
EXPERIMENTAL AND THERAPEUTIC MEDICINE  20:  283-292,  2020

Abstract. Glucocorticoids (GCs) exert a therapeutic effect 
in numerous chronic inflammatory diseases. However, 
chronic obstructive pulmonary disease (COPD) tends to be 
GC‑resistant. Icariin, a major component of flavonoids isolated 
from Epimedium brevicornum Maxim (Berberidaceae), signif-
icantly relieves symptoms in patients with COPD. However, the 
mechanism of action remains unclear and further investigation 
is required to establish whether it may serve as an alternative 
or complementary therapy for COPD. The aim of the present 
study was to determine the effects of icariin in human bron-
chial epithelial cells exposed to cigarette smoke extract (CSE) 
and to determine whether icariin reverses GC resistance. The 
results revealed that icariin significantly increased the prolifer-
ation of CSE‑exposed cells. Furthermore, icariin significantly 
increased protein expression of the anti‑inflammatory factor 
interleukin (IL)‑10 and significantly decreased protein expres-
sion of the pro‑inflammatory factors IL‑8 and tumor necrosis 
factor α. Icariin also attenuated the expression of the cellular 
matrix remodelling biomarkers matrix metallopeptidase 9 
and tissue inhibitor of metalloproteinase 1, and decreased 
the production of reactive oxygen species (ROS). In addition, 
icariin regulated the expression of GC resistance-related 
factors, such as GC receptors, histone deacetylase 2, nuclear 
factor erythroid-2-related factor 2 and nuclear factor κ B. The 
results obtained in the present study suggested that icariin may 
decrease CSE‑induced inflammation, airway remodelling and 

ROS production by mitigating GC resistance. In conclusion, 
icariin may potentially be used in combination with GCs 
to increase therapeutic efficacy and reduce GC resistance 
in COPD.

Introduction

Chronic obstructive pulmonary disease (COPD) is predicted 
to be the fourth leading cause of death worldwide by 2030, 
accounting for 5% of global mortalities (1-3). The disease 
is characterized by an imbalance in proinflammatory and 
anti‑inflammatory factors, airway remodelling and an increased 
production of reactive oxygen species (ROS). Cigarette smoke, 
the primary cause of COPD, contains >7,000 chemicals that 
cause bronchial epithelium damage, inflammatory cells infil-
tration and tissue remodelling (4,5). Furthermore, a previous 
study revealed that prolonged exposure to cigarette smoke 
resulted in irreversible epithelial cell damage that increased 
the production of pro‑inflammatory chemokines and ROS, 
and induced apoptosis (6). The increased production of the 
pro‑inflammatory chemokines interleukin (IL)‑8 and tumor 
necrosis factor α (TNF-α), the remodelling biomarkers matrix 
metallopeptidase 9 (MMP9) and tissue inhibitor of metallo-
proteinase 1 (TIMP1), and ROS have been associated with the 
severity of COPD (7-9).

Glucocorticoids (GCs) are used to treat numerous chronic 
inflammatory diseases, such as asthma (10,11), rheumatoid 
arthritis (12) and inflammatory bowel disease (13‑15). GCs 
reverse histone acetylation by binding with glucocorti-
coid receptors (GR) and recruiting histone deacetylase 2 
(HDAC2) to the activated transcription complex. At higher 
GC concentrations, the GC-GR complex acts on the DNA 
recognition site to facilitate gene transcription by enhancing 
histone acetylation (16). However, decreased GC sensitivity 
has been reported in patients with COPD (17-21) and in vitro 
and in vivo studies have provided evidence for GC resistance 
in COPD (20-23). Reversing GC resistance in COPD remains 
a clinical challenge and novel therapeutic agents are required.

In the clinical treatment of COPD with traditional Chinese 
medicine, several patients have noted symptom improvement 
following administration of Epimedium brevicornum Maxim, 
the active ingredient of which is icariin (24,25). Icariin 
has been shown to exert anti-remodelling, anticancer and 
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cardiovascular protective effects, as well as to promote bone 
formation (26‑29). Additionally, icariin exhibited anti‑inflam-
matory and antioxidant effects in cigarette smoke-induced 
inflammatory models in vivo and in vitro, possibly by 
suppressing NF-κB activation and altering the production of 
nitrous oxide, nitric oxide synthase, superoxide dismutase and 
T lymphocytes (30-32).

The present study hypothesized that icariin could alleviate 
cell injury in human bronchial epithelial cells (BEAS-2B) 
exposed to cigarette smoke extract (CSE) by modulating 
remodelling-related factors and restoring the balance of 
pro‑inflammatory and anti‑inflammatory factors. Furthermore, 
the present study investigated whether icariin reversed GC 
resistance.

Materials and methods

BEAS‑2B cell culture. Human BEAS-2B cells (American Type 
Tissue Collection) were plated in six-well plates at a density of 
1.5-2x106 cells/well, cultured in complete BEAS-2B culture 
medium (BEBM) and incubated at 37˚C, 5% CO2. Complete 
BEBM was formulated by supplementing BEBM basal medium 
(Lonza Group Ltd.) with a BEGM SingleQuots kit (Lonza 
Group Ltd.), which consisted of bovine pituitary extract, 
hydrocortisone, human epidermal growth factor, epinephrine, 
transferrin, insulin, retinoic acid, triiodothyronine, gentamicin 
and amphotericin-B.

CSE preparation and BEAS‑2B cell exposure. An unfiltered 
cigarette was combusted with the use of a peristaltic pump. 
Cigarette smoke was slowly bubbled into 5 ml complete 
BEBM from the start of the ignition to the end of the ciga-
rette burnout, which took ~5 min. The resulting medium was 
adjusted to pH 7.4, sterile‑filtered through a 0.22‑µm Millex 
filter (EMD Millipore) and defined as 100% CSE. BEAS‑2B 
cells were pre‑treated with 20, 40 and 80 µM icariin (Shanghai 
Ronghe Corporation) and 10 µM dexamethasone (DEX; 
Sigma-Aldrich, Merck KGaA), or vehicle control for 24 h prior 
to exposure to 5% CSE for 4 h at 37˚C, 5% CO2 (32). The 
vehicle used was DMSO (Sigma-Aldrich; Merck KGaA). The 
applied concentration of DMSO in both control and treated 
groups was 1.6 µl/ml, lower than the cytotoxic concentra-
tion (33). The morphological changes to BEAS-2B cells were 
visualised using a Zeiss AxioVert A1 fluorescence microscope 
(Carl Zeiss AG) at low power (x10 magnification).

Cell proliferation assay. A total of 100 µl BEAS‑2B cell 
suspension (1x104 cells/ml) was plated per well in a 96-well 
plate and cultured in complete BEBM overnight at 37˚C, 
5% CO2. Cell proliferation was determined using the Cell 
Counting Kit-8 (CCK-8; Dojindo Molecular Technologies, 
Inc.) according to the manufacturer's protocol. The absorbance 
was measured at 450 nm using a plate reader (TECAN Infinite 
200 PRO; Tecan Group, Ltd.).

Western blotting. Cellular proteins were extracted from 
the BEAS-2B cells using a nuclear and cytoplasmic protein 
extraction kit (Beyotime Institute of Biotechnology) according 
to the manufacturer's protocol and phenylmethylsulfonyl 
fluoride. Total protein concentration was determined using 

an enhanced bicinchoninic acid protein assay kit (Beyotime 
Institute of Biotechnology). Western blotting was subse-
quently performed as previously described (34). The following 
primary antibodies were used in the present study: Anti-GR 
(Santa Cruz Biotechnology, Inc.; cat. no. sc-393232; 1:1,000), 
anti-HDAC2 (Cell Signaling Technology, Inc.; cat. no. 2540; 
1:2,000), anti-NF-κB (Cell Signaling Technology, Inc.; 
cat. no. 4764; 1:1,000) and anti-GAPDH (Cell Signaling 
Technology, Inc.; cat. no. 5174; 1:5,000). Following primary 
antibody incubation, the membranes were incubated with a 
horseradish peroxidase-labelled secondary antibody (Santa 
Cruz Biotechnology, Inc.; cat. no. 2357; 1:50,000). Band inten-
sities were quantified using ImageJ analysis software (Version: 
1.52t; National Institutes of Health), with GAPDH as the 
loading control. All western blot experiments were performed 
in triplicates.

ELISA analysis of IL‑8, IL‑10, TNF‑α, MMP9 and 
TIMP1 concentrations in BEAS‑2B cell culture medium. 
The concentrations of IL-8 (Boatman Biotech, Co., Ltd.; 
cat. no. ETA05989), IL-10 (Shanghai ExCell Biology, 
Inc.; cat. no. EM005), TNF-α (Shanghai ExCell Biology, 
Inc; cat. no. EM008), MMP9 (R&D Systems, Inc.; 
cat. no. MMPT90), TIMP1 (R&D Systems, Inc.; cat. 
no. MTM100) in BEAS-2B cell culture medium were quanti-
fied using ELISA kits (names, catalogue number and supplier 
listed previously) according to the manufacturer's protocol.

Immunofluorescence staining. The expression of nuclear factor 
erythroid-2-related factor 2 (Nrf2) in BEAS-2B cells was anal-
ysed using immunofluorescence staining. Complete BEBM 
was removed and the cells were washed using phosphate-buff-
ered saline (PBS). The cells were subsequently fixed using ice 
cold 4% paraformaldehyde for 15 min at room temperature. 
The cells were washed 3 times in PBS for 5 min each. The 
cells were then blocked using Blocking Buffer (1x PBS/5% 
normal goat serum; cat. no. ab7481; Abcam)/0.3% Triton X-100 
(cat. no. T8787; Sigma Aldrich, Merck KGaA;) for 60 min at 
room temperature. The cells were washed again and incubated 
with a primary antibody against Nrf2 (Sigma-Aldrich, Merck 
KGaA; cat. no. SAB4501984) overnight at 4˚C. The following 
day, the cells were washed 4 times, 10 min each time, with 
PBS and incubated with a donkey-anti-rabbit secondary anti-
body (Thermo Fisher Scientific, Inc.; cat. no. A‑21207; 1:200) 
for 1.5 h at room temperature. The cells were subsequently 
counterstained with the nuclear stain DAPI (Sigma-Aldrich, 
Merck KGaA; 0.6 mM in PBS) for 4 min at room temperature. 
Stained cells were imaged using a Zeiss AxioVert A1 fluores-
cence microscope (Carl Zeiss AG; x40 magnification). A total 
of 6 fields were analysed.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from BEAS-2B cells using TRIzol™ 
reagent (Takara Bio, Inc.) following the manufacturer's 
protocol. Total RNA was reverse transcribed into cDNA using 
the iScriptDNA Synthesis kit (Bio-Rad Laboratories, Inc.; 
cat. no. 1708891) using the following temperature protocol: 
Priming at 25˚C for 5 min, RT at 46˚C for 20 min, reverse 
transcriptase inactivation at 95˚C for 1 min, and then holding 
at 4˚C. A total of 1 ml cDNA was subjected to qPCR using 
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Power SYBR Green PCR Master mix (Applied Biosystems, 
Thermo Fisher Scientific, Inc.; cat. no. A25742) and the 
ABI 6500 fast Real-Time PCR system (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The thermocycling conditions 
of the qPCR steps were as follows: Activation (temperature: 
50˚C; duration: 2 min; cycles: hold), Dual‑LockTM DNA 
polymerase (temperature: 95˚C; duration: 2 min; cycles: hold), 
denaturation (temperature: 95˚C; duration: 15 sec; cycles: 40) 
and annealing/extension (temperature: 60˚C; duration: 1 min; 
cycles: 40). The following primers were used for qPCR: GR 
forward, 5'-GGA CCA CCT CCC AAA CTC TG-3' and reverse, 
5'-GCT GTC CTT CCA CTG CTC TT-3'; HDAC2 forward, 
5'-CCA TGG CGT ACA GTC AAG GA3-' and reverse, 5'-TCA 
TTT CTT CGG CAG TGG CT-3'; GAPDH forward, 5'-AGA 
AGG CTG GGG CTC ATT TG-3' and reverse, 5'-AGG GGC 
CAT CCA CAG TCT TC-3'; NF-κB forward, 5'-CTG TCC TTT 
CTC ATC CCA TCT T-3' and reverse, 5'-TCC TCT TTC TGC 
ACC TTG TC-3'; and IL-8 forward, 5'-TGG ATT TCC CCC 
TTG CAA CC-3' and reverse, 5'AAA TCC TGA CTG GGT CGC 
TG3'. The relative expression level of each gene was deter-
mined against the GAPDH level in the same sample. The 
fold-change of the target genes was calculated by using the 
2-∆∆Cq method (35).

Cellular ROS analysis. ROS levels in BEAS-2B cell were 
detected using a human intracellular ROS assay kit (Nanjing 
Jiancheng Bioengineering Institute, Co., Ltd.) according to 
manufacturer's instructions. Flow cytometry was also used to 
detect the levels of ROS in BEAS-2B cells. BEAS-2B cells 
(0.5-1x106 cells/sample) were incubated with dihydrogenrho-
damine 123 (Sigma‑Aldrich, Merck KGaA) for 1 h at 37˚C 
and the fluorescence intensity of cellular oxidized rhodamine 
123 was detected using a flow cytometer (Attune NxT; Thermo 
Fisher Scientific, Inc.) and analysed using using Attune NxT 
Software (version 2.6; Thermo Fisher Scientific, Inc.).

Statistical analysis. Data are presented as the mean ± standard 
deviation). All experiments were performed in duplicates at 
least three separate times. The western blotting and immu-
nofluorescence staining experiments were performed three 
times. Statistical analyses were performed using GraphPad 
Prism software (version 6.02; GraphPad Software, Inc.). The 
one-way ANOVA followed by the Tukey's post hoc test was 
used to analyze the differences among multiple groups. P<0.05 
was considered to indicate a statistically significant difference.

Results

Icariin increases the proliferation of BEAS‑2B cells exposed 
to CSE. BEAS-2B cells exposed to CSE for 4 h exhibited 
morphological changes, including retracted processes and flat-
tening and enlargement of cell bodies. These morphological 
changes were less prominent in BEAS-2B cells treated with 
20, 40 and 80 µM icariin. The CCK‑8 assay was used to deter-
mine the effect of icariin on the proliferation of BEAS-2B 
cells exposed to CSE. The proliferation of CSE-exposed 
BEAS‑2B cells was significantly reduced compared with the 
control group. Following treatment with icariin, the prolifera-
tion of BEAS-2B cells increased in a dose-dependent manner. 
Furthermore, cells treated with 80 µmol/l icariin exhibited 

increased proliferation beyond the positive control group 
(DEX; Fig. 1A-B).

Icariin balances the secretion of pro‑inflammatory and 
anti‑inflammatory cytokines in BEAS‑2B cells exposed to 
CSE. The levels of the pro‑inflammatory cytokines IL‑8 and 
TNF-α in the BEAS-2B cell culture medium were quanti-
fied using ELISA and RT‑qPCR. The results revealed that 
the expression of IL-8 and TNF-α increased in response 
to CSE exposure. However, icariin exposure resulted in 
a significant reduction in this expression as evidenced by 
protein (Fig. 2A and B) and mRNA (Fig. 2C) levels of IL-8. 
Additionally, exposure significantly increased the expression 
of the anti‑inflammatory cytokine IL‑10 (Fig. 2D). Moreover, 
40 and 80 µM icariin were superior to DEX for the regula-
tion of the pro‑inflammatory and anti‑inflammatory balance. 
Collectively, the data suggested that icariin may play a role in 
reducing CSE-induced cell injury by balancing the secretion 
of pro‑inflammatory and anti‑inflammatory cytokines.

Icariin protects cells from damage caused by the CSE‑induced 
secretion of ROS and remodelling‑related factors. The level of 
ROS and DHR123 were significantly increased in response to 
CSE exposure in BEAS‑2B cells. Icariin (80 µM) inhibited 
ROS and DHR 123 expression to a similar extent as DEX 
(Fig. 3A-C). These data suggested that icariin may attenuate 
oxidative damage in cells induced by CSE.

MMP9 is associated with numerous pathological processes, 
including remodelling of the respiratory tract (36). TIMP1, a 
multi-functional protein, is an inhibitory molecule that alters 
cell viability and regulates MMPs and cell-matrix renewal (37). 
CSE significantly increased the levels of MMP9 and TIMP1 in 
the BEAS-2B cell culture medium (Fig. 3D and E). However, 
icariin treatment decreased the levels of MMP9 and TIMP1, 
which may partially explain its anti-remodelling effect.

Icariin attenuates CSE‑induced GC resistance. Due to 
primary GC resistance in COPD, GCs are unable to effectively 
inhibit the inflammatory response. Studies have shown that the 
factors associated with GC resistance include HDAC2, Nrf2 
and NF-κB (23,38,39). The present study revealed that CSE 
significantly decreased the protein and mRNA expression 
levels of GR, Nrf2 and HDAC2 and increased the protein and 
mRNA levels of NF-κB. However, icariin treatment reversed 
these changes (Figs. 4A-F and S1A-D). Collectively, the 
results suggested that icariin exerted a positive effect on GC 
resistance.

Discussion

The results of the present study revealed that icariin signifi-
cantly increased cell proliferation, regulated the release of 
pro‑inflammatory and anti‑inflammatory factors, inhibited 
ROS generation and decreased remodelling factor secretion 
in an experimental model of CSE-exposed BEAS-2B cells. 
The protective effects exhibited may be associated with the 
reversal of GC resistance, increasing the levels of Nrf2, GR 
and HDAC2 and decreasing NF-κB expression. These data 
support the unique therapeutic value of icariin in the treatment 
of COPD.
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Cigarette smoke contains thousands of toxic chemicals 
and carcinogens and is regarded as a leading risk factor 
for COPD, in which cigarette smoke triggers inflamma-
tory responses, induces the production of endogenous 
ROS and increases the expression of remodelling-related 
factors (40-45). The airway epithelium is the first 
barrier against environmental insults such as cigarette 
smoke (46-48). A previous study revealed that CSE decreases 
the cell viability of mouse lung epithelial cells (49). In 
the present study, the human bronchial epithelial cell line 
BEAS-2B was exposed to CSE and the protective effects 
of icariin on cell injury and proliferation were investigated. 
The CCK-8 assay demonstrated that CSE decreased the 
proliferation of BEAS-2B cells and icariin reversed this 
effect to a similar extent to DEX, which indicated that 
icariin may protect against CSE-induced cell injury.

COPD is a chronic non‑specific disease in which inflam-
mation of the airways activates inflammatory epithelial and 
smooth muscle cells and the release of inflammatory media-
tors such as pro‑inflammatory cytokines IL‑8 and TNF‑α, 
and the anti‑inflammatory cytokine IL‑10 (50). In patients 
with COPD, clinical studies revealed that airway epithelial 
cells have higher baseline levels of IL-8 and TNF-α expres-
sion and are correlated with the prognosis and severity of 
disease (51‑54). Additionally, the specific inhibitors of IL‑8 
may alter the progressive course of the disease (55). Acute 
exacerbations of the disease may be due to increased mucus 
secretion as a result of increased expression of mucin genes 
stimulated by high levels of IL-8 (7,56). TNF-α also has an 
important role in the pathogenesis of COPD. TNF-α up-regu-
lated the expression of adhesion molecules causing a large 
influx of inflammatory cells, and increased the production 

Figure 1. Effects of icariin on CSE‑induced cytotoxicity in BEAS‑2B cells. The cells were pre‑treated with 20, 40 and 80 µM icariin, 10 µM DEX or vehicle 
for 24 h, then treated with 5% CSE for 4 h. (A) Representative micrographs of each group of cells. The morphological changes were visualised using a 
Zeiss AxioVert A1 fluorescence microscope (Carl Zeiss AG) at low power (x10 magnification). (B) A Cell Counting Kit‑8 assay was used to determine cell 
proliferation. Data are expressed as the mean ± standard deviation (n=6). *P<0.05 vs. vehicle and #P<0.05 vs. CSE. CON, control; CSE, cigarette smoke extract; 
DEX, dexamethasone; ICA, icariin. 
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of matrix metalloproteinases and tenascin promoting tissue 
damage and remodelling (57). IL-10 has also been implicated 
in the development of COPD and its secretion is affected 
by COPD progression and cigarette smoke (58). As an 
anti‑inflammatory factor, IL‑10 expression levels in sputum 
and serum were lower in patients with COPD and smokers 
compared with healthy controls (59). A previous study 
revealed that IL-10 was positively correlated and IL-8 and 
TNF-α were negatively correlated with the forced expiratory 
volume in one second (FEV1), FEV1/predicted value ratio 
and FEV1/forced vital capacity. Plasma levels of the inflam-
matory cytokines IL-8, IL-10 and TNF-α are related to the 
severity of airway diseases and may serve as prognostic 
biomarkers for COPD (7). The results obtained in the present 
study revealed that icariin prevented the CSE-induced upreg-
ulation of IL-8 and TNF-α and increased IL-10 expression in 
BEAS‑2B cells in vitro. Furthermore, icariin (40 and 80 µM) 
were more effective than DEX.

The expression and activity of proteases and anti-proteases 
are critical factors in the remodelling and development of 
COPD (8,60,61). MMP9, a zinc-dependent endopeptidase, is 
a biomarker for COPD as it is not produced in normal lung 
tissues, but is produced in alveolar type II, endothelial and 
epithelial cells in COPD (62-64). MMPs form a group of neutral 
proteinases that can be divided into three subgroups (65): 
collagenases (MMP-1, MMP-8 and MMP-13); stromelysins 
and matrilysin (MMP-3, MMP-10, MMP-11 and MMP-7); and 
type IV collagenases (MMP‑2 and MMP‑9). MMP9 specifi-
cally degrade basement membrane type IV collagen. Also, 
type V collagen as well as elastin can serve as minor substrates 
for MMP9 (66). LeBert et al (67) found that the depletion of 
MMP9 partially rescued the disordered collagen fibres by 
using second-harmonic generation imaging technology. By 
modifying collagen and elastin, MMP9 has a role in numerous 
pathological processes such as remodelling, extracellular 
matrix deposition and inflammation (62,63). Serum and 

Figure 2. Role of icariin in the secretion of pro‑inflammatory and anti‑inflammatory cytokines in CSE‑treated BEAS‑2B cells. BEAS‑2B cells were pre‑treated 
with 20, 40 and 80 µM icariin, 10 µM DEX or vehicle for 24 h, then treated with 5% CSE for 4 h. ELISA measurement of (A) IL‑8 and (B) TNF‑α in BEAS-2B 
cell culture medium. (C) IL-8 mRNA expression was determined by reverse transcription-quantitative PCR. (D) ELISA measurement of IL-10 in BEAS-2B 
cell culture medium. Data are expressed as the mean ± standard deviation (n=6). *P<0.05 vs. vehicle and #P<0.05 vs. CSE. CSE, cigarette smoke extract; DEX, 
dexamethasone; ICA, icariin; IL, interleukin.



HU et al:  EFFECTS OF ICA ON CELL INJURY AND GC RESISTANCE288

sputum MMP9 levels correlate with COPD severity and signif-
icant clinical symptoms such as productive cough and a low 

FEV1 (68,69). TIMPs are tissue inhibitors of MMPs that act 
as multifunctional proteins to regulate cell matrix renewal and 

Figure 3. Effects of icariin on CSE‑induced ROS production and remodelling marker secretion. BEAS‑2B cells were pre‑treated with 20, 40 and 80 µM icariin, 
10 µM DEX or vehicle for 24 h, then treated with 5% CSE for 4 h. (A) ROS levels were detected using a human intracellular ROS assay kit. (B) DHR123 
levels were detected with flow cytometry. (C) representative flow cytometry plots for the DHR123 analysis. ELISA analysis of the remodelling‑related factors 
(D) MMP9 and (E) TIMP1. Data are expressed as the mean ± standard deviation (n=6). *P<0.05 vs. vehicle and #P<0.05 vs. CSE. CSE, cigarette smoke extract; 
ROS, reactive oxygen species; DEX, dexamethasone; ICA, icariin; MMP9, matrix metalloprotease 9; TIMP1, tissue inhibitor of metalloproteinase 1; DHR123, 
dihydrogenrhodamine 123.
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cell activity (70‑72). Studies have shown that TIMP1 specifi-
cally inhibits the activity of MMP9 (8,37,73). The present 

study revealed a significant increase in MMP9 expression 
and an adaptive decline in TIMP1 expression in CSE-exposed 

Figure 4. Effects of icariin treatment on glucocorticoid resistance‑related factors. BEAS‑2B cells were pre‑treated with 20, 40 and 80 µM icariin, 10 µM DEX 
or vehicle for 24 h, then treated with 5% CSE for 4 h. (A) Western blotting analysis of GR, HDAC2 and NF-κB protein expression. (B) Nrf2 immunofluores-
cence (red) in BEAS‑2B cells (x40 magnification). Reverse transcription‑quantitative PCR analysis of (C) GR, (D) HDAC2, (E) NF‑κB and (F) Nrf2 mRNA 
expression. Data are expressed as means ± SD (n=6). Western blotting and immunofluorescence staining were performed 3 times. *P<0.05 vs. vehicle and 
#P<0.05 vs. CSE. DEX, dexamethasone; CSE, cigarette smoke extract; GR, glucocorticoid receptor; HDAC2, histone deacetylase 2; Nrf2, erythroid 2 like 2; 
CSE, cigarette smoke extract; DEX, dexamethasone; ICA, icariin.
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BEAS‑2B cells. Icariin significantly decreased MMP9 expres-
sion and increased TIMP1 expression, suggesting that icariin 
may serve a protective role in CSE-induced remodelling.

Preclinical studies and clinical trials have revealed that 
an imbalance in oxidant/antioxidant factors in patients with 
COPD is due to long-term exposure to cigarette smoke, which 
results in the production of high concentrations of ROS (74,75). 
This imbalance plays a vital role in promoting airway remod-
elling and inflammation (76). ROS are implicated in the 
progression of COPD and increased ROS generation has been 
documented in patients with COPD (75,77). Increased ROS 
may lead to epithelial cell injury and death, protease/antipro-
tease activity imbalance and mucus hypersecretion (75,77). 
The present study revealed that CSE exposure significantly 
increased the level of ROS in BEAS-2B cells, which was then 
decreased following icariin treatment. Therefore, the protec-
tive effects of icariin against CSE-induced damage may be 
partly due to a decrease in the production of ROS.

Taken together, the results obtained in the present study 
revealed that icariin protected BEAS-2B against CSE-induced 
cell damage by decreasing the pro‑inflammation/anti‑inflam-
mation imbalance, oxidative damage and airway remodelling. 
Furthermore, the effects of icariin on GC resistance were 
investigated as GCs exert a significant anti-inflammatory 
effect, but this effect is reduced in patients with COPD due to 
GC resistance (19,20,78). GCs enter the cytoplasm to form a 
complex with GRs, which is then transferred to the nucleus and 
acetylated. The complex subsequently binds to the GR response 
element and leads to the transcription of hormone-sensitive 
genes. HDAC2 deacetylates the acetylated GC-GR complex 
and competitively binds to NF-κB to reduce acetylation 
of NF-κB, thereby decreasing the release of inflammatory 
factors such as IL-8 and TNF-α. The dynamic transforma-
tion of acetylation and deacetylation of GRs in the nucleus is 
closely associated with transcription of inflammatory factors. 
Therefore, primary GC resistance in patients with COPD 
may be attributed to the lack of HDAC2 in cells (19,79,80). 
Additionally, HDAC2 is involved in GR-mediated gene tran-
scriptional repression through the deacetylation of the GR-GC 
complex (21,78). Numerous studies have shown that activation 
of Nrf2 may be involved in GC resistance by enhancing the 
activity of HDAC2 (81,82). The present study revealed that 
CSE-exposed BEAS-2B cells expressed low levels of GR 
mRNA and protein, while pre-treatment with icariin rescued 
GR expression. Furthermore, HDAC2 expression, which drives 
the GR to compete with Nrf2 following GR deacetylation, 
was also increased by icariin, and Nrf2 expression, which 
regulates HDAC2 activity, was correspondingly elevated. By 
contrast, icariin decreased the protein and mRNA expression 
of NF-κB. These data suggested that the mechanism by which 
icariin protected against CSE-induced cell injury may be 
attributed to the reversal of GC resistance.

In conclusion, the present study revealed that icariin 
exerted anti‑inflammatory, antioxidative and anti‑remodelling 
effects in CSE-induced cell damage, potentially by reversing 
GC resistance. The results are consistent with those reported 
in a previous study, in which icariin alleviated CSE-induced 
inflammatory responses by normalizing GR expression 
and decreasing NF-κB expression in vivo and in vitro (83). 
Furthermore, icariin was revealed to serve a protective role 

against CSE-mediated oxidative stress in the human lung 
epithelial cell line A549 by quenching ROS and upregulating 
glutathione via a PI3K/AKT/Nrf2-dependent mechanism (32). 
However, the clinical application of icariin in COPD and other 
GC-resistant diseases requires further investigation.
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