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Abstract

Perturbing a signaling system with a serial of single gene deletions and then observing cor-

responding expression changes in model organisms, such as yeast, is an important and

widely used experimental technique for studying signaling pathways. People have devel-

oped different computational methods to analyze the perturbation data from gene deletion

experiments for exploring the signaling pathways. The most popular methods/techniques

include K-means clustering and hierarchical clustering techniques, or combining the expres-

sion data with knowledge, such as protein-protein interactions (PPIs) or gene ontology

(GO), to search for new pathways. However, these methods neither consider nor fully utilize

the intrinsic relation between the perturbation of a pathway and expression changes of

genes regulated by the pathway, which served as the main motivation for developing a new

computational method in this study. In our new model, we first find gene transcriptomic mod-

ules such that genes in each module are highly likely to be regulated by a common signal.

We then use the expression status of those modules as readouts of pathway perturbations

to search for up-stream pathways. Systematic evaluation, such as through gene ontology

enrichment analysis, has provided evidence that genes in each transcriptomic module are

highly likely to be regulated by a common signal. The PPI density analysis and literature

search revealed that our new perturbation modules are functionally coherent. For example,

the literature search revealed that 9 genes in one of our perturbation module are related to

cell cycle and all 10 genes in another perturbation module are related by DNA damage, with

much evidence from the literature coming from in vitro or/and in vivo verifications. Hence,

utilizing the intrinsic relation between the perturbation of a pathway and the expression

changes of genes regulated by the pathway is a useful method of searching for signaling

pathways using genetic perturbation data. This model would also be suitable for analyzing

drug experiment data, such as the CMap data, for finding drugs that perturb the same

pathways.
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Background

Understanding cellular signaling pathway systems is one of the major tasks those in the sys-

tems biology field undertake [1]. Many important cell activities, such as proliferation and apo-

ptosis, can be regulated by signaling pathways that accept signals from the surface of cells,

where the pathways regulate cell activities by adjusting the expression levels of corresponding

down-stream genes. Hence, the study of pathways can help us to understand the mechanism

of diseases, such as cancer, that are caused by genetic problems [2, 3].

One well established technology that can be used to study the cell signaling system is genetic

perturbation experiments, i.e., observing cell expression profile changes by deleting protein-

coding genes in model organisms, such as yeast. For example, Hughes et al. performed a pio-

neering study of yeast (Saccharomyces cerevisiae) signaling systems by generating and studying

genome-wide mRNA expression profiles with the deletion of 276 protein-coding genes [4].

Very recently, Kemmeren et al. generated a new data set with the mRNA expression profiles of

1484 deletion mutations of protein-coding genes for the study of yeast regulatory systems [5].

This type of experiment has generated a large amount of expression data [4–6] that provides

opportunities for studying the signaling system using computational methods.

One group of popular computational methods is clustering based, such as the hierarchical

or k-means clustering. The basic idea is that if two genes have similar expression profiles across

all samples or the deletions of two genes have similar genome-wide expression profiles, then

these two genes are functionally related. Kemmeren et al. used hierarchical clustering to study

the expression data and found that if genes are in the sample protein complex or the same

pathway, then genome-wide expression profiles of deletions of these genes were significantly

similar [5]. There are some other works [7–11] that combined expression data with other

knowledge or techniques to search for or study signaling pathways. For example, Steffen et al.

combined gene expression data, protein-protein interaction network, and k-mean algorithm

to search for sub-network [9]. Their basic idea was that genes in a sub-network were more

likely to belong to a pathway if they were in one cluster obtained from clustering the expres-

sion data. Zhao et al. applied expression profile and mutual exclusivity to find pathways related

to cancer development [10]. They thought that if mutations of genes were mutually exclusive

among tumors, and furthermore, gene expressions of those genes were also similar across all

tumors, then those genes were likely to be on the same pathway. In a summary, the purpose of

using expression data in previous works was similar, i.e., genes in a pathway should have simi-

lar expression profiles across all samples or expressed genes.

Our major motivation for proposing a new computational model to search for signaling

pathways in this work is that (to our best knowledge) previous methods did not consider or

not fully utilize the intrinsic relation between the perturbation of a pathway and expression

changes of genes regulated by the pathway. It is obvious that if a deletion perturbs a pathway,

i.e., a gene/protein in a pathway has been deleted, then expression levels of genes regulated

by the pathway should change significantly. However, when we measure those expression

changes, certain random perturbations, such as the variance of the microarray products and

the impact of artificial factors in the experiments, are hard to avoid. For example, researchers

may have noticed expression differences of genes among wild-type or control samples. People

may also have found that in many data sets, even the deletion of the same gene in two samples

under the same condition, the significantly changed genes in the two samples were quite differ-

ent. So in the expression data resulted from the deletion of a gene in a pathway, besides the

genes regulated by the pathway, some other random genes may also be differentially expressed.

If we used genome-wide expression profiles to study the relations between deleted genes using

some traditional methods, such as the hierarchical or k-means clustering, those random

Using Deep Belief Networks and genetic perturbation data to search for yeast signaling pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0203871 September 12, 2018 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0203871


perturbations would cause problems as expression of a large number of genes not regulated by

the pathway also make contribution in those clustering methods. In this project, in order to

reduce above problems, we first search for gene modules, called transcriptomic modules, such

that genes in each transcriptomic module are highly likely to be regulated by a common path-

way. We then use the expression status of each transcriptomic module as a readout of pathway

perturbations to search for an up-stream perturbation module such that genes in the perturba-

tion module come from the same pathway. The random perturbations should be greatly reduced
if we only consider the expression changes of genes regulated by each pathway respectively when
we search for up-stream perturbation modules.

We use a deep learning technique called deep belief network (DNB) [12, 13] to search for

transcriptomic modules as it can learn the hierarchical structure that exists within the differen-

tially expressed genes of the perturbation data. The DBN is a machine learning technique that

was originally developed for image processing, such as face recognition. A DBN may have one

visible layer and multiple hidden layers. When a DBN is applied for face recognition, its nodes

in the first, second, and third hidden layers can group pixels that make edges (line, curve seg-

ments, etc.), components (eye, nose, mouse etc.), and faces together, respectively [14, 15], i.e.,

it can learn the hierarchical structure that exists within the input data. In the cascade structure

of a pathway system, a gene/protein in up-stream usually controls more genes (gene expres-

sions) than a gene in down-stream does. However genes controlled by different genes along

the same pathway should have a hierarchical structure. We use DBN to learn this hierarchical

structure and to search for down-stream transcriptomic modules such that genes in each tran-

scriptomic module are commonly regulated by one signaling pathway. The major difference of

using DBN and other clustering methods, such as hierarchical clustering or k-means method,

is that the DBN is finding gene modules such that genes in each module are co-differentially

expressed in a number of samples that are statistically significant while the hierarchical cluster-

ing and k-means method are searching for genes with similar expression values in all samples.

So for the hierarchical clustering and k-means method, expression values of genes in samples

that do not have the significant expression changes of those genes also affect the clustering

results. As the lengths of pathways are usually not very long, in the perturbation data set, genes

regulated by each signaling pathway should not be co-differentially expressed in many sam-

ples. Using DBN is a better way to find genes regulated by each pathway as genes regulated by

each pathway were only co-differentially expressed in a very small number of perturbed

samples.

Our paper is organized as follows. After the introduction section, we introduce the methods

of our model in detail. We then introduce the results, including evaluation. Finally, we present

our conclusions.

Methods

Data collection and preprocessing

We collected the gene expression data of 1484 samples [5], where each sample is the mRNA

expression profile of the deletion of one protein-coding gene in Saccharomyces cerevisiae. Each

profile includes expression level in the form of standard deviation, average transcription level

changes (fold changes) in the mutant relative to 428 WTs, and p-values. In the preprocessing

step, we used the setting of the paper [5] to find what genes were differently expressed under

the deletion, i.e. a gene was considered to be differently expressed if its fold change was at least

1.7 and the p-value was less than 0.05. After the preprocessing, we obtained a 0/1 matrix such

that each row is for a measured gene and each column for a sample (perturbed gene); a value 1

represented that a gene was differently expressed in a sample; otherwise the value was set to 0.
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This 0/1 matrix was used to train the Deep Belief Network (DBN). The 0/1 matrix depends on

the threshold setting, which may lead to the change of trained DBN. However, if a method is

stable, the results should not change too much for a little change of threshold setting. We have

tested to use a fold change cutoff of 1.75 and 1.65 to make 0/1 matrices, respectively. We found

that the results of DBN from 0/1 matrices of different fold change cutoffs were very similar,

which provides evidence that the DBN model is quite s. Note: when the DBN program loads

this 0/1 matrix, the number of nodes in the visible layer is set as the number of measured genes

in the 0/1 matrix.

Training the DBN with the 0/1 matrix

In the introduction, we stated that differentially expressed genes caused from the perturbations

of different locations of a signaling pathway have a hierarchy structure that can be discovered

by a DBN. People usually use three or four hidden layers for DBN, where the default number

of hidden layers is four in the Matlab codes provided by Hinton et al. In this work, we used a

DBN with four hidden layers to learn this hierarchy structure, where the number of nodes in

the visible layer is the number of measured genes (row number of the 0/1 matrix), and the

number of nodes in the first, second, third and fourth hidden layers are 217, 160, 94, and 166

respectively. To obtain a good performance, setting a proper number of nodes in each hidden

layer is important. The number of nodes needed in each hidden layer depends on the input

training data. As there is no “gold standard”, people usually adjust those parameters manually.

In this project, we introduce a better way to estimate the number of nodes needed in each hid-

den layer. After the DBN is trained by a given input data, for each node in any hidden layer

and each sample in the input data, the DBN returns the probability that the hidden node is

activated in the sample. Hence, we can know how many nodes in each hidden layer have been

activated with a probability of p in at least one sample. We found that for a fixed probability p,

such as 0.75, if we set the number of nodes in all hidden layers to k and gradually increased

this k, the number of nodes that were activated with probability p in at least one sample in each

layer fluctuated around a certain number (refer to Fig 1). For example, if we set k to be 100,

125, 150, 175, 200, 225, 250, 275, 300, 325, and 350, then the number of nodes that were acti-

vated with a probability of 0.75 at the first hidden layer would be 100, 125, 150, 175, 189, 193,

191, 198, 217, 191, and 214 respectively. We found that the DNB was able to achieve good per-

formance if we found the maximum number obtained from the different settings of k for each

hidden layer and then used this maximum number to set this hidden layer, for example, in the

previous case, setting the number of nodes in the first hidden layer to be 217.

Obtaining the transcriptomic modules

After the DBN was trained, for each node T in the first hidden layer, we learned the weights

for all edges from the node T to all nodes (genes) in the visible layer. Each edge weight repre-

sents how strongly the value of the visible layer is affected by the value of node T. We com-

puted the mean μ and standard deviation δ from all the weights of the edges from T to all of

the nodes in the visible layer. Then we used μ and δ to set a threshold, a p-value of 0.05, for

choosing a set of nodes (genes) S in the visible layer and considered them to be regulated by

the node T. We considered genes in S to be a transcriptomic module.

Searching for up-stream perturbation modules

For each transcriptomic module, we tried to find a set of genes that was highly likely to be on

the pathway regulating the expression of the transcriptomic module. We called this set of

genes a perturbation module, as the deletion of any gene in the perturbation module would
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perturb the expression of the corresponding transcriptomic module. We only considered

genes that were deleted in the data set we collected. For each down-steam transcriptomic mod-

ule, we first found a gene, called the initial gene, such that the deletion of the initial gene caused

the most number of genes in the transcriptomic module to be differently expressed. We then

iteratively added new genes into the solution such that every time a new gene was added, it

would have the shortest average distance to all of the other genes in the previous solution. For

a transcriptomic module, the distance between any two genes G1 and G2 was decided by the

normalized expression level changes (normalized fold changes) of the genes in the transcrip-

tomic module with the deletions of G1 or G2, where the normalized fold change is defined as:

normðxÞ ¼

2; x � 1:7 and p Value < 0:05

1:7; x � 1:7 and p Value � 0:05

x; � 1:7 < x < 1:7

� 1:7; x � � 1:7 and p Value � 0:05

� 2; x � � 1:7 and p Value < 0:05

:

8
>>>>>>><

>>>>>>>:

We normalized the fold changes of the gene expression levels as we wanted the fold change

on a gene not to contribute to the distance if it is up- or down-regulated significantly in both

gene deletions. As in the original data, the expression of a gene was considered to change sig-

nificantly if the fold change was at least 1.7 and the p-value was less than 0.05, so we wanted to

distinguish cases of p-value� 0.05 and p-value<0.05. When the fold change is at least 1.7, we

set the value to be ±2 when the p-value<0.05. Specifically, suppose that the transcriptomic

module has genes g1, g2, . . ., gt; the deletion of G1 would cause the expression changes of those

t genes to be u1, u2, . . ., ut, and the deletion of G2 would cause the expression change of those t
genes to be v1, v2, . . ., vt; then the distance of G1 and G2 would be the minimum Euclidean dis-

tances between vectors (u1, u2, . . ., ut) and (v1, v2, . . ., vt) and the Euclidean distances between

vectors (u1, u2, . . ., ut) and -(v1, v2, . . ., vt). We consider the Euclidean distances between vec-

tors (u1, u2, . . ., ut) and -(v1, v2, . . ., vt) as the deletion of a gene on the pathway may inhibit the

signal while the deletion of another gene on the pathway may enhance the signal. Therefore,

the expression changes of genes regulated by a pathway may be in the reverse direction for the

deletion of different genes on the same pathway.
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Fig 1. Numbers of hidden nodes that were set and actually activated in all hidden layers.
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Results

We obtained 217 transcriptomic modules. Correspondingly, we found 217 up-stream pertur-

bation modules. In this section, we first give a systematic evaluation of the transcriptomic and

perturbation modules. We then present more detail of some of our perturbation modules.

In our hypothesis, genes in a transcriptomic module are highly likely to be regulated by a

pathway or even by a transcription factor. Hence, to evaluate our transcriptomic modules, we

first determined whether genes in a transcriptomic module were enriched in genes regulated

by known transcription factors. Then we investigated whether the genes in the transcriptomic

modules were functionally coherent.

Verifying transcriptomic modules with transcription factors

In the gene expression data that we collected, there existed deletions of 67 transcription factors

that caused at least 10 genes to be differently expressed. As a result, we could obtain genes that

are regulated by those 67 transcription factors. Using enrichment analysis, we first checked the

overlap of genes in the transcriptomic modules with genes regulated by those 67 transcription

factors. Remember that genes in each transcriptomic module are regulated by a node in the

first hidden layer. After the DBN was trained using given training data, we obtained informa-

tion about the probability that a node in the first hidden layer would be activated in each sam-

ple in the training data. We chose the 0.95 as the confidence threshold to decide if a node in

the first hidden layer would be activated in a sample. Hence, we obtained information about

how many times a node in the first hidden layer was activated in the training data.

By intuition, we know that if a node h is activated in only a very few or even no samples,

then the weights from the node h to all nodes in the visible layer will not be well trained. There-

fore, genes in transcriptomic modules regulated by the node h should be less reliable than

genes in transcriptomic modules regulated by a node that is activated many times. Our results

supported this hypothesis. We split our transcriptomic modules into three groups according

to the number of activations of their corresponding nodes in the first hidden layer, i.e. modules

in group 1, 2, and 3 are regulated by nodes that are activated 0, between 1 and 30, and more

than 30 times, respectively. Our results show that the average enrichment p-values (negative

log value with base 2) for transcriptomic modules in group 1, 2, and 3 were 22.03, 42.21, and

101.2, respectively (refer to Fig 2). Looking back to the original space, on average, the enrich-

ment p-values for transcriptomic modules in group 2 were 9.8×105 fold better than those for

transcriptomic modules in group 1, and the enrichment p-values for transcriptomic modules

in group 3 were 5.7×1017 fold better than those for transcriptomic modules in group 2.

Verifying transcriptomic modules using Gene Ontology (GO)

We also verified our transcriptomic modules using Gene Ontology to determine whether the

genes in each transcriptomic modules were functionally coherent. As we supposed that the

genes in each transcriptomic module are regulated by a signaling pathway, they should be

functionally coherent. For each transcriptomic module, we searched for a GO term such that

genes in the transcriptomic modules were most enriched in the GO term, i.e. had the mini-

mum p-value for the hypergeometric test. We still compared the enrichment p-values (negative

log value with base 2) for the transcriptomic modules in the three groups above. These results

also showed that the transcriptomic modules in group 3 had the best enrichment p-values,

where the average p-values (in log space) for the transcriptomic modules in group 1, 2, and 3

are 14.38, 17.36, and 24.02, respectively (refer to Fig 3). A global enrichment analysis of top 20

most enriched GO terms and their matched transcriptomic modules can be found at S1 Fig
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The result shows that many top 20 enriched GO terms are related to metabolic process and

some transcriptomic modules can be significantly enriched in more than one GO term.

Verifying perturbation modules using protein-protein interactions (PPIs)

According to our hypothesis, the genes in each perturbation module are highly likely to be on

the same signaling pathway. As PPIs are important for signal transduction [16, 17], we

expected that there would be more PPIs among genes in our perturbation modules than

among genes that are obtained using a random process. As the lengths of signaling pathways

are usually not very long, the sizes of perturbation modules should not be too large. To test our
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Fig 2. Comparing the TF enrichment analysis of genes regulated by the first layer hidden nodes with different

activation numbers.
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model, we fixed the size of the perturbation modules to 10. The results agree with our expecta-

tion (refer to Fig 4). We found that the average PPI density, i.e. the ratio of the actual PPI num-

ber and total number all gene pairs, for 10 genes randomly chosen from the deleted genes in

the expression data set was 0.034 (marked as “Rand”) while the average density for genes from

our perturbation module was 0.33 (Marked as “Module_genes”). If we use the same algorithm

for finding our perturbation modules, but instead of constraining genes in the transcriptomic

modules we use all genes to search for 10 genes, the average PPI density is only 0.27. Hence, by

using only the genes in the transcriptomic modules to search for perturbation modules, we

can greatly improve performance in terms of PPI density.

Verifying perturbation modules using Gene Ontology (GO)

We also verified our perturbation modules using Gene Ontology and found that results of the

analysis of our perturbation was similar to those of the analysis using PPI density. The average

enrichment p-values (negative log value with base 2) of random perturbation modules was

9.48 while the average enrichment p-values of our perturbation modules was 25.50, where the

difference was 6.65×104 in the original space. In the sample time, the average enrichment for

perturbation modules obtained from all genes was 18.76 (refer to Fig 5). Hence, the GO analy-

sis also proved that transcriptomic modules could be greatly helpful in finding perturbation

modules. A global enrichment analysis of top 20 most enriched GO terms and their matched

perturbation modules can be found at S2 Fig GO enrichment analysis also shows that the nor-

malization of fold change also improve the performance of the perturbation module finding

(refer to S3 Fig).

Literature search revealed that genes in our perturbation modules

are functionally coherent

We conducted a literature search to study genes in our perturbation modules and found that

the genes in our perturbation modules are functionally coherent. As the literature search has

to be done manually, it is hard to verify many modules. In this section, we only report the

results of literature search for two perturbation modules. One perturbation module, denoted

as Module-30, has genes BIM1, JNM1, MMS22, NPL3, RAD18, RAD50, RAD52, RMI1, SGS1,
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Fig 4. Comparing the PPI density of genes in perturbation modules obtained from different methods.
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and TOP3. There exist many protein-protein interactions among these10 genes (refer to Fig

6). We found that 9 of these 10 genes are associated with the cell cycle. Voncken et al. found

that BIM1 is cell cycle-regulated and associated with the G(1)-phase of the cell cycle [18].

McMillan [19] and Wang [20] et al. revealed that JNM1 regulates the spindle orientation dur-

ing the mitotic cell cycle. Vaisica et al. showed that the deletion of MMS22 caused an abnormal

cell cycle [21]. Dovey et al. also verified that the loss of MMS22 had an impact on the S- and

G2-phases of the cell cycle [22]. Bi et al. showed that RAD18 regulates the recovery from S-

phase checkpoint-mediated arrest [23]. Zhu [24] and Gatei et al. [25] found that RAD50 is

related to cell cycle regulation. Lisby discovered that RAD50 is associated with the DNA repair

and recombination centers during the S-phase of the cell cycle [26]. Xu et al. presented that

RMI1 is related to the M-phase of the cell cycle [27]. Balogun et al. found that the loss of SGS1

significantly impairs activation of cell cycle arrest [28]. Mankouri et al. showed that TOP3 is

required for normal S-phase progression after DNA damage [29]. Therefore, it is highly likely

that genes in Module-30 regulate the cell cycle.

In another of our perturbation modules, denoted as Module-80 (refer to Fig 7), a literature

search showed strong evidence that this perturbation is associated with the function/pathway

related to DNA damage as all 10 genes in the Module-80 have been proven to be related to

DNA damage. For example, Sharp [30] and Hu [31] et al. found that ASF1 is related to DNA

damage. Clausing et al. showed that BUR2 is associated with functions of DNA repair [32].

Fumasoni et al. presented that the DNA damage tolerance relies on CTF4 [33]. Crabbé et al.

indicated that CTF18 is essential for DNA damage control [34]. Dovey et al. verified that loss

of MMS22 results in the accumulation of spontaneous DNA damage. Xu et al. presented that

MRC1 is required for DNA damage checkpoint activation [35]. Karras et al. found the regula-

tion of the RAD6 pathway to DNA damage [36]. Hedglin et al. studied RAD6 activity related

to DNA damage tolerance [37]. Chahwan [38] and Roset [39] et al. presented an association of

RAD50 to DNA damage. Sidorova and Breeden showed that SWI6 has a function in response

to DNA damage [40]. Mankouri [29] and Mohanty [41] et al. presented that TOP3 is related to

DNA damage. It is observed that the three genes MMS22, RAD50, and TOP3 of Module-80

are also in Module-30, which mainly regulates the cell cycle. Hence, it is very likely that these 3
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Fig 5. Comparing the GO enrichment analysis of genes in perturbation modules obtained using different

methods.

https://doi.org/10.1371/journal.pone.0203871.g005
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genes play multiple roles and genes in Module-80 are in a pathway that regulates a partial func-

tion of cell cycle–DNA damage.

We went back to check transcriptomic modules and found that these two perturbation

modules and their corresponding transcriptomic modules were functionally coherent. Gene

Fig 6. Protein-protein interaction subnetwork of genes in the perturbation module-30.

https://doi.org/10.1371/journal.pone.0203871.g006

Fig 7. Protein-protein interaction subnetwork of genes in the perturbation module-80.

https://doi.org/10.1371/journal.pone.0203871.g007
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Ontology analysis showed that many genes in the transcriptomic module corresponding to

Module-30 are associated with the cell cycle process while many genes in the transcriptomic

module corresponding to Module-80 are related to DNA damage, DNA repair, DNA integra-

tion etc.

Conclusions

We used the deep belief network to process the gene expression data and search for transcrip-

tomic modules. One complexity that exists when using deep belief network is the parameter

setting, i.e., how to set the proper number of hidden layers and number of nodes in each hid-

den layer. As there exists no “gold standard”, people usually test different settings manually in

order to find a setting that achieves a good performance. In this work, we found that for a

given data set, if you gradually increased the number of nodes in each hidden layer, the num-

ber of nodes that were actually activated in each hidden layer was bounded by a certain num-

ber. In this work, we used those bounds to set the number of nodes in each hidden layer,

which resulted in a good performance in terms of finding transcriptomic modules that are bio-

logically meaningful.

The genetic perturbation data obtained from the gene deletions is a valuable resource for

studying signaling pathways. The basic idea is that if the deletion of a gene perturbs a signaling

pathway, then the expression levels of genes regulated by the pathway will change significantly.

By comparing the expression profiles, we could obtain relevant information to decide if the

deletions of two individual genes perturb a common signal. However, as 1) there exist some

random perturbations, or even just because of that cells may be in the different phases of cell

cycle, and 2) a gene/protein, such as CDC42, in a pathway can take roles in other pathways

[42]. Hence, besides the genes regulated by the pathway, some other genes can also be differen-

tially expressed in the gene deletion experiments, which causes problems if we are comparing

the genome-wide expression profiles. In this work, in order to greatly reduce the above prob-

lems, we first found transcriptomic modules such that genes in each module are highly likely

to be regulated by a common pathway. We then only compared the expression profiles on

genes in transcriptomic modules. Our results showed that utilizing the intrinsic relation

between the perturbation of a pathway and the expression changes of genes regulated by the

pathway is very helpful for studying the signaling systems.

There exist other data sets that used small molecules or drugs to perturb cell signaling systems

and obtained the expression profile changes of cells, such as CMap data [43, 44] and LINCS data

[45, 46]. As those expression data were basically obtained from single perturbation, our new

computational model can also be applied to those data to find what small molecules or drugs per-

turb the same pathway. As a result, clinicians have the option to target other genes in a pathway if

targeting one gene in this pathway does not work for a patient in targeted therapy.

Supporting information

S1 Fig. A global enrichment analysis of top 20 most enriched GO terms and their matched

transcriptomic modules. In order to more easily view the result, we have taken negative log
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S2 Fig. A global enrichment analysis of top 20 most enriched GO terms and their matched

perturbation modules. In order to more easily view the result, we have taken negative log val-
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