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Pituitary adenylate cyclase-activating polypeptide (PACAP1-38) is a highly conserved
member of the secretin/glucagon/VIP family. The repressive effect of PACAP1-38 on
the apoptotic machinery has been an area of active research conferring a significant
neuroprotective potential onto this peptide. A remarkable number of studies suggest
its importance in the etiology of neurodegenerative disorders, particularly in relation
to retinal metabolic disorders. In our review, we provide short descriptions of various
pathological conditions (diabetic retinopathy, excitotoxic retinal injury and ischemic
retinal lesion) in which the remedial effect of PACAP has been well demonstrated
in various animal models. Of all the pathological conditions, diabetic retinopathy
seems to be the most intriguing as it develops in 75% of patients with type 1
and 50% of patients with type 2 diabetes, with concomitant progression to legal
blindness in about 5%. Several animal models have been developed in recent
years to study retinal degenerations and out of these glaucoma and age-related
retina degeneration models bear human recapitulations. PACAP neuroprotection is
thought to operate through enhanced cAMP production upon binding to PAC1-
R. However, the underlying signaling network that leads to neuroprotection is not
fully understood. We observed that (i) PACAP is not equally efficient in the above
conditions; (ii) in some cases more than one signaling pathways are activated; (iii)
the coupling of PAC1-R and signaling is stage dependent; and (iv) PAC1-R is not
the only receptor that must be considered to interpret the effects in our experiments.
These observations point to a complex signaling mechanism, that involves alternative
routes besides the classical cAMP/protein kinase A pathway to evoke the outstanding
neuroprotective action. Consequently, the possible contribution of the other two
main receptors (VPAC1-R and VPAC2-R) will also be discussed. Finally, the potential
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medical use of PACAP in some retinal and ocular disorders will also be reviewed.
By taking advantage of, low-cost synthesis technologies today, PACAP may serve as
an alternative to the expensive treatment modelities currently available in ocular or
retinal conditions.

Keywords: PACAP, signaling, retina degeneration, metabolic origin, neuroprotection

INTRODUCTION

Neuropeptides have a fundamental role in the maturation of
the nervous system and their functional consequences appear in
countless biological mechanisms, both in physiological and in
pathological conditions. Peptides may act as neurotransmitters,
neuromodulators or neurohormones, therefore their function
in neuronal development/regeneration may confer crucial
protective roles during pathological conditions (Strand, 2003;
Casini, 2005; Cervia and Casini, 2013).

Pituitary adenylate cyclase-activating polypeptide (PACAP)
was first isolated from ovine hypothalamic extract as a 38
amino acid long peptide (PACAP1-38) in 1989 (Miyata
et al., 1989). It belongs to the vasoactive intestinal peptide
(VIP)/secretin/glucagon peptide family members and has
another isoform eleven amino acids shorter (PACAP1-27)
which is less dominant in vertebrates (Arimura and Shioda,
1995; Vaudry et al., 2009). Unless stated otherwise, we refer
PACAP1-38 as PACAP throughout this paper.

The biological effects of PACAP are mediated by three types of
G-protein coupled receptors which have seven transmembrane
domains (PAC1-R, VPAC1-R, VPAC2-R, see below). PACAP
binds to pituitary adenylate cyclase-activating polypeptide type
I receptor (PAC1-R) with approximately 100x higher affinity
than VIP while both peptides have similar affinities for VPAC1-
R and VPAC2-R. These receptors are widely distributed in the
central and peripheral nervous system (Vaudry et al., 2000;
Laburthe et al., 2007). The variable effects of PACAP are due

Abbreviations: AC, adenylate cyclase; Akt, protein kinase B; ATP, adenosine
triphosphate; BCCAO, bilateral carotid artery occlusion; Bcl-2, B-cell lymphoma
2 protein; BDNF, brain-derived neurotrophic factor; cAMP, cyclic adenosine
3′,5′-monophosphate; CNS, central nervous system; CNTF, ciliary neurotrophic
factor; CRE, cAMP response element; CREB, cAMP response element-binding
protein; DAG, diacylglycerol; DR, diabetic retinopathy; ERK 1/2, extracellular
signal-regulated-kinase 1/2; Gα/β/γ, G protein alpha/beta/gamma subunit; GCL,
ganglion cell layer; GFAP, glial fibrillary acidic protein; GSK, glycogen syntase
kinase-3; HIF1α, hypoxia-inducible factor 1 α; HRE, hypoxia response element;
IL6, interleukin6; INL, inner nuclear layer; IP3, inositol trisphosphate; IPL, inner
plexiform layer; JNK, jun N-terminal protein kinase; LPS, lipopolysaccharide;
MAPK, mitogen activated protein kinase; MAPK, mitogen-activated protein
kinase; MGS, monosodium glutamate; mRNA, messenger RNA; NaAsO2, sodium
arsenite; NFκB, nuclear factor κB; NR2B, N-methyl D-aspartate receptor subtype
2B; OCTR, ocreotide; ONL, outer nuclear layer; OPL, outer plexiform layer;
PAC1-R, pituitary adenylate cyclase-activating polypeptide type I receptor;
PACAP, pituitary adenylate cyclase-activating polypeptide; PARP, poly ADP ribose
polymerase; phospho-CaMKII, calcium/calmodulin-dependent protein kinase II;
PI3K, phoshoinositide 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate;
PKA, protein kinase A; PKCα, protein kinase C alpha; PKC, protein kinase C; PLC,
phospholipase C; PLC, phospholipase C; ROS, reactive oxygen species; RPE, retinal
pigment epithelium; SST, somatostatin; STZ, streptozotocin; TNFα, tumor necrosis
factor alpha; VEGF, vascular endothelial growth factor; VEGF-R, VEGF- receptor;
VIP, mitogen activated protein kinase; VPAC1-R, vasoactive intestinal polypeptide
receptor 1; VPAC2-R, vasoactive intestinal polypeptide receptor 2.

to the activation of diverse signal transduction pathways and
their outcomes depend on which receptor types have been
activated. AC, PLC and Ca2+ are main effectors during the
signal transduction mechanisms of PACAP (Spengler et al., 1993;
Pisegna and Wank, 1996). PAC1R and VPAC1R are coupled
to AC, which leads to cyclic adenosine 3′,5′-monophosphate
(cAMP) level elevations and the subsequent activation of PKA,
which in turn could activate the MAPK pathway. Both receptor
types are coupled to PLC as well, which leads to the stimulation
of Ca2+ mobilization and the activation of the protein kinase
C (PKC) pathway. VPAC2R subtype also seems to activate the
AC signaling pathway. Beyond the receptor types, activation of
different pathways depends on the ligands, the tissue type, and
the stage of the development (Filipsson et al., 1998; Basille et al.,
2000; Vaudry et al., 2000).

PACAP and its receptors are present in the CNS and in
peripheral organs of mammals (Arimura and Shioda, 1995;
Vaudry et al., 2009). In the CNS it behaves as a neurotransmitter
or neurotrophic factor and is expressed in the hippocampus,
cerebellum, hypothalamus and in several brainstem nuclei
(Hannibal, 2002; Lee and Seo, 2014). Several studies discussed
its neuroprotective effects in neurodegenerative diseases such
as in stroke, brain ischemic injuries, Alzheimer’s diseases and
in Parkinsonism (Wang et al., 2008; Atlasz et al., 2010; Han
et al., 2014; Matsumoto et al., 2016). Studies have revealed the
expression of PAC1-R in the conjunctiva while PACAP/PAC1-
R show higher expression in the lacrimal glands, in the cornea
and in the retina (Wang et al., 1995; Elsas et al., 1996). In
the retina, the nerve cell bodies in the GCL, some amacrine
cells and horizontal cells show PACAP immunopositivity (Izumi
et al., 2000; Denes et al., 2014). PAC1-R is strongly expressed in
the GCL, in the INL and shows lower expression in the outer
and inner plexiform layers (OPL, IPL) as well as in the ONL
(Seki et al., 1997). To date, several studies have described the
significant neuroprotective potential and neurotrophic effects
of PACAP in relation to retinal metabolic disorders. Although
its physiological action is incompletely elucidated, this peptide
exerts neuroprotective and trophic actions by regulating cell
survival and death, not only during the development and
maturation of the nervous system but also in pathological
conditions. Although pivotal roles in retinal metabolic disorders
have been extensively investigated, the mechanisms are still not
well understood and further signal transduction pathways may
await to be revealed.

The primary aims of the present review are to summarize
our knowledge about PACAP action in the retina in various
physiological and pathological conditions (diabetic retinopathy,
excitotoxic retinal injury and ischemic retinal lesion) and to
discuss the potential signal transduction pathways in the context
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of its protective action. Particularly, we pay special attention
to (i) the lack of PACAP in the retina and supplementation
of PACAP during early postnatal development; (ii) PAC1-R
subtypes in the retina and their possible involvement in the
neuroprotective events; and (iii) role of PACAP in mobilizing the
immune system, both white blood cells and chemical messengers,
to achieve retinal neuroprotection. Finally, we summarize the
synergistic and diverging pathways through which PACAP acts
and achieves functional improvement in concerted action with
other neuropeptides.

PACAP CONTRA RETINAL
DEGENERATION WITH METABOLIC
ORIGINS

As we mentioned above, the physiological role of PACAP in the
adult retina is not well established. Clearly, an emerging theory is
that the lack of endogenous PACAP would accelerate age-related
degeneration (Reglodi et al., 2018). PACAP deficiency mimics
aspects of age-related pathophysiological changes including
increased neuronal vulnerability and systemic degeneration
accompanied by increased apoptosis, oxidative stress, and
inflammation thus mimicking early aging. In support of this
theory, it has been proven recently that endogenous PACAP
has a protective effect during retinal inflammation. Experiments
with PACAP KO mice revealed that intraperitoneal injection
of LPS induced markedly more seriously eye-inflammation
in PACAP KO mice than in the wild type group. During
the process of inflammation, protein kinase B (pAkt) and
glycogen synthase kinase-3 (pGSK) levels decreased in PACAP
KO mice while cytokines (sICAM-1, JE, TIMP-1) were elevated
(Vaczy et al., 2018).

INVOLVEMENT OF PACAP IN RETINAL
CELL DEVELOPMENT AND AGING

In the CNS numerous extrinsic and intrinsic factors contribute
to the formation of mature tissue by the precise regulation of the
appropriate number and distribution of neurons. Neuropeptides
influence many developmental processes of the CNS in a
regulated way (Casini, 2005). In the developing retina, progenitor
cells proliferate and differentiate into various retinal cell types as
a result of numerous regulated cell cycle processes and develop
into the final multi-layered structure of the retina. In postnatal
(P6, P9) rat retinas PACAP treatment modulates cell death by
activation of cAMP-PKA pathways (Silveira et al., 2002). Njaine
et al. (2010) have investigated the exact timing and role of PACAP
and its receptors in the cell generation of the developing rat
retina. PAC1-R is expressed as early as E16 during development
while VPAC1-R and VPAC2-R are expressed later, but then are
present at all other stages. PACAP treatment resulted in an
anti-proliferative effect by phosphorylation of CREB in cyclin
D1 expressing retinal progenitor cells after PACAP receptor
activation. Conversely, PACAP receptor activation led to a
decreased level of cyclin D1 mRNA and further decreased by

a combined treatment with PACAP and the cAMP degradation
inhibitor IBMX. These findings have shown that PACAP has
control over a subpopulation of progenitor cells and modulate
cell proliferation in the developing retinal tissues (Njaine et al.,
2010). Interestingly, PACAP shows both pro- and anti-apoptotic
effects on postnatal retinal development in rat models. Caspase
activity analysis has shown dose- and stage-dependent effects of
PACAP on developmental apoptosis in rat retinas. Intravitreal
injection of PACAP from postnatal day 1 (P1) to P7 induces
apoptosis during the early stage of the retinogenesis. When
100 pmol PACAP was injected, it increased caspase 3/7 activity
at P1, P3, and P5, but had no effect at P7. At P3, treatment
repressed caspase 3/7 activity 18 h after the intravitreal injection,
however, their levels increased 24 h post-injection. Apparently,
PACAP treatment did not exert anti-apoptotic effects at P1, P5,
and P7 rat retinas (Nyisztor et al., 2018). These findings warn us
to re-evaluate PACAP action cautiously, always taking the timing
and concentrations into account, especially in development.
Unfortunately, not much is known about the functions of this
peptide in mature retinas. Aging experienced as loss of function is
accompanied by functional and morphological changes in retinal
tissues (Gao and Hollyfield, 1992; Curcio and Drucker, 1993;
Ramirez et al., 2001; Kovacs-Valasek et al., 2017). PACAP KO
mice show accelerated age-related changes compared to wild
type retinas. Altered structural changes included enhanced loss of
ganglion cells and spouting of rod bipolar cell dendrites into the
ONL in aging PACAP KO mice. Protein kinase C (PKC) α level in
rod bipolar cells has been reduced in this condition. In contrast,
GFAP levels have increased with an absence of endogenous
PACAP. At the same time, PAC1-R has been upregulated in
PACAP deficient young adult mice retinas. Surprisingly, the
authors did not find differences in the histological structure of
young adult PACAP KO and wild type mice (Kovacs-Valasek
et al., 2017). These results suggest that PACAP contributes to
maintaining the biochemical balance within neurons and glial
cells. Thus, in the absence of this peptide, aging processes (e.g.,
reactive oxygen species formation) may gain strength earlier than
in animals with normal PACAP levels.

PACAP RECEPTOR TYPES EXPRESSED
IN RETINA

In the retina, the presence of four PAC1-R isoforms has been
verified during postnatal development. The Null isoform showed
no impressive changes at early stages (P1 to P5), but then
manifested a decline from P5 to P15. Null message levels fell
almost to zero in early adult ages. The Hip isoform had a
similar expression pattern. The Hiphop1 isoform showed one
prominent peak at P10. The Hop1 splice variant did not change
much between P1 and P5, but thereafter it showed a significant
increase at P10, P15, and P20. This seems to be the major isoform
during adult life. Depending on the type of the PAC1-R isoform,
PACAP can induce precursor cells to exit the cell cycle (through
activation of the Null isoform (Lu and DiCicco-Bloom, 1997)
or can promote proliferation in neuroblasts (if they express the
Hop isoform (Lu et al., 1998). Interestingly, expression of both
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Hip and Hop1 isoforms displays a sudden increase at P10 prior
to eye opening. Due to technical difficulties, PAC1-R bearing
retinal cells could not be sorted by their respective isoforms
(isoform-specific antibodies are not available currently).

Based on these experimental results, a subsequent study has
investigated the exact time period of isoform shift from postnatal
day 5–10. The transcript level of Hip mRNA decreased from
P6 through P9, while Hop1 expression level did not display
any changes until P10. Consequently, a Hip/Hop1 isoform shift
occurs between P6 and P8, which could alter PACAP functions
in the postnatal rat retina (Denes et al., 2014). In contrast to
the PAC1-R expression levels of the VPAC1-R receptor did not
change during postnatal retinal development, though both the
mRNA and protein could be detected in all selected time points.
A similar scenario has been found in the case of VPAC2-R.
Therefore, these receptors appear to be expressed in the newborn
as well as in the adult retina, with similar intensity both at
message and protein level (Lakk et al., 2012).

RETINAL PATHOLOGIES AND PACAP

Retinal diseases fall into two main categories: inherited disorders
and problems of metabolic origin. Both conditions have attracted
substantial research interest. According to our PubMed survey,
approximately 4,000 papers have been published in the last
10 years dealing with the former and about 3,000 with the latter.
Approximately half of the papers deal either with diagnostic
advances or treatment options. Below we shall summarize some
of the experimental results regarding the three most common
conditions: diabetic retinopathy, excitotoxic retinal injury and
ischemic retinal conditions.

Diabetic Retinopathy and PACAP
Diabetes is a multifactorial, metabolic disorder which appears
to be the result of several pathological metabolic processes
with increased morbidity statistics worldwide. In 2017, 425
million adults lived with diabetes and the size of the affected
population will rise to 629 million until 2045 (International
Diabetes Federation, 2017)1. DR is a microvascular complication
of diabetes and the leading cause of vision loss (Cheung
et al., 2010; Antonetti et al., 2012). DR is also considered as
a chronic inflammatory disorder; low-grade inflammation has
been observed in the retinas of both diabetic animals and human
patients (Krady et al., 2005; Kern, 2007; Zeng et al., 2008). Patients
with 1 type diabetes have a higher risk of DR than with the
type 2 disease (Yau et al., 2012). DR has two distinguishable
stages depending on the presence of neovascularization: an earlier
non-proliferative phase characterized by abnormalities in the
microvasculature, which could progress into a proliferative phase
with macular neovascularization (Cheung et al., 2010).

The pathogenesis of DR includes increased polyol and
hexosamine pathway activation, higher advanced glycation end-
products production and the activation of PKC pathways.
These altered signaling mechanisms could result in oxidative

1http://www.diabetesatlas.org

stress and chronic inflammation. Retinal microglial cells become
activated and migrate in the subretinal space in several
retinopathies, including DR (Zeng et al., 2000, 2008). The
activation of microglia induced by hyperglycemia has been
associated with the early development of DR, and occurs as
early as electroretinographic modifications (Gaucher et al., 2007;
Kern, 2007). Cytokines, released by activated microglia, were
shown to contribute to neuronal cell death (Krady et al.,
2005). They stimulate the production of cytotoxic substances,
such as TNFα and ROS, proteases and even excitatory amino
acids, which may induce neuronal degeneration. Leukocyte-
mediated retinal cell apoptosis is among the earliest pathological
manifestations of DR and results in the formation of a cellular-
occluded capillaries, microaneurysms, and vascular basement
membrane thickening (Kern and Engerman, 1995). Macrophages
have long been known to play a major role in the pathogenesis
of proliferative vitreoretinal disorders. In human DR, all types
of macrophages could be detected regardless of clinical history
and duration of the disease (Esser et al., 1993). Consequences
of vascular occlusions contribute to neurodegeneration and
dysfunction of the retina (Frank, 2004; Cheung et al., 2010;
Giacco and Brownlee, 2010). Neuroprotective effects of PACAP
in this pathological condition are complex because they have
both structural, physiological and synaptic aspects as evidenced
by many papers in this field (Table 1). In a rat model, intravitreal
injection of PACAP ameliorated the structural changes of the
retina in streptozotocin-induced DR. This treatment attenuates
neuronal cell loss in the GCL, reduces cone cell degeneration and
shows normal dopaminergic amacrine cell number compared to
untreated diabetic retinas. These findings have demonstrated the
significant neuroprotective effect of PACAP and its therapeutic
potential in DR (Szabadfi et al., 2012). In their latest study,
Maugeri et al. (2019) have provided evidence that PACAP1-
38 protects not only neurons, but also the retinal pigmented
epithelium both in vivo and in vitro. In another study,
the intraocular PACAP injection attenuated the retinal injury
by increasing the anti-apoptotic p-Akt, extracellular signal-
regulated-kinase (p-ERK1/2), PKC and B-cell lymphoma 2 (Bcl-
2) proteins levels, meanwhile the pro-apoptotic phosphorylated
p38MAPK and activated caspase -3,-8, and -12 levels were
decreased. As a result PACAP treatment significantly decreased
apoptotic cell numbers compared to untreated diabetic rats
and attracted a number of unidentified immune cells into the
retina through the inner limiting membrane (Szabadfi et al.,
2014). At the same time, electron microscopic analysis found
altered synaptic structures in the diabetic retinas, in contrast
to PACAP-treated diabetic groups, where more bipolar ribbon
synapses appeared in the inner plexiform layer indicating higher
levels of synapse-retention (Szabadfi et al., 2016). Giunta and
his colleagues have described that MAPK transcripts levels
were modified in the retina of diabetic rats during the early
stages and the levels of PACAP, VIP and their receptors
were all significantly downregulated as compared to non-
diabetic rats (Giunta et al., 2012). At the same time, PACAP
treatment has increased the PAC1-R expression in the retina,
sometimes even in cells where PAC1-Rs are normally not present
(Szabadfi et al., 2012).
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TABLE 1 | In vivo and in vitro experiments with PACAP application in DR (rat retina).

References Study aim Findings

In vivo Giunta et al.,
2012

PACAP, VIP and their receptors expression change in retina
of streptozotocin-induced diabetic rats.

The expression of peptides and their receptors were decreased after
induction of diabetes. PACAP38 intravitreal injection restored diabetic
changes in Bcl-2 and p53 expression to non-diabetic levels.

Szabadfi et al.,
2012

Highlights the protective effects of PACAP in diabetic
retinopathy

PACAP ameliorated structural changes in DR, attenuated neuronal cell loss
and increased the levels of PAC1-receptor and tyrosine-hydroxylase.

D’Amico et al.,
2015

The effects of PACAP in hyperglycemic retina is mediated
by modulation of HIFs’ expression in retina.

In diabetic rats HIF-1α and HIF-2α expression decreased after PACAP
intraocular administration while HIF-3α downregulated in retinas of STZ
injected rats and increased after PACAP treatment.

Szabadfi et al.,
2016

Analyze the synaptic structure and proteins of
PACAP-treated diabetic retinas after intravitreal PACAP
administration.

In the PACAP-treated diabetic retinas more bipolar ribbon synapses were
found intact in the inner plexiform layer than in DR animals. Degeneration of
bipolar and ganglion cells could be ameliorated by PACAP treatment.

D’Amico et al.,
2017

Protective role of PACAP through IL1β and VEGF
expression in rat diabetic retinopathy

PACAP reduced the IL-1β expression and downregulates VEGF, VEGFRs in
STZ-treated animals.

Maugeri et al.,
2019

Effect of PACAP-38 against high glucose damage is
mediated by EGFR phosphorylation in retina.

PACAP-38 induced p-EGFR over-expression in diabetic rats retina.

In vitro Maugeri et al.,
2019

Effect of PACAP-38 on ARPE-19 cells exposed to
hyperglycemic/hypoxic insult

PACAP-38 treatment improved cell viability.

Unfortunately, there is no data available regarding VPAC1-R
and VPAC2-R involvement in the PACAP response in the retina.
However, VIP and PACAP have been shown to cooperate in
functional studies by using other disease models (Schratzberger
et al., 1998; Ganea and Delgado, 2003; Abad et al., 2016).

Excitotoxic Retinal Injury and PACAP
Excitotoxic retinal injury in animal models mimics the
changes associated with elevated intraocular pressure in human
that causes glaucoma. Several studies have examined the
neuroprotective effect of PACAP in excitotoxic retinal injuries.
In normal conditions, glutamate is a neurotransmitter molecule
in the retina, however, in high concentration it causes
excessive stimulation of glutamate receptors and leads to
excitotoxicity. In animal models of excitotoxic retinal injury,
monosodium-glutamate treatment is used in vivo to model this
pathological condition.

Monosodium glutamate (MSG) injection treatment has
caused severe degenerations in neonatal rat retinas (Tamas et al.,
2004; Atlasz et al., 2009). If prior to MSG treatment PACAP was
injected unilaterally into the vitreous body of neonatal rat eyes,
the MSG-induced degeneration became less pronounced. PACAP
was applied in two different concentrations (1 and 100 pmol) to
examine the dose-dependency of PACAP treatment in excitotoxic
retinal injury. After MSG treatment the thickness of the entire
retina was reduced by more than half and the reduction was
especially due to the degeneration of the inner layers. Retinas
of rats treated with 100 pmol PACAP showed significantly less
damage than the retinas of animals treated with 1 pmol PACAP.
These findings have described how PACAP could significantly
attenuate the degeneration of the retina and underlined the
importance of the dose-dependent effects of PACAP (Tamas
et al., 2004). In another study, two different forms of PACAP
(PACAP1-27, PACAP1-38) and their antagonists (PACAP6-38,
PACAP6-27) have been tested in excitotoxic injury. The thickness
of the retina has been significantly reduced, much of the IPL
disappeared, the GCL and the INL cells intermingled and the

ONL cells were swollen. During the investigation, PACAP1-38
and PACAP1-27 treated groups have shown retained retinal
structure and the INL and GCL remained well separated.
The two isoforms of PACAP have shown the same degree of
neuroprotection after MSG treatments. The application of two
PACAP antagonists after MSG injection did not ameliorate the
MSG-induced retinal degenerations and led to a pronounced
degeneration in the rat retina (Atlasz et al., 2009). During these
experiments, the degenerations of the inner retinal layers were
ameliorated by PACAP treatment. Note that PAC1-R distribution
in the retina corresponds to the location of the protective effect
because it shows the highest expression in the INL and in the
GCL, and the lowest in the ONL and OPL (Seki et al., 2000).
Another study examined the molecular background of signal
transduction pathways underlying the neuroprotective effect of
PACAP in MSG-induced retinal injury. The authors found that
MSG inhibits the production of the anti-apoptotic molecules
(phospho-PKA, phospho-Bad, Bcl-xL and 14-3-3 proteins) using
rat models. PACAP treatment attenuates these effects by inducing
the activation of the anti-apoptotic pathway by phosphorylation
of PKA and Bad molecules and increasing the levels of Bcl-xL,
and 14-3-3 proteins (Racz et al., 2007). These results highlighted
that PACAP has a retinoprotective effect in glutamate induced
injuries by reducing the pro-apoptotic pathways, while inducing
anti-apoptotic signaling.

Interestingly, an enriched environment surrounding the
experimental animals has also been shown to provide strong
protective effect. A combination of enriched environment
and PACAP treatment, however, did not further improve the
protective effect, suggesting that these two treatments may utilize
the same pathway for protection (Kiss et al., 2011).

Retinal Ischemic Conditions and PACAP
Retinal ischemia, as well as ischemia-reperfusion, causes
inflammation which leads to injury progression, though
inflammation usually helps in neuronal repair. These conditions
contribute to excess ROS production, increase intracellular
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calcium levels and initiate mitochondrial damage. In addition,
MAPKs, nuclear factor κB (NFκB) and hypoxia-inducible factor
1α (HIF1α) are also activated when ischemic conditions elicit
inflammation (Rayner et al., 2006; Wang et al., 2014; Kovacs
et al., 2019). In the BCCAO model, PACAP activated one of
the most important cytoprotective pathways, the PI3K-Akt, and
suppressed the p38 MAPK and JNK pathways (Szabo et al., 2012)
just like PARP inhibitors (Mester et al., 2009). Furthermore,
a neurotrophic agent with a similar mode of action, CNTF, a
member of the IL6 family (Wen et al., 2012), has also been tested
in the form of intravitreal injection in preclinical studies. Using
12 animal models from 4 different species, researchers described
a strong neuroprotective effect on photoreceptors and ganglion
cells in the retina (Tao et al., 2002; Pease et al., 2009; Flachsbarth
et al., 2014; Lipinski et al., 2015).

The effect of PACAP fragments has also been tested extensively
in this model (Werling et al., 2014). The rationale for this
study was that bioavailability and fast degradation of PACAP
limit its therapeutic use and therefore scientific attention has
been drawn to shorter fragments, especially the ones where
C-terminus is truncated (Bourgault et al., 2009; Bourgault et al.,
2011; Dejda et al., 2011). Therefore, it was necessary to test
whether shorter PACAP fragments (4–13, 4–22, 6–10, 6–15, 11–
15, and 20–31) have any effect on retinal lesions caused by
chronic retinal hypoperfusion. Since the N-terminal fragments
show a high similarity with the structure of VIP, and the 4-13
domain shows high selectivity to the PAC1-R, the prospect of
creating a short and effective peptide fragment with a similar
neuroprotective potential to PACAP seemed very promising.
However, the authors came to the conclusion that the natural
form of the peptide, PACAP1-38, is the most effective in retinal
ischemia, and the 38 amino acid form of the peptide cannot
be replaced by another fragment or another member of the
peptide family (Werling et al., 2014). It has also been shown
that PACAP mediates functional recovery after 14 days of
intraocular treatment (Danyadi et al., 2014), probably through
downregulation of VEGF production and glutamate release
(D’Alessandro et al., 2014).

COMMON, SYNERGISTIC AND
DIVERGING PATHWAYS OF PACAP
SIGNALING TO ACHIEVE FUNCTIONAL
IMPROVEMENT

In the next few paragraphs, we aim to summarize the pathways
activated, directly or indirectly by PACAP receptors (Figure 1).
Unfortunately, most studies do not provide evidence which
PACAP receptors are involved in the processes described below.
Nevertheless, all the available data point to a critical function of
PACAP in neuroprotection.

Downregulation of Vascular Endothelial
Growth Factor (VEGF)
Vascular endothelial growth factor, a dimeric glycoprotein
functions as a mitogen by stimulating proliferation and migration

of endothelial cells. It is also responsible for formation of
new blood vessels (Ferrari and Scagliotti, 1996). The receptors
of this signal molecule (VEGF- receptor 1, VEGF-R1 and
VEGF- receptor 2, VEGF-R2) have tyrosine kinase domains
and contribute to angiogenesis (Yancopoulos et al., 2000;
Rahimi, 2006).

Among retinal cell types, mainly astrocytes, Müller glia cells,
retinal pigment epithelium (RPE) and pericytes produce VEGF
(Chalam et al., 2014). VEGF expression level is increased under
low-oxygen concentrations through the induction of hypoxia-
inducible factor 1 (HIF-1) expression. Hypoxia inducible factors
(HIFs, see later) are modulators in hypoxia and cause endothelial
cell transmigration across the RPE in the eye. These endothelial
cells contribute to new vessel formation under VEGF control
(Wang et al., 1995; Kaur et al., 2008; Skeie and Mullins,
2009). Elevated VEGF production leads to angiogenesis in order
to supply tissues in hypoxic conditions (Kim et al., 2015).
However, the newly generated blood vessels scatter light, and
thus, instead of contributing to a better vision, they actually
deteriorate visual acuity.

Studies have described diverse effects of PACAP on VEGF
expression levels. Both PACAP and VIP are able to modulate
HIF and VEGF expression during diabetic macular edema. VEGF
expression is increased during hyperglycemic insult compared
to control conditions. This effect can be ameliorated by PACAP
or VIP treatment which could reduce the expression of VEGF
and its receptors (Maugeri et al., 2017). Conversely, in another
study, unrelated to diabetes, intravitreal treatment with PACAP
has increased VEGF expression levels in rats after bilateral
common carotid artery occlusion (Szabo et al., 2012). Although
the results appear contradictory at first, at biological level the
finding further demonstrates how profoundly protective PACAP
is. In the extreme hypoxia at carotid artery occlusion the only
survival strategy is more capillaries, that PACAP can also provide
by an adaptive switch in its signaling bias. Nevertheless, the anti-
VEGF effects of PACAP are clearly beneficial in patients suffering
from DR conditions (Gabriel, 2013).

Upregulation of HIF1alpha
HIFs are important transcriptional regulators under hypoxic
circumstances targeting quite a few genes including VEGF
(Hu et al., 2003). Under reduced oxygen conditions, these
factors could modulate the cellular response to hypoxia
(Loboda et al., 2010; Manalo et al., 2011). The HIF1 protein
has two types of subunits (i.e., HIF1-α and HIF1-β) that
show oxygen-dependent expression; while HIF1-β constitutively
expressed, HIF1-α expression is increased under reduced oxygen
concentrations (Jiang et al., 1996). During hypoxia, HIF1-
α forms dimers with HIF1-β and the dimer binds to the
HRE. This complex is able to regulate transcription of genes,
which contribute to angiogenesis. One of them is the VEGF
gene (Pugh and Ratcliffe, 2003). It has been previously shown
that PACAP is able to modulate expression of HIFs in
streptozotocin (STZ) induced diabetic retinas. After 3 weeks,
HIF-1 alpha and HIF-2 alpha levels increased in diabetic
groups and significantly decreased as a result of PACAP
treatment. Conversely, HIF-3α was downregulated in diabetic
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FIGURE 1 | While PAC1-R-mediated signaling is at least partially synergistic with that of VPAC1-R, VPAC2-R that is inducible in some immune elements and utilizes
additional signal molecules to restore normal function. VPAC1-R, vasoactive intestinal polypeptide receptor 1; VPAC2-R, vasoactive intestinal polypeptide receptor 2;
PAC1-R, pituitary adenylate cyclase-activating polypeptide type I receptor; cAMP, cyclic adenosine3′,5′-monophosphate; AC, adenylate cyclase; PKA, protein
kinase A; ATP, adenosine triphosphate; Gα/β/γ, G protein alpha/beta/gamma subunit; IL, interleukin; TNFα, tumor necrosis factor alpha; PLC, phospholipase C;
PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; IP3, inositol trisphosphate; PI3K, phoshoinositide 3-kinase; JNK, jun N-terminal protein kinase;
ERK 1/2, extracellular signal-regulated-kinase 1/2; Akt, protein kinase; CREB, cAMP response element-binding protein; VEGF, vascular endothelial growth factor;
HRE, hypoxia response element; HIF1α, hypoxia-inducible factor 1 α; HIF1β, hypoxia-inducible factor 1 β.

rats and enhanced after intraocular administration of PACAP
(D’Amico et al., 2015). In normal conditions, HIF1α level
is reduced while HIF3α level increases, unlike in hypoxia or
hyperglycemia, where their expression patterns are reversed.
Treatments with VIP or PACAP reduce HIF1α levels and increase
HIF3α levels in ARPE-19 cells under hyperglycemic conditions
(Maugeri et al., 2017).

Downregulation of c-Jun and p38
Kinases
c-Jun N-terminal protein kinase (JNK) and p38 kinase are
members of the MAPK superfamily and they regulate

apoptotic signaling pathways in cells (Estus et al., 1994;
Ham et al., 1995; Mesner et al., 1995). JNK can have both
pro- and anti-apoptotic effects (Ham et al., 1995; Xia
et al., 1995; Lenczowski et al., 1997). In experiments using
sodium arsenite (NaAsO2) to trigger neuronal apoptosis,
both p38 kinase and JNK3 were upregulated and c-Jun
phosphorylation was induced. The results showed that p38
kinase and JNK inhibitors attenuated apoptosis in cortical
neurons and established the differences between JNK isoforms
which differently contributed to the apoptotic processes
(Namgung and Xia, 2000). It has also been described
that intravitreal PACAP treatment decreased JNK, p38
activation and the activation of ERK1/2, AKT in hypoperfused
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rat retinas (Szabo et al., 2012). In MSG-induced retinal
degeneration, PACAP treatment attenuated the activation
of JNK and caspase 3 and increased the level of phospho-
Bad (Racz et al., 2006). On the contrary, the same group
demonstrated that PACAP treatment decreased the expression
and activation of pro-apoptotic p38 in diabetic rat retinas
(Szabadfi et al., 2014).

Synergism With Other Peptidergic
Mechanisms
The therapeutic potentials of different neuropeptides have
been confirmed by numerous animal models of human
diseases. These substances deserve prominent attention in the
development of peptide-based therapeutic strategies of vision-
threatening diseases.

The effectiveness of SST neuropeptide has been described
in various pathological conditions of the retina. SST is an
important neuromodulator and its immunoreactivity occurs
mainly in the GABAergic amacrine cells in the retina (Feigenspan
and Bormann, 1994; van Hagen et al., 2000). SST levels are
downregulated at the early stage of DR (Carrasco et al., 2007).
Topical administration of SST and its analogs have a preventive
effect in retinal neurodegeneration in STZ-induced diabetes. It
has been established that SST treatment inhibits extracellular
glutamate accumulation, glial activation, ERG abnormalities
and it modulates the proapoptotic/survival signaling pathways
in experimental diabetes (Hernandez et al., 2013). Octreotide
(OCTR) is a synthetic SST analog which, for example, in
an ischemia/reperfusion injury study reduced cell loss, retinal
thickness changes, ROS formation and inhibited NF-κB p65
activation. These findings demonstrated that OCTR application
has a neuroprotective and antioxidant effect on ischemic injury
in the retina (Wang et al., 2015). In another investigation,
OCTR reduced hypoxia induced activation of STAT3 and
HIF1 levels in retinal explants (Mei et al., 2012). OCTR
and another SST analog (Woc4D) decreased neovascularization
in the mouse model of oxygen-induced retinopathy (Higgins
et al., 2002). A metabolomic analysis revealed the roles of
PACAP, SP, and OCTR in ex vivo mouse models of retinal
ischemia. These ex vivo results show a synergistic action of
the above mentioned peptides. All treatments reduce VEGF
overexpression, cell death and glutamate release and modulate
pro-survival pathways by restoring IP3 signaling, cAMP levels
and PIP2/PIP3 ratio in ischemia-induced retinal damages. It has
also been demonstrated in ischemia related oxidative stress that
PACAP and SP treatments help to cope with this condition and
OCTR also contributes to the preventive effect in pathological
processes (D’Alessandro et al., 2014).

Takuma et al. have investigated the effect of an enriched
environment on memory impairments in PACAP deficient-
mice. This environment ameliorates the memory impairments in
knockout mice after 4 weeks and the beneficial effects of it were
also observed if mice were returned to a standard environment
after 2 weeks. The results showed that the levels of BDNF,
phospho-ERK, phospho-CaMKII and N-methyl D-aspartate
receptor subtype 2B (NR2B) in the hippocampus increased in

an enriched environment and these factors are responsible for
the ameliorating effect of the this environment on memory
dysfunction. In PACAP −/− mice, however, these increased
expression levels disappeared after 2 weeks when they were
returned to standard housing, so in the lack of PACAP the long-
lasting ameliorating effects of the enriched environment could
not be verified (Takuma et al., 2014). An in vitro examination by
Ogata and his colleagues have compared morphological effects of
PACAP and BDNF on primary cultures of hippocampal neurons.
Both PACAP and BDNF increased neurite length and numbers
at a similar level, while PACAP increased the axon length only,
but not the branching. Interestingly, the use of PACAP6-38
antagonist blocked both PACAP and BDNF-induced increases in
axon length, suggesting that these two peptides may act through
the same intracellular signal transduction machinery and that
PACAP antagonists can interfere effectively with BDNF signaling
(Ogata et al., 2015).

Divergence in PACAP Receptor
Signaling – How Immune Elements Are
Recruited to Damaged Tissue Sites?
It has been demonstrated that immune cells express functional
PACAP receptors. However, PAC1-R has minor roles in the
immune response whereas VPAC1-R and VPAC2-R signaling
evoke diverging effects. The former is constitutively expressed
on macrophages, while the latter is inducible and particularly
strongly effected by LPS (Abad et al., 2016). While VPAC1-R is
thought to act mainly as an inhibitor of the immune response,
VPAC2-R is able to accelerate inflammatory processes by
initiating the production of several cytokines, most prominently
IL-6 and IL-10. Additionally, D’Amico et al. (2017) have provided
evidence that both IL1ß and VEGF levels are modified in
diabetic rat retinas after PACAP administration. In peripheral
organs PACAP also activates T-lymphocytes. In PACAP KO
mice, however, PACAP treatment failed to reduce neutrophil
infiltration into organs indicating that other indirect downstream
PACAP signaling is also essential in this system (Martinez
et al., 2005). VPAC1 and VPAC2 receptors, but not PAC1-
R mRNA levels, were transiently induced in retinas 1 week
following diabetes induction (Giunta et al., 2012). In the
same diabetic condition, immune cells were attracted to the
retina through the inner limiting membrane and resulted in
strengthening of IL-6 but not tumor-necrosis factor (TNF)
α-immunoreactivity in retinal ganglion cells. The reason for
this difference is currently unknown and research is needed
to clarify the underlying signaling routes. It is even more
interesting that TNFα is dramatically increased in glaucoma and
ischemia (Martinez et al., 2005). Therefore, it seems evident
that not all of the microcircuitry-related disorders have identical
immune cell recruitment pathways. This immune response
may enhance the degeneration of the damaged cells. That,
however, may be beneficial science when a protective signal
like PACAP appears, it may be hasten the clearance of the
dying elements, help to rearrange the neural connections and
maintain the integrity of the remaining cells, to restore function
as quickly as possible.
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DISCUSSION

Our review highlights the importance of PACAP and, some other
neuropeptides in retinal degenerative diseases with metabolic
origins. Neuropeptides with their wide range of signaling
potential could modulate the pathological pathways of retinal
diseases through converging signal pathways. The question arises
why these potentials are neglected in drug development and
subsequent clinical trials. One of the difficulties of using natural
peptides as protective agents is their relatively short half-life (in
some cases it can be shorter than 1 min). The solution for this
problem is to modify these peptides at their N and/or C termini in
order to prevent degradation (acetylation, cyclization, N and/or
C termini modification, PEGylation, D-amino acid substitution,
etc.). In the case of PACAP, half-life can be longer than 4 h
after some modifications (Mathur et al., 2016). Another potential
problem using peptides as therapeutic agents is their limited
passage through the blood brain barrier (Banks et al., 1993; Banks
and Kastin, 1996). In the case of the retina there is no need for
systemic administration since the peptides can injected into the
vitreus body and must pass through the retinal inner limited
membrane. Indeed it has been shown in the case of PACAP
that it reaches the inner retinal layers after intravitreal injection
(Werling et al., 2017).

At the same time, one of the mobilized downstream signals
in the pathogenesis, VEGF is intensively targeted by different
anti-VEGF therapies (Gabriel, 2013). While anti-VEGF therapies
are expensive, synthesis and modification of peptides like
PACAP are cost effective, so they may provide alternatives to
the treatments available today in various retinal conditions,
particularly in the case of DR. It would also be reasonable to
consider the combination of modified neuropeptides, which can
effectively counteract pathological retinal metabolic conditions.
As discussed above, there are a number of candidates to be
included in this mixture. In order to effectively protect every
retinal cell type and layer we suggest trying the combination of

modified BDNF, CNTF, OCTR, and PACAP. These substances
together satisfy the following criteria (i) under normal conditions
their native form is present in the retina in low concentration;
(ii) each retinal cell type has a receptor for at least one of the
four peptides; (iii) the signal transduction pathways behind the
retinal receptors of these substances do not ameliorate or cross
each other’s action; and (iv) none of them causes unwanted
side effects even if they are given in higher concentrations.
Considering that anti-VEGF drugs cost over 500 million
pounds in Great Britain alone in 2015 (Hollingworth et al.,
2017), alternatives are definitely needed, especially in low
and medium income countries (Shanmugam, 2014). Clinical
trials with the combinations of the above substances could be
envisioned based on the results achieved on animal models in
research laboratories.
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