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Movement variability reflects the adaptation of the neuromuscular control

system to internal or external perturbations, but its relationship to stroke-

induced injury is still unclear. In this study, the multifractal detrended

fluctuation analysis was used to explore the stroke-induced changes in

movement variability by analyzing the joint angles in a treadmill-walking

task. Eight healthy subjects and ten patients after stroke participated in the

experiment, performing a treadmill-walking task at a comfortable speed. The

kinematics data of the lower limbs were collected by the motion-capture

system, and two indicators, the degree of multifractality (α) and degree

of correlation [h(2)], were used to investigate the mechanisms underlying

neuromuscular control. The results showed that the knee and ankle joint angles

were multifractal and persistent at various scales, and there was a significant

di�erence in the degree of multifractality and the degree of correlation at

the knee and ankle joint angles among the three groups, with the values

being ranked in the following order: healthy subjects < non-paretic limb <

paretic limb. These observations highlighted increased movement variability

and multifractal strength in patients after stroke due to neuromotor defects.

This study provided evidence that multifractal detrended analysis of the angles

of the knee and ankle joints is useful to investigate the changes in movement

variability and multifractal after stroke. Further research is needed to verify and

promote the clinical applications.
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Introduction

Walking is an essential human activity and requires a complex set of neuromuscular

controls to cope with intrinsic and extrinsic perturbations (1). Walking demonstrates

a stable, rhythmic, and oscillatory pattern along with highly irregular fluctuations

from time to time (2). The gait pattern contains a lot of information about the
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normal or pathological state of the subject, which is altered

by the persistence of neuromotor defects after stroke (3). The

most common stroke-induced injury is a slow and inefficient

hemiplegic gait, which is thought to be the result of limited

muscle control or loss of muscle control or movement function

(4). Recent studies showed that the characterization of gait

defects in patients after stroke was essential for understanding

the neuromuscular control mechanisms and would help in the

design of effective gait rehabilitation strategies for patients after

stroke (5).

Gait defects including slow walking speeds (6), gait

asymmetry (7), and decreased ankle dorsiflexion (8) severely

impair the activity of daily living (ADL) of patients after stroke

(9), and numerous methods based on the kinematic, kinetic,

and electromyography (EMG) signals have been introduced to

study them. Padmanabhan et al. observed that, even after the

step length symmetry was improved in patients after stroke,

the gait kinematics and kinetics remained markedly asymmetric

(10). Hong et al. assessed the postural stability of patients after

stroke by extracting characteristics from the center-of-pressure

trajectories and proposed the mean velocity of the center of

pressure as an effective tool for assessing postural balance (11).

Li et al. utilized the surface EMG to identify muscle weakness

after stroke and found different patterns in the peak distribution

of the surface EMG caused by stroke (12).

Movement variability also serves to describe motor defects.

It reflects the adaptability of the neuromuscular control

system to internal or external disturbances and has therefore

attracted widespread attention (13). Many new methods based

on dynamical systems theory have been applied to study

motor defects, such as entropy and maximum Lyapunov

exponents (14, 15). Ao et al. showed that the complexity of

upper limb EMG signals, measured by fuzzy-approximate

entropy in the elbow sinusoidal trajectory tracking tasks,

increased due to stroke- and aging-induced neurological

changes (16). Kempski et al. quantified lower extremity joint

angles with the Lyapunov exponent (LyE) and found that

the paretic side of patients after stroke exhibited higher

structure variability than the non-paretic side (17). Although

the aforementioned studies provided new perspectives on

the system dynamics, they were prone to interference from

nonstationarities and noise in the system (2). Detrended

fluctuation analysis (DFA) was proposed to effectively detect

the dynamic changes in noisy and nonstationary time series

(18, 19). However, DFA could not effectively quantify the

complex scaling behavior of many signals, such as geophysical

signals, EMG signals, and the stride interval (20–25). Therefore,

the standard DFA was extended to capture the multifractal

scaling features in the nonstationary time series, and this was

called multifractal detrended fluctuation analysis (MFDFA)

(26). Many studies showed that movement variability presented

a multifractal fluctuation pattern, reflecting the strong

physiological interaction that occurs across multiple time scales

within the neuromuscular control system (27, 28). Restoring

healthy levels of multifractality in the movement variability of

patients after stroke enabled them to respond more flexibly

to irregularities in the natural environment (29). Therefore,

MFDFA might provide a unique perspective on the movement

variability of the lower extremities as opposed to traditional gait

analysis methods.

Although MFDFA had been used to study the

movement variability of the stride interval time series

after neurodegenerative diseases in previous studies, there were

few studies on the changes in movement variability caused by

stroke (18). In this study, a hypothesis is put forward that the

gait dynamics of patients after stroke might be less stable, and

this is demonstrated by the increased movement variability and

multifractality of lower limb joint movement. To verify this

hypothesis, the MFDFA is performed using the knee and ankle

joint angles signals to explore the differences in the movement

variability of the lower extremities between healthy subjects and

patients after stroke.

Methods

Subjects

In this study, a total of 18 subjects were recruited, including

10 patients after stroke (two women and eight men, age

48.3 ± 12.8 years) and eight healthy subjects (three women

and five men, age 29 ± 4.94 years) in the control group.

For the paretic and non-paretic groups, the inclusion criteria

included the following: (1) chronic stroke survivors (more

than 6 months after stroke); (2) the first stroke with unilateral

hemiparesis lesions; (3) the ability to walk independently and

continuously on a treadmill for at least 5min; and (4) the ability

to follow oral instructions and cooperate with experimental

procedures. For the control group, the only inclusion criterion

was no history of neuromuscular diseases. All subjects were

ambulating independently and were not currently receiving

physical therapy. This study was conducted under the approval

of the Medical Ethics Committee at the Industrial Injury

Rehabilitation Hospital of Guangdong. All subjects had signed

a consent form before starting the experiment.

Experimental setup and procedures

Before the experiment, ten 12-mm reflective markers were

affixed to the bilateral lower limbs of each subject and placed

at the following anatomical reference positions from bottom to

top: the second and third metatarsal space, the lateral malleolus,

the midleg, the lateral knee, and the mid-thigh (30). Then, the

participants were asked to walk on a treadmill (BH, G6425-

F3, Spain) for 5min wearing specific experimental shoes to
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familiarize themselves with the experiment and to find the most

comfortable speed by adjusting the treadmill speed. During the

experiment, subjects were asked to walk on a treadmill for 3min

at a comfortable speed, and this activity was repeated 3 times.

There was a 5-min rest period between each walking experiment

(31). When the subject was walking on the treadmill, their three-

dimensional coordinate trajectory was detected by the 6-cameras

motion capture system with a 100Hz sampling rate (OptiTrack,

Natural Point, USA). The coordinate trajectories of all markers

were recorded using Tracking Tools software (NaturalPoint,

USA) and were processed using MATLAB (MathWorks, Natick,

USA) to calculate the joint angle time series for further analysis.

Multifractal detrended fluctuation
analysis

The movement variability in knee and ankle joint angles was

quantified by MFDFA. The three groups of the joint angle time

series were analyzed as follows: (i) dominant limbs in healthy

subjects, (ii) paretic limbs, and (iii) non-paretic limbs of the

patients after stroke. The specific steps were as follows (21):

Construct the profile:For the time series x(i), i = 1 · · ·N, its

average value xave =
1
N

∑N
i=1 x(i) was subtracted and the profile

Y(i) was constructed by the cumulative sum of these differences:

Y(i) =

N
∑

i=1

[

x(i)− xave
]

(1)

Divide Y(i) into Ns = int(N/s) nonoverlapping segments:

Here, s is the length of each equal-length segment. However, the

length of the time series N was scarcely divisible by s, and the

part that was not divisible might not be calculated. The same

calculation process was repeated from the other end. Thus, 2Ns

segments were generated in total. Then, the local trend fitting

of l−order polynomial was performed on each of the generated

segments, and the residual variation between the fluctuations

between Y(i) and its l− order fit yv (i) , i = 1, ... , s was

calculated as follows:

For the v = 1, ... ,Ns segments, we calculated

F2(s, v) =
1

s

s
∑

i=1

{Y[(v− 1)s + i] − yv(i)}
2 (2)

whereas for the v = Ns + 1, ..., 2Ns segments,

F2(s, v) =
1

s

s
∑

i=1

{Y[N − (v− Ns)s + i] − yv(i)}
2 (3)

By calculating the mean of all segments, the qth order fluctuation

function was obtained:

Fq(s) = {
1

2Ns

2Ns
∑

v=1

[F2 (s, v )]
q
2 }

1
q (4)

F0(s) = exp{
1

4Ns

2Ns
∑

v=1

ln[F2(s, v)]} (5)

The exponent variable q was any real number except zero. If

q = 0, 1/q was infinity, and a different averaging method

had to be used, such as logarithmic averaging. To discover

the relationship between the generalized fluctuation functions

Fq(s) and the timescale s for different q values, the above steps

were repeated for multiple segments. DFA was a special case of

MFDFA when q = 2.

Finally, the scaling behavior was determined by plotting Fq

vs. s on a logarithmic scale and examining the existence of short

and long scales. If the fluctuation function could be described as

Fq(s) ∝ sh(q), (6)

it meant that the time series had scale characteristics and that

the autocorrelation of the time series had no characteristic time

scale. Then, we calculated the slope of the fitted straight line of

ln Fq(s) and ln s for different values of q to obtain the scaling

exponent h(q). In general, the exponent h(q) was closely related

to q, and h(q) was considered to be the generalization of the

Hurst exponent.

The generalization of Hurst exponent h(q) had the following

relationship with the classical scaling exponent τ (q):

τ (q) = qh(q) − 1 (7)

The feature of the mono-fractal series was the existence of only a

single Hurst exponent H with a linear relationship between τ (q)

and q. The multifractal time series would be characterized by

multiple Hurst exponents, and τ (q) depended nonlinearly on q.

The singularity spectrum f (α) had the following relationship

with h(q):

α = h(q) + qh′(q) (8)

f (α) = q[α − h(q)] + 1, (9)

where f (α) quantified the dimension of the subset series

corresponding to α, which is the singularity strength. A fractal

was a repeating pattern that was self-similar across different

scales; multifractality referred to patterns that are repeated in

multiple ways. Thus, the multifractal spectrum could provide

a lot of information about the behavior of fractals in the time

series (29). To verify the power law behavior of the fluctuations,

the time series were processed by the Fourier spectral analysis

first (24, 25, 32). Then, the degree of multifractality was

demonstrated by the width of the multifractal spectrum 1α =
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αmax − αmin. However, for a nonstationary and random walk-

like structure time series, values of the degree of correlation h(2)

might be above 1. A nonstationary random walk was obtained

by integrating stationary noise. Thus, the result h(2) reduced by

1 to obtain the eigenvalues for quantifying the persistent and

anti-persistent values of the nonstationary random walk time

series (33). The value of h(2) also revealed the characteristics

of long-scale correlation in the time series (21). The origin

of multifractality could be determined by processing the time

series random shuffling. There were two common sources

of multifractals: (i) the extensive probability density function

and (ii) the existence of many different long-scale correlation

fluctuations in the time series (34). By random shuffling, the time

series values would be randomly arranged, and the correlations

in the original sequence would be destroyed. Therefore, if the

multifractality was the result of the long-scale correlations, then

the processed series exhibited a non-fractal scaling. When the

origin of multifractality was a broad probability density, the

reliance of h(q) was unchanged, which was unaffected during the

reorganization process. If these twomultifractals simultaneously

appeared, the processed series would exhibit a decrease in the

degree of multifractality.

Statistical differences in the values of 1α and h(2) for

each scaling region between subjects with paretic limbs and

healthy subjects, and between subjects with non-paretic limbs

and healthy subjects were assessed using an independent

t-test. Paired t-tests were applied between the results of 1α and

h(2) in those with paretic and those with non-paretic limbs to

investigate whether there were statistical differences between the

two conditions. For all statistical analyses, the p-value of 0.05

significance level was set. The SPSS 24.0 software package was

used for all statistical calculations (SPSS Inc., Chicago, USA).

Result

Scaling exponents

The representative examples of the variation of the

fluctuation function F with scale s are shown in Figure 1. First,

the third-order polynomials (MFDFA1-3) were used in the

detrending procedure. F decreased with the increase of the

fitting order l because the increase of the order would result

in a smaller residual. Then, values of h(q) for −10 ≤ q ≤

10 were displayed to reveal the effect of different magnitudes

of joint angles anomalies on a behavior scale. In Figure 2,

the fluctuation function Fq of the knee angles’ time series

of a healthy subject and its behavior with the change of s

were similar to F2(s) in Figure 1. By performing linear fitting

in two independent regions, the characteristics of multifractal

scales on the short and long scales were characterized. The

vertical red and blue dashed lines represent the boundaries of

FIGURE 1

A typical scaling pattern as observed for the knee angle time series of one healthy subject.
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FIGURE 2

The fluctuation function logFq(s) vs. log 10(s) with −10 ≤ q ≤ 10 and its behavior over a range of s for knee angle time series of one healthy subject

by MFDFA.

the short-scale and long-scale regions, respectively. Specifically,

the short-scale region started after the DFA transient artifact

with the smallest s values corresponded to 20 samples and this

ended with 100 samples. The long-scale region started with

170 samples and usually ended with N/8, and the specific

figure corresponded to 1,000 samples. In some joint angles,

the phenomenon of crossover was less obvious in the scaling

description, and the slopes h(q) were also estimated over the all-

scale region. Furthermore, the all-scale region started the same

way as the short-scale region, commencing with 20 samples and

usually ending with 1,000 samples. This included the change

in slope at the crossover, where the change in slope increased

as q decreased. By performing linear fitting in the three-scale

regions, the characteristics of multifractal scales on the short,

long, and all scales were characterized. The vertical red and blue

dashed lines are the boundaries of the short-scale and long-scale.

The different scale ranges for each participant were the same in

this study. The representative fluctuation behavior started with a

linear segment with a slope >1, and the slope range was usually

between 1.36 and 1.75.

The Fourier power spectrum P(v) of the knee angle time

series is shown in Figure 3A (v is the frequency, axes are shown

in logarithm scale). Statistical self-similarity is manifested as

a power-law scaling of the frequency distribution. The power

law coefficient (slope) is changed throughout the entire v range

(Figure 3A), suggesting multifractality in the knee angle time

series. Multifractals reflected the different scale behavior of

time series anomalies. An increase in the moment q could

realize the transition from small anomalies to large anomalies.

Thus, the representative changes of h(q) with q in the three

cases are presented in Figure 3B. The values of h(q) decreased

continuously as the moment q increased in Figure 3B, which

indicated a multifractal behavior. The change of h(q) with q and

the non-linear reliance of τ (q) on q reflected the multifractal

characteristics of human gait in these three cases (Figure 3C).

The degree of multifractality was quantitatively determined

by the distribution range of fractal dimension f (α), which

was characterized by Holder exponent α. The typical inverted

parabola form could be observed in the singularity spectrum

f (α) vs. α (Figure 3D).

Multifractal statistics

Results were reported separately for the degree of correlation

and the degree of multifractality. The box plot of the multifractal

analysis results showed that, when the order was l = 2,

the time series of knee and ankle joint angles exhibited

correlations and multifractality under the three fitting regions

(Figures 4, 5). For the knee angles, the statistical results of h(2)
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FIGURE 3

Evidence of multifractality in the knee angle time series for one of three di�erent cases. (A) Fourier power spectrum of the knee angle time

series. (B) Generalized Hurst exponent h(q) vs. order q. (C) Classical scaling exponent τ (q) vs. order q. (D) The resulting singularity spectrum f (α).

Healthy subjects (blue line), non-paretic limbs (yellow line), and paretic limbs (red line) of a patient after stroke (AS: all-scale, —; SS: short-scale,

– -; LS: long-scale, – –).

indicated that there was persistence in all-scale and short-scale

regions and anti-persistence in the long-scale region. Especially,

h(2) corresponding to the knee angle was significantly higher

in the paretic limb and the non-paretic limb of patients than in

healthy subjects (p < 0.05). For the ankle angles, the statistical

results of h(2) indicated that there was persistence in all-scale

and anti-persistence in long-scale regions. In the short-scale

region, healthy subjects and the non-paretic limb of subjects

were persistence, while the paretic limb of the patients wase anti-

persistence. The value of h(2) corresponding to the ankle angle

was also significantly higher in the paretic limb and the non-

paretic limb of patients with stroke than in the healthy subjects

in all-scale and short-scale regions, but in the long-scale, only the

non-paretic limbs of the patients were significantly higher than

the healthy subjects (p < 0.05), although there was no significant

difference in h(2) between the paretic and non-paretic limbs of

patients after stroke. As presented in Figure 4, compared with

the ankle joint angles, the knee joint angles were characterized by

larger h(2) in the short-scale region, and the difference between

the knee–ankle angles was greater in the patients. The values of

1α in knee angle were significantly higher in the paretic limb

and the non-paretic limb of patients than in healthy subjects

on all-scale, and the non-paretic limb of patients was higher

than the healthy subjects on the short-scale region (p < 0.05).

Although a significant difference occurred in the values of 1α

in the ankle angles between the paretic limb and the non-paretic

limb of patients with stroke compared with healthy subjects only

in the long-scale region (p < 0.05), there was no significant

difference on all-scale and short-scale regions.

Moreover, the corresponding random shuffle series

were analyzed for all six data sets (knee and ankle angles of

three groups) to determine the cause of the multifractality.

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.893999
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2022.893999

FIGURE 4

Boxplots of the fractal fluctuation results among the paretic limbs and the non-paretic limbs of a patient with stroke and the control group

under three conditions (all-scale; short-scale; long-scale) during treadmill-walking tasks. Boxplots show the quartiles, the medians, and the

ranges of the individual results. Outliers are indicated with + signs. * Indicates statistically significant di�erence at a p− value < 0.05.

FIGURE 5

Boxplots of the degree of multifractality results among the paretic limbs and the non-paretic limbs of a patient with stroke and the control

group under three conditions (all-scale; short-scale; long-scale) during treadmill-walking tasks. Boxplots show the quartiles, the medians, and

the ranges of the individual results. Outliers are indicated with + signs. * Indicates statistically significant di�erence at a p− value < 0.05.

As is evident in Tables 1, 2, the statistical differences

of 1α and h(2) of each group of shuffled series were

significantly smaller. The results showed that the shuffled

data of the three groups all had scale exponents of about

0.5 and a multifractal strength of about 0.2. The results

suggested that the multifractality in lower limb joint
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TABLE 1 Mean and standard deviation for the shu	ed series on knee

angle.

Knee Control group Non-paretic Paretic

All-scale 1α 0.24± 0.05 0.17± 0.06 0.19± 0.07

All-scale h(2) 0.50± 0.02 0.52± 0.02 0.49± 0. 02

Short-scale 1α 0.46± 0.25 0.17± 0.11 0.34± 0.17

Short-scale h(2) 0.52± 0.01 0.51± 0.01 0.50± 0.01

Long-scale 1α 0.42± 0.18 0.27± 0.08 0.23± 0.11

Long-scale h(2) 0.50± 0.16 0.60± 0.11 0.51± 0.09

angles was predominantly the result of the long-range

correlations.

Discussion

This study aimed to introduce MFDFA and two indicators,

the degree of correlation and the degree of multifractality, to

quantify the changes in the movement variability of the lower

extremities between healthy subjects and patients after stroke.

The stroke-induced destruction of the neuromuscular control

system led to changes inmovement variability, whichmanifested

as multifractal and persistent increases in various scales of the

knee and ankle joint angles.

The selection of proper polynomial order l and the scale

range were two main concerns in MFDFA calculation. Three

polynomial detrending functions of different orders (l =

1, 2, 3) were used to fit the local scale-related trends of the

signals to ensure that a suitable polynomial order was used

in the detrending process. As can be seen in Figure 1, the

representative example of the fluctuation function Fq with

the scale s was the “crossover” behavior, which might be a

hallmark of postural control (21, 35). Although the slight

right shift of the crossover was obvious as the DFA order

l increased, this performance and the reported results were

not sensitive to the order l. Therefore, l = 2 was selected

for the remainder of this study (36). In most movement

time series, crossover occurred at ∼170 samples, which was

assumed to be the boundary between “short-scale” and “long-

scale” regions. The short-scale exponent was computed within

the segment size ranging 20 < n < 100. Meanwhile, the

long-scale exponent was evaluated in the range of 170 <

n < 1, 000. Consistent with previous studies, the fluctuations

of the joint angle signals during walking showed two typical

scale regions and a crossover phenomenon, indicating that the

neuromuscular system performed posture control in at least two

time scales (37).

The degree of correlation, h(2), was an important

characteristic of the walking performance because it could

evaluate the movement variability during walking (15). It was

interpreted as the neuromuscular control system relying on

TABLE 2 Mean and standard deviation for the shu	ed series on ankle

among the paretic limbs and the non-paretic limbs of a patient with

stroke and the control group.

Ankle Control group Non-paretic Paretic

All-scale 1α 0.10± 0.07 0.15± 0.06 0.20± 0.14

All-scale h(2) 0.52± 0.02 0.50± 0.03 0.48± 0.03

Short-scale 1α 0.16± 0.12 0.20± 0.15 0.27± 0.18

Short-scale h(2) 0.50± 0.01 0.51± 0.01 0.50± 0.01

Long-scale 1α 0.34± 0.12 0.55± 0.37 0.31± 0.11

Long-scale h(2) 0.56± 0.07 0.63± 0.16 0.45± 0.11

previous strides to execute future strides (18). In knee angle at

all-scale and short-scale regions, h (2) was > 0.5, indicating

that the knee angle time series were persistent and long-range

correlated in these scales (26). In both knee and ankle angles at

the long-scale region, h (2) was < 0.5, indicating that these time

series performed in a more anti-persistent and irregular fashion

(33). The higher values of h(2) represented less flexibility in the

neuromuscular control system that could barely adapt to the

perturbations that were encountered during daily activities (15).

The values of h(2) in the paretic limb were significantly higher

than those of the healthy subjects, which was consistent with the

previous study, which showed that patients after a stroke had less

adaptable gait dynamics (17). It was also found that the values of

h(2) in the paretic limb of patients with stroke were significantly

higher than those of the non-paretic limb of patients with

stroke, which meant that the control pattern of the paretic limb

was greatly influenced by stroke (4). MFDFA provided another

important indicator, the degree of multifractality 1α (21).

Higher values of 1α corresponded to the more multifractal

values of the timeseries dynamic interactions (29). By using

wavelet-basedmultifractal analysis to analyze the response series

of different cognitive tasks, Ihlen et al. provided quantitative

support for identifying multifractality as a mathematical

descriptor of dynamic interactions in human cognition (38).

The multifractality in movement variability was considered

by Kelty-Stephen et al. for the purpose of characterizing the

dynamic interactions among the neuromuscular control system

components (39). The values of 1α in the paretic limb and

the non-paretic limb of patients with stroke were significantly

higher in the knee angle at the short-scale region and ankle

angle at the all-scale region than the corresponding values of

healthy subjects in Figure 5, indicating that the patients after

stroke performed a more multifractal control process (26).

A more multifractal control process might result from the

correctional movements in patients with stroke to maintain gait

balance (40). Meanwhile, previous studies found that, when the

balance feedback control (such as visual feedback) was reduced,

the 1α values decreased (28). Therefore, it was suspected

that patients after a stroke had a higher multifractal control
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process due to their increased reliance on feedback control (27).

Moreover, the values of 1α corresponding to the all-scale of the

patient after stroke were significantly higher than those of the

healthy subjects in knee joint angles, but there was no significant

difference in the ankle joint, which might reveal the different

ways that the body can adjust the knee and ankle joints after a

stroke (2).

The motor defects of the lower limb were usually assessed by

experienced physicians or occupational therapists using clinical

scales (3). At the same time, some objective evaluation methods

such as kinetic, kinematics, and electrophysiological indicators

were of great significance to supplement and improve traditional

evaluation methods (16). In this study, MFDFA was used to

study the stroke-induced movement variability changes of lower

limb joint angle signals. The degree of correlation and the degree

of multifractality were parameters that assessed the multifractal

movement fluctuation patterns. These reflected the robust

physiologic interactivity occurring within the neuromuscular

control system across multiple time scales. Based on the above

advantages, MFDFA of joint angle signals has the potential to

be applied to the clinical evaluation of stroke-induced changes

in neuromuscular control. Quantitative measurement might

help therapy-based rehabilitation to optimize treatment (9). It

is important to note that this study has some limitations. First,

only young healthy subjects were considered. Accordingly, age-

matched controls should be recruited for further study. Second,

different experimental paradigms, such as joint-level variability

at different speeds, might be a meaningful attempt to find the

relationship between the specific control strategy and different

gait patterns. Finally, in the experiment, walking performance

was evaluated only through two joint angles. Future research

should incorporate more evaluation indicators, such as

electromyographic signals, to have a more comprehensive

understanding of the mechanism of stroke-induced

motor deficits.
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