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Background: Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to
papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine
protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from
herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in

papaya genome are largely unknown.

Results: We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes
into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs
in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya
showed clear lineage-specific gene expansion in the subfamily ll. Interestingly, all four major PLCPs purified from
papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-
specific expansion branch in the subfamily lll. Mapping PLCP genes on chromosomes of five plant species revealed
that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated
divergence time of papaya PLCP genes of subfamily Ill. The major duplication events leading to lineage-specific
expansion of papaya PLCP genes in subfamily Il were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene
expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and
gRT-PCR. Most of the papaya PLCP genes of subfamily Ill expressed at high levels in leaf and green fruit tissues.

Conclusions: Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant
variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different
environments. The lineage-specific expansion of papaya PLCPs of subfamily Il might have been promoted by the
continuous reciprocal selective effects of herbivore attack and plant defense.
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Background

Papain-like cysteine proteases (PLCPs), belonging to pro-
tease family C1A of clan CA, are the most abundant
among the cysteine proteases [1]. PLCPs are found in a
wide range of living organisms, including virus [2],
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bacteria [3], yeast [4], protozoa, plants, and animals [1, 5].
The origin of the PLCP family likely occurred prior to the
divergence of the principal eukaryotic lineages [6, 7].
Papain is the first cysteine protease isolated and char-
acterized from Carica papaya [8] and it is also the first
cysteine protease whose structure was determined by X-
ray crystallography [9]. PLCPs are structurally related to
papain and characterized by a typical papain fold, which
consists of two sequentially connected domains: an o-
helix and a PB-sheet domain [9]. The active-site cleft,
containing the catalytic triad Cys-His-Asn, forms at the
two-domain interface [9]. Given their high destructive
potential, the activity of PLCPs is tightly regulated. Like
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other proteolytic enzymes, PLCPs are synthesized as in-
active precursors which contain an autoinhibitory
prodomain to prevent unwanted protein degradation
[10]. The prodomain can block access of substrate to the
active site, and also plays roles in protein folding and
subcellular targeting [11, 12]. The activity of PLCPs also
depends on pH and the presence of their endogenous
inhibitors or activators [13]. There is a fine balance be-
tween PLCPs and their endogenous inhibitors to help
control the activation and catabolism of many PLCPs.

PLCPs are involved in diverse biological processes, in-
cluding senescence [14] and defense responses [15, 16].
As an essential part of the proteolytic machinery, PLCPs
are responsible for intracellular protein degradation and
are key enzymes in the regulation of programmed cell
death (PCD). Cell death is a tightly regulated biological
process that functions in many aspects of plant develop-
ment and in the responses to biotic and abiotic stresses.
Increased activity of PLCPs was observed in developing
and germinating seeds [17], fruits [18] and senescing
organs [19, 20]. PLCPs also play essential roles in plant-
pathogen/pest interactions. Activity of PLCPs is required
to trigger plant immune responses and fulfill effective
defense against pathogen infection [15, 21, 22]. Mean-
while, PLCPs are often targeted by pathogen-derived
effectors to suppress plant immune responses [23-27].
Therefore, the continuous co-evolutionary arms race be-
tween pathogens and their hosts might have driven a
more rapid evolution of plant PLCPs compared to the
rest of plant genomes. In addition, PLCPs are also tightly
linked to resistance to herbivore attack. Papain, one of
the PLCPs in latex exuding from wounds, plays a crucial
role in protecting papaya from herbivorous insects, such
as lepidopteran larvae [28]. Similarly, a 33-kDa PLCP in
maize confers resistance to caterpillars by damaging
their digestive systems [29, 30].

Plant PLCPs were grouped into nine subfamilies pri-
marily based on their structural characteristics [31].
Genes belonging to large families may have evolved
through tandem duplications, genome-wide duplications,
or large-scale segmental duplications. And gene dupli-
cates provide an essential source of genetic raw material
for evolutionary novelty. Therefore, understanding the
evolutionary relationships between PLCPs will help iden-
tify the function of individual PLCP.

Carica papaya represents a special system to study
PLCPs. It is one of the plant species that can exude latex
upon tissue damage. Papaya latex is rich in PLCPs,
which are responsible for the defensive activities [28].
Four major PLCPs, papain, chymopapain, glycyl endo-
peptidase and caricain, have been purified and character-
ized in papaya latex [32]. In this study, we performed
genome-wide identification of PLCPs in papaya genome,
analyzed the expression patterns for each PLCP, and
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refined the evolutionary relationships of PLCPs from
major monocot and dicot plant species. Our data
demonstrated that the major PLCP components of
papaya latex had evolved from lineage-specific expansion
of PLCPs in subfamily III via stepwise duplication
events. The lineage-specific expansion of papaya PLCPs
of subfamily III might have been promoted by the con-
tinuous reciprocal selective effects of herbivore attack
and plant defense.

Methods

Plant materials

Papaya variety Zhonghuang were grown and maintained
at a greenhouse in Fujian Agriculture and Forest Univer-
sity. Leaf tissue, male flowers at 5 mm and 35 mm long,
and green and 50% yellow fruits were collected. The
fruit skin and flesh were manually dissected before RNA
extraction. Detailed information of developing stages
and sex types for each sample is given in Additional file 1.
The harvested tissues were snap-frozen by dropping dir-
ectly into liquid nitrogen and stored in a freezer at -80 °
C until RNA extraction.

RNA isolation

Plant tissues were ground in liquid nitrogen to a fine
powder using a mortar and then used for total RNA
extraction using Qiagen RNeasy Plant Mini Kit (Qiagen)
following the manufacturer’s protocol. DNA contamin-
ation was eliminated using Ambion DNA-free DNA
Removal Kit (Life Technologies).

Identification of papain-like cysteine proteases in selected
genomes

All gene models used in this study were downloaded
from Phytozome v11 (https://phytozome.jgi.doe.gov/pz/
portal.html). Initial identification of PLCPs was carried
out using HMMER v3.1 [33] against the Pfam Peptida-
se_Cl domain (PF00112) (http://pfam.xfam.org/) with
default settings. The identified PLCPs were then used as
queries to search against the NCBI Conserved Domains
Database (CDD) and against the NCBI protein database
to confirm that they contain the Peptidase_ C1 domain
and have homology to the PLCP family members.

Phylogenetic analysis

Full-length amino acid sequences of PLCPs were used
for initial multiple sequence alignment by MUSCLE
v3.8.31 [34] with default parameters. Manual correction
was done to remove poorly aligned regions using BioEdit
v7.2.0 [35]. The resulting alignments were used to
construct the phylogenetic trees by PhyML v3.0 with
Smart Model Selection [36]. The output trees were
further edited using MEGA 5.0 [37].
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Gene expression analysis of papaya PLCPs in five papaya
tissues at different developing stages

The raw RNA-Seq reads were downloaded from NCBI
(Additional file 2) and trimmed with TRIMMOMATIC
v0.30 to remove Illumina adapter sequences, any base
below quality phred score 3 and any read less than
36 bp in length [38]. The trimmed sequence reads were
aligned to repeat-masked papaya genome [39] using
TopHat (v2.1.1) with default settings [40]. The uniquely
mapped reads were then used to calculate the number of
reads falling into each gene and normalized to fragments
per kilobase of exon per million fragments mapped
(FPKM) using Cufflinks (v2.2.1) followed by Cuffnorm
(v2.2.1) with default settings and papaya gene model
annotation provided. The normalized FPKM values of
papaya PLCPs were log2 transformed and used to com-
pute the hierarchical clustering using the online software
MeV (using the Pearson correlation coefficient and
average linkage).

Quantitative real-time PCR (qPCR)

The primers used for quantitative real-time PCR were
designed using Primer Premier 5 software (http://www.pre-
mierbiosoft.com/primerdesign/). Ubiquitin gene was in-
cluded as an internal reference gene for normalization as
suggested by Zhu et al. [41]. Primer sequences are listed in
Additional file 3. Total RNA was extracted from different
papaya tissues with TRIzol reagent using the method as
described by Lin et al. [42]. Approximately 1 pg of total
RNA was used as template for reverse transcription using
the PrimeScript 1st strand cDNA synthesis kit (TaKaRa).
The synthesized 1st strand cDNA was then diluted 10-fold
and 1 pl of diluted cDNA was used in the qPCR reaction.
The qPCR was performed in a 15 pl reaction containing
1.0 pl of cDNA template, 1.5 pl of 2 uM forward and reverse
primer mix, 7.5 pl of Perfecta SYBR Green FastMix (Quanta
BioSciences), and 5.0 pl of Ambion nuclease-free water. The
reaction was run on a CFX96 Real-Time PCR Detection Sys-
tem (Bio-Rad). The PCR program was as follows: 95 °C for
3 min, 45 cycles of: 95 °C for 10 S, 60 °C for 30 S, 95 °C for
10S, followed by melt curve. Three technical replicates for
each sample were performed for qPCR analysis. The 2-**“*
method was used for relative gene expression analysis. Ana-
lysis of variance (ANOVA) was used to test the significance
of expression level.

Conserved domain identification, gene duplication
analysis, and chromosomal distribution of PLCPs
Conserved Domains Database (CDD) from NCBI was
used to identify conserved domains in PLCPs. The
‘duplicate_gene_classifier’ program of the MCScanX
package [43] was used to classify the gene duplication
events of PLCPs in the seven selected plant species. We
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used an in-house python script to draw chromosomal
distribution of PLCPs in five plant species.

Estimation of divergence times

Exon and intron regions of gene pairs were manually
aligned using BioEdit [35]. DnaSP v5.0 [44] was used to
calculate synonymous substitutions per synonymous site
(Ks), nonsynonymous substitutions per nonsynonymous
site (Ka), and synonymous and noncoding (silent) substi-
tutions per silent site (Ksil). Divergence times were
determined using Ksi/ and the methods described by Li
[45] using a mean substitution rate of 7.1 x 10™° substitu-
tions/site/year estimated in A. thaliana based on mutation
accumulation experiments [46], corrected by a factor of
0.672 for papaya as described by VanBuren et al. [47].

Results

Identification and phylogenetic analysis of papain-like
cysteine proteases

By searching for the Peptidase_C1 domain, we identified
33 PLCP genes in papaya genome. We double-checked
the Peptidase_Cl domain in these 33 genes using the
NCBI Conserved Domain Database and all of them
contain a complete Peptidase_C1 domain. We further
blasted search the protein sequences of these genes into
GenBank and all of them had the closest homologs
belonging to PLCP family. We therefore finalized the list
of papaya PLCP genes (Table 1).

To study the evolutionary relationships among the
newly identified PLCPs, we selected six additional plant
species for phylogenetic analysis. These six species
include three dicots (Arabidopsis thaliana, Vitis vinifera,
and Populus trichocarpa), two monocots (Oryza sativa
and Sorghum bicolor), and one basal angiosperm
(Amborella trichopoda). Using the same method described
above, we identified 27 PLCP genes in A. trichopoda, 49 in
P. trichocarpa, 32 in A. thaliana, 24 in V. vinifera, 45 in S.
bicolor, and 45 in O. sativa (Table 2).

A phylogenetic tree was built using PLCP genes identi-
fied from the seven representative plant species (Fig. 1).
The phylogenetic tree separated PLCP genes into nine
different subfamilies, which is consistent with previous
study by Richau et al. [31]. Based on the phylogenetic
analysis, we named the 33 papaya PLCP genes to keep
the same naming system as reported by Richau et al.
[31] (Table 1). Subfamilies I-VI, containing cathepsin
L-like PLCPs, are relatively related to each other.
Subfamilies VII, VIII and IX contain cathepesin F-like,
cathepsin H-like and cathepsin B-like PLCPs, respect-
ively, and they are distinct from subfamilies I-VL

PLCP genes of the seven plant species are not equally
distributed among the nine subfamilies (Table 2). Sub-
family VI contains the largest number of PLCP genes
among the nine subfamilies, while subfamily VIII
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Table 1 List of papain-like cysteine protease genes identified in
papaya genome
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Table 2 Distribution of papain-like cysteine proteases over sub-
families in seven selected plant species

Gene name Subfamily Length(aa) Gene Model ID

CpRD21A | 471 evm.TU.supercontig_200.16
CpRD21B | 353 evm.TU.supercontig_21.155
CpRD21C | 385 evm.TU.supercontig_55.99
CpCEPT Il 358 evm.TU.supercontig_33.69
CpCEP2 Il 362 evm.TU.supercontig_4.30
CpXCP5 (Papain) Il 284 evm.TU.supercontig_1120.1
CpXCP6 Il 237 evm.TU.supercontig_155.5
CpXCP7 (CpGlycyl Il 348 evm.TU.supercontig_155.6
endopeptidase)

CpXCP1 Il 348 evm.TU.supercontig_232.3
CpXCP3 Il 361 evm.TU.contig_27841.1
CpXCP2 I 357 evm.TU.supercontig_286.15
CpXCP8 Il 361 evm.TU.supercontig_286.8
(CpChymopapain)

CpXCP4 Il 345 evm.TU.contig_32339.1
CpXCP9 Il 336 evm.TU.supercontig_547.1
CpXBCPI1 I\ 130 evm.TU.supercontig_698.3
CpXBCP2 I\ 421 evm.TU.supercontig_6984
CpXBCP3 v 488 evm.TU.supercontig_7.74
CpTHIT vV 349 evm.TU.supercontig_209.8
CpPAP2 VI 337 evm.TU.supercontig_103.39
CpPAP3 Vi 337 evm.TU.supercontig_103.40
CpPAP4 VI 337 evm.TU.supercontig_103.41
CpPAPS VI 339 evm.TU.supercontig_209.15
CpPAP6 VI 310 evm.TU.supercontig_209.18
CpPAPT Vi 42 evm.TU.contig_45135.1
CpPAP7 Vi 334 evm.TU.supercontig_7.54
CpPAPS Vi 334 evm.TU.supercontig_7.56
CpPAP9 VI 325 evm.TU.supercontig_899.2
CpPAPTO VI 217 evm.TU.supercontig_899.3
CpRD19A VI 203 evm.TU.supercontig_150.50
CpRD19B Vil 362 evm.TU.supercontig_3257.1
CpRD19C Vil 366 evm.TU.supercontig_53.142
CpAALP VIl 355 evm.TU.supercontig_28.27
CpCTBI1 IX 347 evm.TU.supercontig_57.54

contains the least number of PLCP genes, about one-
tenth of the total number of PLCP genes in subfamily
VI. The number of PLCPs in each subfamily does not
proportionally increase or decrease among the seven
plant species (Fig. 1, Table 2). Our phylogenetic analysis
revealed extensive lineage-specific gene expansion. A
total of 25 PLCPs from the seven plant species were
grouped into the subfamily III and nine of them are
from papaya. Papaya showed clear lineage-specific gene

Species PLCP Subfamily Total
Lo vV Ve VI VI IX

Carica papaya 32 9 3 1 0 3 1 1T 33
Arabidopsis thaliana 9 3 2 1 T 7 4 2 3 32
Populus trichocarpa 5 6 4 5 1 19 5 1 349
Vitis vinifera 32 2 2 1 7 5 1 T 24
Oryza sativa 312 3 1 129 3 1 1 45
Sorghum bicolor 7 10 3 1 4 15 3 1 T 45
Amborella trichopoda 2 1 2 2 0 16 2 1 127
Total 32 36 25 15 20 83 25 8 11 255

expansion in the subfamily III. And all four major PLCPs
purified from papaya latex, including papain, were
grouped into the lineage-specific expansion branch in
the subfamily III. The two monocot species, rice and
sorghum, displayed distinct lineage-specific gene expan-
sion in the subfamily II. Rice showed significant expan-
sion in the subfamily V compared with the rest of the
plant species. The basal angiosperm, A. trichopoda,
showed clear lineage-specific gene expansion in the sub-
family VI. The total number of A. trichopoda PLCP
genes in the subfamily VI accounts for more than 50%
of the total number of PLCP genes in A. trichopoda
genome.

Lineage-specific expansion of PLCP genes of subfamily Il
in papaya

Papaya displays clear lineage-specific gene expansion in
subfamily III and all PLCPs purified from papaya latex
were grouped into this lineage-specific expansion
branch. We therefore built a separate phylogenetic tree
only for subfamily III PLCP genes using PLCP genes
from 53 plant species whose genome sequences were
available in Phytozome v11.

Using the same method and criteria described in the
previous section, we identified 134 PLCP genes of sub-
family III from 53 plant species (Additional file 4). We
also downloaded and included PLCP genes of C. papaya
and its relative Vasconcellea species that were available
in GenBank in our phylogenetic analysis. The whole list
of PLCP genes of subfamily III used for phylogenetic
analysis is given in Additional file 5. Phylogenetic ana-
lysis grouped the 155 PLCP genes of subfamily III into
two major clades, one containing all the PLCP genes
from monocots and the other one containing all the
PLCP genes from dicots (Fig. 2). Each clade was further
divided into two subclades, suggesting PLCP genes of
subfamily III had undergone independent duplication
events after the divergence of monocots and dicots from
a common ancestor. Except papaya, all the other plant
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Fig. 1 The Phylogenetic tree of 255 PLCP genes identified in papaya, Amborella, Populus, Arabidopsis, grape, sorghum and rice genomes. The
phylogenetic analysis grouped the 255 PLCP genes into nine PLCP subfamilies. Bootstrap values 295 were shown
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Sorghum bicolor
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species didn’t show clear lineage-specific gene expansion
in this subfamily. Among the nine papaya PLCP genes of
subfamily III identified in this study, eight of them were
closely clustered and were derived from lineage-specific
gene expansion. Interestingly, all the four major PLCPs
purified from papaya latex, papain, chymopapain, glycyl
endopeptidase and caricain, are included in this cluster.
All the latex PLCP genes of C. papaya and Vasconcellea
species downloaded from GenBank were also grouped
into the lineage-specific expansion branch. Our phylo-
genetic analysis showed that the lineage-specific gene ex-
pansion initiated before Carica and Vasconcellea
diverged from a common ancestor and had undergone
additional expansion after these two genera split from a
common ancestor.

Estimating the ages of gene duplication events of
subfamily Il PLCP genes in papaya

We selected paralogous gene pairs of subfamily III PLCP
genes in papaya based on their phylogenetic relation-
ships and analyzed their sequence divergence to trace
evolutionary history of the lineage-specific gene duplica-
tion events in papaya. We calculated synonymous (Kj)
and non-synonymous (K,) divergence between each par-
alogous gene pair and assessed the ratio of non-
synonymous to synonymous divergence in order to infer
the degree of functional constraint acting on the dupli-
cated genes. In general, the K,/K; ratio is greater than 1
when fixation of nonsynonymous substitution is faster
than that of synonymous substitutions, which means
that positive selection fixes amino acid changes faster
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Fig. 2 a The phylogenetic tree of 155 PLCP genes of subfamily Il identified in 53 plant species whose genome sequences were available in
Phytozome database and papaya relative species available in Genbank. The pink color highlights the major subclades of the monocot group and
the green color highlights the major subclades of the dicot group. Bootstrap values of major branches were shown. b Phylogenetic relations of
the nine PLCP genes of subfamily Il in papaya using the Neighbor-Joining method with 1000 replicates in the bootstrap test. Estimated ages of
major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily Il were shown

than silent ones [48]. Conversely, when deleterious sub-
stitutions are eliminated by purifying selection (negative
selection), the K,/K; ratio is less than 1. The K,/K; ratio
is close to 1 when the positive and negative selection
forces balance each other. The total number of syn-
onymous and non-synonymous sites and degree of
divergence between each paralogous gene pair are sum-
marized in Additional file 6. All gene pairs except one
have K,/K; ratios that are less than 1, suggesting diver-
gence of these duplicated paralogous gene pairs had

been functionally constrained. Since the K,/K; ratio of
the gene pair CpXCP3/CpXCP8 is only slightly greater
than 1, it is difficult to determine whether this dupli-
cated paralogous gene pair had been under positive
selection.

We also assessed the degree of silent site nucleotide
divergence (Kj;;) between the duplicated paralogous gene
pairs (Additional files 7 and 8). Overall, the degree of
silent site divergence matched the phylogenetic distance
between the paralogous gene pairs. The gene pairs
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having long phylogenetic distance showed the high
degree of silent site divergence. Using a molecular clock
of 7.1 x 10~ synonymous substitutions per site per year
[46], corrected by a factor of 0.672 [47], we estimated
the ages of gene duplication events of subfamily III
PLCPs in papaya (Fig. 2b, Additional files 7 and 8). The
major duplication events leading to lineage-specific
expansion of papaya PLCP genes in subfamily III were
estimated at 48 MYA, 34 MYA, and 16 MYA (Fig. 2b,
Additional file 7).

Gene expression profile of the papaya PLCP genes in
different tissues

Papaya latex is usually harvested from immature green
papaya fruits. To study the expression pattern of the
papaya PLCP genes, we obtained normalized FPKM
values of papaya PLCP genes based on RNA-Seq librar-
ies prepared from leaf tissue and fruits at six different
developmental stages. The expression profiles of the
papaya PLCP genes in leaf tissue and fruits at different
developmental stages were interrogated using hierarch-
ical clustering. A heatmap of the expression patterns of
the papaya PLCP genes is shown in Fig. 3.

Among the 33 PLCP genes identified in papaya gen-
ome, ten of them, CpPAP2, CpPAP3, CpPAP4, CpPAPS,
CpPAPI10, CpCEPI, CpRDI9C, CpXBCP1, CpXCP4, and
CpXCP9, exhibited a basal level of expression in leaf and
fruits across all developmental stages. Five papaya PLCP
genes, CpRD21B, CpRDI9A, CpRDI9B, CpAALP and
CpCTBI1, showed constant expression in leaf and fruits
across all developmental stages. The rest of the papaya
PLCP genes exhibited either tissue-specific or develop-
mental stage-specific expression patterns. In general, the
papaya PLCP genes of subfamily VI showed a relatively
lower level of expression compared to the rest of the
PLCP subfamilies although papaya contains more PLCP
genes in subfamily VI than the ones in other subfamilies.

We paid special attention to subfamily III because all the
major PLCPs purified from papaya latex including papain,
which is responsible for the defense of papaya against herb-
ivorous insects [28], were grouped in this subfamily. Over-
all, PLCP genes of subfamily III expressed at relatively
higher levels in leaf tissue and fruits at early developmental
stages than the fruits at late developmental stages. Papain
gene (CpXCPS) showed the highest expression in fruits at
stage 1 and 30 DPA. The two closest paralogous genes of
CpXCPS5, CpXCP4 and CpXCP9, exhibited a low level of ex-
pression in leaf and fruits at all developmental stages.
CpXCP3 and CpXCPS, a pair of paralogous genes derived
from a recent duplication event, showed a high level of
expression in leaf tissue and fruits at early developmental
stages, while CpXCP3 showed a much higher level of
expression in fruit at 150 DPA than CpXCP8. CpXCP6 and
CpXCP7, another pair of paralogous PLCP genes derived
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.

J

from a recent duplication event, exhibited similar expres-
sion patterns in all tested tissues.

Papaya latex is usually harvested from fruit skin of
green papaya fruits by mechanical wounding. We
selected CpXCP7 and CpXCP8 that encode glycyl endo-
peptidase and chymopapain, the two major PLCPs in pa-
paya latex, and further examined their expression
patterns in the skin of papaya fruit using quantitative
real-time PCR. Our result showed CpXCP7 and CpXCP8
expressed at a higher level in the skin than that in the
flesh of the papaya fruit (Fig. 4). As indicated by RNA-
Seq result, CpXCP7 and CpXCP8 showed a higher level
of expression in immature green fruit than the one in
mature fruit. The highest expression was observed in
mature male flower for both CpXCP7 and CpXCPS.
And both expressed at a relatively higher level in
mature male flower than the one in male flower be-
fore meiosis stage.
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Lineage-specific expansions of PLCP genes are mostly
derived from tandem duplication

Lineage-specific expansions of gene families may result
from genome-wide duplication, as well as segmental and
tandem duplication events. To examine whether lineage-
specific expansions of PLCP genes are driven by
genome-wide duplication or tandem duplication events,
we carefully looked at the chromosome locations of
PLCP genes for two monocot (O. sativa and S. bicolor)
and three dicot species (A. thaliana, V. vinifera, and P.
trichocarpa). We also used MCScanX to classify the
gene duplication events that led to lineage-specific
expansions of PLCP genes in the seven selected plant
species.

We mapped PLCP genes of the five plant species on
their chromosomes (Fig. 5). Our result clearly displayed
the uneven distribution of PLCPs along the chromo-
somes. PLCP genes from the same subfamilies formed
clusters on chromosomes (Fig. 5). Subfamily VI contains

the largest number of PLCP genes. Clusters of subfamily
VI PLCP genes were observed in all five plant species.
Our phylogenetic analysis revealed lineage-specific gene
expansion of subfamilies II and V PLCP genes in rice.
Consisting with this, a cluster of subfamily II PLCP
genes and a cluster of subfamily V PLCP genes were
observed on rice chromosome 9 and chromosome 1,
respectively. Similarly, PLCP genes of subfamilies I, II,
and VI formed clusters on sorghum chromosomes 10, 2,
and 6, respectively. We further used MCScanX to exam
the origins of the gene duplication events that led to
lineage-specific expansions of PLCP genes in the seven
selected plant species. Additional file 9 showed the per-
centages of PLCP genes derived from tandem duplica-
tion events in each PLCP subfamily. As we have
described above, our MCScanX result also strongly
supported lineage-specific expansions of PLCP genes
were mostly derived from tandem duplications, not from
genome-wide duplications.
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Discussion

Gene families are groups of genes that share important
characteristics, derived from gene duplication events
followed by mutation and divergence. Duplication events
can occur through frequent tandem duplications, or
infrequent large-scale segmental duplications or whole-
genome duplications. Gene duplication provides raw

genetic material for natural selection which resulted in
adaptive evolution, novel traits and speciation [49, 50].
Therefore, studying the evolutionary pathways that led
to the emergence of novel functions can greatly enhance
our understanding of plant adaptations.

PLCPs are proteolytic enzymes that are involved in a
broad range of biological processes such as senescence,
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programmed cell death, pollen development, fruit ripen-
ing, and seed germination [13]. In this study, we identi-
fied PLCP genes in seven plant species. Significant
variations in size of the gene family were observed
among species and among different PLCP subfamilies,
which may reflect genetic adaptation to different envi-
ronments in different plant species. We grouped the
PLCPs into 9 subfamilies. Based on the protein struc-
tures, subfamilies I-VI contain cathepsin L-like PLCPs,
and subfamilies VII, VIII and IX contain cathepesin F-
like, cathepsin H-like and cathepsin B-like PLCPs,
respectively. Interestingly, subfamilies VII, VIII and IX
showed no variation or only slight variations in size
among species. In contrast, subfamilies I-VI exhibited
striking variations in size among species. Studies showed
that dosage-sensitive genes normally exhibit less expres-
sion variation among tissues [51]. Consistently, no
significant expression variation was observed for papaya
PLCP genes of subfamilies VII, VIII and IX in leaf and
fruits across all developmental stages. In contrast,
papaya PLCP genes of subfamilies I-VI mostly exhibited
either tissue-specific or developmental stage-specific
expression patterns. It might be interesting to test
whether PLCP genes of subfamilies VII, VIII and IX are
dosage-sensitive genes in the future study.

Lineage-specific expansion of PLCPs was observed in
subfamilies I-VI. Variations in size of gene family among
species may result from genome-wide, large-scale seg-
mental or tandem duplications followed by differential
retentions. Our result revealed that tandem duplications
played the dominant role in affecting copy numbers of
PLCPs in plants. Cannon et al. studied gene duplications
for 50 large gene families in Arabidopsis thaliana and
found that highly conserved, housekeeping or key regu-
latory gene families were over-represented in the class of
gene families with low tandem duplications, while gene
families involving pathogen defense or diverse enzymatic
functions were over-represented in the class of gene
families with medium and high tandem duplications
[52]. By studying duplicated genes in four land plants,
Hanada et al. demonstrated that genes expanded via
tandem duplication tend to be involved in responses to
environmental stimuli, while genes expanded via non-
tandem duplication mechanisms tend to be involved in
primary metabolic and cellular functions [53]. All
together suggested that PLCPs of subfamilies I-VI with
dynamic variations might be associated with evolution-
ary adaptive traits. However, we can’t exclude the possi-
bility that some of these expansions have no adaptive
significance.

Approximately 10% of all angiosperm plant species
exude latex upon damage [54] and papaya is one of
them. Papain, one of the PLCPs in latex of papaya, plays
the key role in protecting papaya from herbivorous
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insects [28]. Papaya showed clear lineage-specific gene
expansion in the subfamily III of PLCP genes. Interest-
ingly, all the four major PLCPs purified from papaya
latex, including papain, chymopapain, glycyl endopeptid-
ase and caricain, were grouped into the lineage-specific
expansion branch in the subfamily III. Latex is a highly
convergent trait that has evolved independently multiple
times in plants. Since laticifers, the specialized cells that
synthesize and accumulate latex, are absence in primitive
angiosperms, the latex trait likely evolved recently [55].
Articulated laticifers are found in all Caricaceae species,
but absent in its closest sister family Moringaceae [56],
suggesting the latex trait in Caricaceae evolved after
Caricaceae and Moringaceae diverged from a common
ancestor approximately 65 MYA [57]. Our result is con-
sistent with this prediction that all the major PLCPs of
papaya latex evolved recently.

We found majority of the dicot species contain two
PLCP genes of subfamily III, while papaya contains at
least nine PLCP genes of subfamily III. PLCPs of sub-
family III are the major components of papaya latex and
play important role in protecting papaya against herbi-
vore attack. According to the widely accepted ‘plant-
herbivore coevolution’ theory, plant and its feeding in-
sects have engaged in an evolutionary antagonistic inter-
action that led to the repeated diversification of plant
defense strategies to avoid extinction [58, 59]. Therefore,
coevolution might be central to understanding the
causes of lineage-specific expansion and diversification
of subfamily IIT PLCPs in papaya.

The family Caricaceae consists of six genera and 35
species [60]. It originated in Africa approximately 65
MYA and dispersed from Africa to Central America ap-
proximately 35 MYA [60]. In the New World, the Neo-
tropical Caricaceae migrated further southward through
Central American bridge to South America approxi-
mately 27 MYA. Our phylogenetic analysis revealed that
papaya PLCPs of subfamily III expanded via stepwise
duplication events. Since the PLCP genes of subfamily
III from Vasconcellea species were also included in our
phylogenetic analysis, our phylogenetic tree indicated
that the lineage-specific gene expansion of subfamily III
initiated before Carica and Vasconcellea diverged from a
common ancestor and had undergone additional expan-
sion after these two genera split from a common
ancestor about 27 MYA. Furthermore, the estimated
ages of the lineage-specific gene expansion events of
subfamily III PLCPs in Caricaceae were coincident with
the dispersal of Caricaceae from Africa to Central Amer-
ica and further dispersal from Central America to South
America. The plant-herbivore coevolutionary theory
proposed that the continuous reciprocal selective effects
of herbivore attack and plant defense shaped patterns of
divergence among related species [59]. The diversity of
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defense-related compounds in plants is largely promoted
by insect detoxification mechanisms [59]. During the
migration, Caricaceae might have had unprecedented
interactions with herbivore species which it had never
encountered before. Therefore, new and stronger cyst-
eine proteases could have possibly evolved in response
to the changing herbivore attack. The lineage-specific
expansion of papaya PLCPs of subfamily III might result
from the continuous reciprocal selective effects of herbi-
vore attack and plant defense.

Conclusions

Tandem duplications played the dominant role in affect-
ing copy number of PLCP genes in plants. Significant
variations in size of the PLCP subfamilies among species
may reflect genetic adaptation of plant species to differ-
ent environments. The lineage-specific expansion of
papaya PLCPs of subfamily III might have been pro-
moted by the continuous reciprocal selective effects of
herbivore attack and plant defense.
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