure. The A. gambiae antimicrobial peptide
cecropin is active against numerous Gram-negative and
Gram-positive bacteria, as well as several species of fila-
mentous fungi and yeasts, and when is injected into
Anopheline mosquitoes previously infected with a variety
of Plasmodium species, sporogonic development is dis-
rupted by the abortion of the normal development of
oocysts [38-40]. The peptidoglycan recognition protein

PGRP has been shown to be involved in TOLL and IMD
(immunodeficiency) pathway activation in D. mela-
nogaster and to be induced after Plasmodium infection
[33,41]. Two C-type lectins (CTL4 and CTLMA2) have
been shown to protect the ookinetes from destruction in
the midgut epithelium [24].

Eight redox/stress-related genes showed differential
expression in the exposed and non-exposed colonies. Two
cytochrome P450 and two gluthatione-S-transferases
(GST) were expressed at higher levels in the non-exposed
line, and two other cytochrome P450 and two DNAJ pro-
tein genes were expressed at higher levels in the exposed
lines (Fig. 2, Additional Files 4 and 5 Tables). Cytochrome
P450, one of the major enzymes involved in the detoxifi-
cation of harmful compounds, plays a major role in the
mosquito defense system; it has been linked to DDT and
pyrethroid resistance in mosquitoes and other insects
[42,43]. GSTs are involved in the detoxification of endog-
enous compounds, such as peroxidates lipids, and in the
metabolism of xenobiotics. GSTs have been reported to be
differentially expressed in resistant and susceptible strains
of malaria [44,45]. Both cytochrome P450 and GSTs have
been shown to be regulated after microbial challenge [25].

Divergence of expression patterns of other functional gene 
groups
The cytoskeletal and structural component class of genes
displayed a general trend toward lower expression in the
exposed lines; the major gene families involved included
actins and cuticle proteins (Fig. 2, Additional Files 4 and
5 Tables). In addition to serving as a structural component
of the exoskeleton, cuticle proteins play a role in wound
healing and are also expressed in hemocytes, one of the
major immuno-competent cell types in invertebrates
[46,47]. Cuticular proteins have also been shown to par-
ticipate in the non-self recognition of E. coli by interacting
with its surface [48]. Previous studies have shown infec-
tion-responsive regulation of several different cuticle pro-
teins after challenge with either bacteria or Plasmodium
[4,25]. Actin, microtubules, and other cytoskeletal pro-
teins have been shown to play a major role in the ooki-
nete's traversal of the midgut epithelial cells and the repair
of the midgut epithelium after ookinete penetration
[49,50].

Two trypsin genes were found to be differentially
expressed: Trypsin 1 displayed elevated expression and
Trypsin 7 displayed lower expression in the exposed lines
(Fig. 2, Additional Files 4 and 5 Tables). Trypsins are
known to influence the infectivity of malaria parasites in
the mosquito midgut, and for some Anopheles-Plasmodium
species combinations, trypsins can stimulate or inhibit
midgut invasion by the ookinetes [51-53]. This difference
in gene expression may also be related to the influence of
Page 5 of 12
(page number not for citation purposes)



BMC Genomics 2007, 8:451 http://www.biomedcentral.com/1471-2164/8/451
Plasmodium-infected blood on mosquito feeding behavior
[54]. Among the putative transport-related genes that
showed lower expression in the exposed lines was an
apolipoprotein D precursor (APOD), the major compo-
nent of insect lipid transport and a component of the
mosquito's immune system and anti-Plasmodium defense
[55]. Silencing of an APOD has been shown lower the
resistance of Anopheles to Plasmodium infection [4].

Genes in the diverse functional group are associated with
a variety of functions, and those belonging to the
unknown group did not display significant homology to
genes of known function (Additional Files 4 and 5
Tables).

Divergence of Plasmodium infection-responsive 
transcription patterns
The fact that significantly larger number of immune
genes, including anti-Plasmodium factors, was expressed at
elevated levels in the non-exposed line suggests that con-
tinuous Plasmodium exposure may also lead to a diver-
gence in the infection-responsive regulation of these
genes. Therefore, we compared the expression patterns of
four anti-Plasmodium berghei factors, TEP1, LRIM1,
SPCLIP1 and IRSP1, between the exposed and non-
exposed lines in response to P. berghei infection at 24 h
after feeding (infected), the time at which the ookinetes
invade the midgut epithelium [4,23,24]. A comparison
was also done for naïve non-blood fed mosquitoes for the
same genes. Due to the limited number of available mos-
quitoes in each generation, these assays used infected
mosquitoes from different but consecutive generations to
those used for the microarray expression analyses of naïve
mosquitoes. Mosquitoes were collected from generations
11 and 13 for assays on naïve expression levels and gener-
ations 10 and 12 for evaluation of infection-responsive
expression (Fig. 4 and Additional File 7 Table). The con-
stitutive expression levels of the immune genes TEP1,
LRIM1, and SPCLIP1 were in most cases higher in the
naïve mosquitoes of the non-exposed line than those of
the exposed lines (Fig. 4). Infection with Plasmodium
caused a stronger induction of TEP1, LRIM1, and SPCLIP1
in the exposed lines than in the non-exposed control line:
an increase of more than two-fold for TEP1, four-fold for
LRIM1, and close to two-fold for SPCLIP1. IRSP1 did not
follow the same pattern and displayed lower expression
levels in both non-exposed and exposed mosquito lines.

Conclusion
In the present study, we have shown that continuous
exposure to P. berghei-infected blood and infection exerts
a directional selective pressure upon the mosquito A. gam-
biae that results in a reduced permissiveness to infection
by the parasite. This selective pressure also shapes the
mosquito's transcriptome expression to produce an unex-

pected pattern in which the basal transcript levels of
innate immune genes, which play a role in anti-Plasmo-
dium defense, are decreased. A similar pattern was
observed for several other cytoskeletal, structural, and
transporter genes, some of which have been linked with
Plasmodium development in the mosquito (Fig. 2). In con-
trast, the immune-responsive expression levels of several
anti-Plasmodium genes were significantly higher in the
exposed mosquito lines (Fig. 4).

Pathogens exert a selective pressure on their hosts that can
eventually lead to the development of resistance. The
course of such selection is dependent on the extent of the
genetic variation in the traits that influence host defense,
as well as the trade-offs between these traits and other fac-
tors that can influence host fitness. In the case of Plasmo-
dium infection in Anopheles, the exposure to the parasite
has been shown to reduce the mosquito's fecundity and
longevity [56-58]. A recent study has also showed that
there is a significant fitness cost of P. berghei infection of
A. gambiae [59]. The destruction of the parasites in Anoph-
eles refractory strains has also been associated with a fit-
ness cost [60,61].

The results of the present study suggest that the mosqui-
toes' permissiveness to infection is likely to decrease to the
point at which higher levels of resistance would have a
higher fitness cost than would the tolerance of a certain
level of infection. The survival of mosquitoes in each
round of infection is likely to be attributable to a trade-off,
or rebalancing; an adjustment in the constitutive and
infection-responsive levels of gene expression that favors
an efficient defense against the parasite without causing
an overall decrease in fitness.

The insect innate immune system consists of several inde-
pendent but functionally overlapping branches that fight
pathogens. A genetically mediated enhancement of a spe-
cific defense mechanism may therefore render the func-
tional necessity of other defenses less important and
thereby lead to their gradual suppression. Our continuous
infection assay is likely to have selected for a resistance
mechanism that is not reflected at the transcript abun-
dance level, such as an allele polymorphism or a post-
transcriptional process that modulates active protein lev-
els. Through its potential activity against the mosquito's
constitutive microbial flora, this elevated resistance may,
in turn, have resulted in a general down-regulation of
other immune genes, including anti-Plasmodium factors,
that are also active in defending against bacterial infec-
tions [4]. A recent study has suggested that the mosquito's
anti-Plasmodium defense can be mainly attributed to the
basal (constitutive) expression of certain anti-Plasmodium
genes, rather than the responsiveness of these lines to
infection, the responsiveness only serving to replenish
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immune factors during and after infection [62]. According
to this model, a mechanism that would result in greater
immune protein stability could explain our observation
of 1) a lower basal expression level, reflecting a slower
protein turnover rate; and 2) an enhanced induction in
response to infection, which replenishes the immune pro-
teins that are secreted upon infection. Alternatively, the
lower basal expression of immune genes in the exposed
lines may have evolved to enable a more potent response
upon Plasmodium infection. Upon a stress condition, such
as Plasmodium infection, the mosquito needs to focus a
large proportion of its resources on the defense. Hence, a
high constitutive expression of a broad range of immune
genes would consume resources needed for rapid and

strong activation of a more specific repertoire of genes.
According to this hypothesis, consecutive Plasmodium
infections may select for mosquitoes with a lower consti-
tutive consumption of resources because of their ability to
more efficiently relocate resources for immune response.

It should be noted that the laboratory model used in this
study may represent an extreme situation that does not
occur in nature. P. berghei achieves unnaturally high infec-
tions in A. gambiae, and our assays were designed to
expose all mosquitoes of each consecutive generation to
Plasmodium-infected blood and infection. In contrast, the
prevalence of P. falciparum infection in the field rarely
exceeds 20%, and the infection levels rarely exceed 2–3

Comparison of expression of the anti-Plasmodium immune genes TEP1, LRIM1, SPCLIP1, and IRSP1 between exposed and non-exposed lines upon P. berghei infection (Infected) (24 hours after feeding on P. berghei infected blood) and at a non-infected non-fed state (Naïve)Figure 4
Comparison of expression of the anti-Plasmodium immune genes TEP1, LRIM1, SPCLIP1, and IRSP1 between exposed and non-
exposed lines upon P. berghei infection (Infected) (24 hours after feeding on P. berghei infected blood) and at a non-infected 
non-fed state (Naïve). Expression levels were determined by qRT-PCR in exposed lines A (open box) and B (black box) of gen-
erations 10 and 12 (G10 and G12) from infected mosquitoes and generations 11 and 13 (G11 and G13) for the non-infected 
naïve mosquitoes. The threshold values (Ct) of the four genes were normalized against the A. gambiae S7 gene, and the -fold 
differences in transcript abundance (exposed/non-exposed) were calculated for each gene in the exposed lines A and B with 
respect to the control line and plotted as bar diagrams. All qRT-PCRs were repeated at least three times, and the mean values 
are shown in the graph with standard errors indicated (see Additional File 7 Table).
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oocysts per infected mosquito [20]. Furthermore, the par-
asite's ability to develop the capacity to evade the mos-
quito's immune response was not reflected in this study,
since the parasites were derived from the same stock for
each infection assay. However, this model still provides
interesting insights into the changes in susceptibility and
transcriptional regulation that may be associated with
Plasmodium infection, and it establishes a link between the
mosquito's immune and stress response systems and
adaptation-driven resistance to Plasmodium.

Methods
Mosquito rearing and Plasmodium infections
Three independent lines (two exposed or experimental, A
and B, and one non-exposed or control, C) of the A. gam-
biae Keele strain (~400 adults per line) were maintained at
identical conditions on sugar solution at 27°C and 70%
humidity with a 12-h light/dark cycle, according to stand-
ard rearing procedures [63]. The exposed lines A and B
were reared on GFP P. berghei-infected Swiss Webster mice
[64] for 16 consecutive generations; the control line was
reared on uninfected Swiss Webster mice for the same
number of generations. Plasmodium infections were per-
formed according to [29]. Briefly, GFP P. berghei parasites
were passaged in Swiss Webster mice, and parasitemia was
determined by Giemsa-stained blood films. The exflagel-
lation events were controlled at averagely 2 to 3 per 20×
field. For each feeding experiment, the two exposed lines
were fed on the same infected mouse/mice. When two
mice were required for one experiment, mice with similar
infection levels were used and feedings were done by plac-
ing the mice with head part on one cage and tail part on
another cage. Every 5 minutes, the positions were flipped
to ensure ingestion of equal parasite numbers. The fed
mosquitoes from either exposed lines or the control line
were firstly kept at 19°C for about 2 days before trans-
ferred back to normal conditioned insectary. For colony
maintenance, the unfed female mosquitoes from either
exposed lines or the control line were removed from the
cage after blood feeding, and only fully engorged females
were used for eggs laying to produce the next generation
of progeny. The larvae hatched ~2–3 days after eggs lay-
ing, and the pupae were collected ~10–12 days later; they
matured to adult mosquitoes after an additional ~1–2
days. The mosquitoes were maintained on sugar solution,
and 5- to 6-day-old mosquitoes were blood-fed (with
infected or uninfected blood) and reared in this manner
for 16 generations.

For analyses related to mortality, infection phenotype
(oocysts number in the midgut), and the expression of
immune genes after infection, a pool of mosquitoes from
the control line (~80 adults) from each generation was
also fed on the same infected mice as were the two
exposed lines. Two mice with similar infection levels were

laid on the cages with head/tail on two different cages,
and the positions of the mice were rotated every 2 to 5
minutes between the cages. The mosquitoes that had fed
on infected and naïve blood were firstly kept at 19°C [65]
for about 2 days before transferred back to normal condi-
tioned insectary, and their mortality was determined 3–4
days after feeding (Additional File 1 Table). The transfer of
mosquitoes to 27°C at two days after feeding did not
affect P. berghei development as indicated by the forma-
tion of mature oocysts at 9 days after feeding. The majority
of mosquito mortality occurred between 24 to 48 hours
after feeding on infected blood as previously described
[1]. Control line fed on the non-infected blood showed
no significant mortality. After 7–9 days, midguts were dis-
sected (~15–20) to determine the level of infection, as
measured by oocysts numbers (Fig. 1 and Additional File
3 Table). For RNA isolation, adult females (~20 per line)
from all three lines were also collected in each generation
before feeding on either infected or non-infected blood
(naïve) and after feeding on infected blood (infected). All
the assays were done in triplicate.

RNA extraction and quantitative real-time PCR (QRT-
PCR)
RNA was extracted from whole mosquitoes using the RNe-
asy kit (QIAGEN). Quantification of RNA was performed
using a Biophotometer spectrophotometer. RNA samples
were treated with Turbo DNase and reverse-transcribed
using Superscript II (Invitrogen) with oligo dT20. Real-
time quantification was performed using the QuantiTect
SYBR Green PCR Kit (Qiagen) and ABI Detection System
ABI Prism 7300 (Applied Biosystems, California, USA).
All PCR reactions were performed in triplicate. The specif-
icity of the PCR reactions was assessed by analysis of the
melting curves for each data point. The ribosomal protein
S7 gene was used for normalization of the cDNA tem-
plates and to calculate the threshold values (Ct). The -fold
differences in expression level were calculated by the
standard E∆∆Ct [66] method. Primers used for all qRT-PCR
(Fig. 3 and Fig. 4) are listed in Additional File 2 Table.

Microarray analysis
The Low RNA Input Fluorescent Linear Amplification Kit
from Agilent Technologies was used to synthesize Cy-3
and Cy-5 labeled samples from 2 microgram RNA accord-
ing to the manufacturer's instructions. RNA from the con-
trol line generations 15 and 16 were pooled and used as
one control sample (labeled with Cy-3-dUTP fluorescent
nucleotides) to hybridize to the microarray against the
five exposed lines samples (exposed line A from genera-
tions 13, 15, and 16, and exposed line B from generations
14 and 15) and labeled with Cy-5-dUTP fluorescent
nucleotides. Microarray hybridizations were performed as
previously described [4], and all assays were done in trip-
licate. Spot intensities were measured with a GenePix
Page 8 of 12
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7000 autoloader scanner (Axon Instruments) using a 10
µm pixel size. The laser power was set to 60%, and the
PMT was adjusted to maximize the effective dynamic
range and minimize pixel saturation. Images were
inspected manually using GenePix Pro 6.0 software (Axon
Instruments, Union City, CA), and any spots that were
covered with hybridization artifacts were removed and
not included in further analysis. Express Converter soft-
ware was used to convert the Gene Pix results files to MEV
files and be analyzed by using TIGR-MIDAS software,
which is available online from TIGR [67]. The data sets
were filtered using a signal cut-off intensity of 100 to
remove low-intensity/poorly hybridized spots from the
analysis. Loc-Fit normalization (LOWESS) was performed
independently for each data set. The TMEV software, avail-
able online [67], was finally used for SAM analysis with a
5% false discovery rate (FDR). Only transcripts that had
signal values above the log2 cutoff values of ± 0.807 were
used for further analysis as previously described [4,68]
(Fig. 2, Additional Files 4, and 5 Tables).
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Additional file 1
Mortality of P. berghei infected mosquitoes of the exposed and non-
exposed control lines at 3–4 days after infected blood feeding. Mortality of 
P. berghei infected mosquitoes of the exposed and non-exposed control 
lines (from generations 7 to 14) at 3–4 days after infected blood feeding 
are indicated in the table and graph.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-451-S1.doc]

Additional file 2
Primer sets used for the qRT-PCR in Fig. 3 and Fig. 4. Primer sets used 
for the qRT-PCR in Fig. 3 and Fig. 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-451-S2.doc]
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Additional file 6
Correlation of microarray expression data with real-time qRT-PCR expres-
sion data. The log 2 ratios (exposed/control) of the gene expression from 
both the microarray and qRT-PCR analyses are presented in the table. The 
gene name, generation number, and selection line name are listed in col-
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"ENSANGT00000" removed from the ENSEMBL transcript ID.
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Additional file 7
Real-time quantitative PCR (qRT-PCR) based expression analyses of 
immune genes in naïve and infected blood-fed mosquitoes (see Fig. 4). 
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