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Abstract: Dengue virus (DENV) has become a global health threat with about half of the world’s
population at risk of infection. Although the disease caused by DENV is self-limiting in the first
infection, the antibody-dependent enhancement (ADE) effect increases the mortality in the second
infection with a heterotypic virus. Since there is no specific efficient medicine in treatment, it is urgent
to develop vaccines to prevent infection and disease progression. Currently, only a live attenuated
vaccine, chimeric yellow fever 17D—tetravalent dengue vaccine (CYD-TDV), has been licensed for
clinical use in some countries, and many candidate vaccines are still under research and development.
This review discusses the progress, strengths, and weaknesses of the five types of vaccines including
live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral vectored vaccine,
and DNA vaccine.
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1. Introduction

Dengue virus (DENV) is a positive-sense, single-stranded RNA (+ssRNA) virus belonging to
genus Flavivirus of family Flaviviridae [1]. The mature particles of DENV are spherical and 50 nm in
diameter [2]. The virus contains multiple copies of three structural proteins, including Envelope (E)
protein, Membrane (M) protein, and Capsid (C) protein; a host-derived lipid bilayer envelope; and a
single copy of RNA genome [2]. DENV has four serotypes (DENV 1–4) that are transmitted in humans
by Aedes mosquitoes [1]. The most common clinical manifestations are sudden fever with headache,
recurrent eyelid pain, generalized muscle pain and joint pain, blushing, anorexia, and abdominal
pain. All four serotypes can cause dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue
shock syndrome (DSS) [3]. DHF and DSS are the more severe effects and more commonly seen in
the infection of children and adolescents under fifteen years old [4]. DENV infection produces a
high titer of neutralizing antibodies, which are considered an important component of the protective
immune response [5,6]. Homotypic protection (protection against the same serotype infection) is
considered long-term effective after a serotype infection, while heterotypic protection (cross protection
against the other serotypes infection) can last for approximately two years [7,8]. With the reduction of
cross-antibody titer, the second heterotypic dengue infection will be more serious than the first [9].
Furthermore, non-neutralizing antibodies can form complexes with DENV particles and can facilitate
virus infection to phagocytic cells via Fc receptors, resulting in enhanced infection and leading to DHF
and DSS. This phenomenon is called antibody-dependent enhancement (ADE) [3]. It is estimated that
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390 million dengue infections happen every year, of which 96 million manifest clinically at any level of
disease severity [10]. There is currently no specific medicine for dengue treatments, and prevention
majorly relies on vector control. Therefore, dengue vaccine development is urgently required for
dengue prevention.

Five types of dengue vaccines have been under investigation, including live attenuated vaccine,
inactivated vaccine, recombinant subunit vaccine, viral vectored vaccine, and DNA vaccine [11].
They act primarily by increasing the immune responses against dengue virus (DENV) E protein and
non-structural protein 1 (NS1) [12]. Careful studies of the immune responses to DENV help to form an
effective strategy for dengue vaccine development [13].

Two major challenges in dengue vaccine development have been discussed. Firstly, although
DENV antibodies show protective effects against homotypic or heterotypic DENV infection, the ADE
effect resulting from a second heterotypic infection majorly accounts for DHF and DSS [14–16].
However, the immune response and pathogenesis of DHF and DSS are not fully understood, which
hinders DENV vaccine development [17]. Secondly, in vaccine development, we lack a conveniently
accessible, cheap, and sensitive animal model capable of simulating the immune responses in humans
after infection. Since mice are naturally resistant to DENV infection, human cell chimeric mice and
immunodeficient mice sensitive to DENV infection are established to be used as animal models [18].
Nonhuman primates (NHPs) are highly potential animal models because they produce a similar
immune response to DENV infection as humans, but they are usually used following mouse tests
because of the costliness [19].

2. Live Attenuated Vaccine

Live attenuated vaccines are antigenic substances composed of a living pathogen, but the pathogen
is altered to be less virulent or avirulent [20]. Live attenuated vaccines show the advantages of delivering
a set of protective antigens and of providing long-term immune protectivity [20]. Several live dengue
attenuated vaccines have been made with recombinant DNA technology, such as the chimeric yellow
fever 17D virus-tetravalent dengue vaccine (CYD-TDV), the recombinant DENV-4 mutant bearing
a 30-nucleotide deletion vaccine (rDEN4∆30), and the tetra-live attenuated virus dengue vaccine
(DENVax) [21].

2.1. Live Attenuated Chimeric Yellow Fever–Dengue Vaccines

The clinically developed dengue vaccine, CYD-TDV (Dengvaxia®) (Sanofi, Paris, France),
complying with the International Guidelines for New Vaccines [22] has been licensed by several
dengue-endemic countries in Asia and Latin America for use in people over 9 years old [23]. This vaccine
was constructed by replacing the prM/E RNAs of the YF17D (yellow fever virus vaccine strain) with the
corresponding sequences of the four dengue serotypes [24]. It has been observed in clinical trials that
vaccination with CYD-TDV is more effective among people over 9 years old [25]. The vaccine-stimulated
immunity lasts up to 4 years, and the virus serotype, age, and dengue sera status of the individual before
vaccination seem to affect the vaccine effectiveness [23]. However, long-term safety assessments showed
that the risk of hospitalization for vaccinees was greater than that of placebo controls 3 years after
vaccination [26]. The reason for the reduced protectivity of CYD-TDV in seronegative subjects and the
increased risk of hospitalization for children under 9 years old is unclear [27]. The CYD-TDV IIb clinical
trial in Thailand and phase III clinical trials in Asia and Latin America found that it was ineffective
against DENV2 and that the first-time immunization was less effective than re-immunization [25,28,29].
The better efficacy of re-immunization may be due to the enhanced protectivity in the subjects by
stimulating preexisting immune memory [30]. In April 2018, the WHO Strategic Advisory Panel
recommended that, in CYD-TDV vaccination, the priority assessment of DENV serostatus should be
considered to ensure that only dengue-seropositive individuals are vaccinated because CYD-TDV
vaccination in seronegative subjects increases the risk of severe dengue [31]. Therefore, rapid diagnostic
tests are needed before the vaccination. Since DENV belongs to the genus Flavivirus which also includes
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Zika virus, yellow fever virus, and tick-borne encephalitis virus with highly homologous genomes,
proteins, and antibodies, antibody detection for these virus infections has high cross-reactivity and poor
reliability [32]. The plaque reduction neutralization test (PRNT) is the gold standard for establishing
serum status but requires specific laboratory and technical capabilities. Furthermore, the detection
process of dengue IgG ELISA is complicated, and the diagnosis of IgG-containing point-of-care tests
lack sensitivity and specificity. Therefore, platform evaluation and well-characterized vaccine samples
are required to accelerate the clinical trials and market entry for CYD-TDV [33].

2.2. Live Attenuated rDEN∆30 Vaccines

There have been some studies to integrate DENV monovalent vaccines with the live attenuated
tetravalent vaccine (LATV) [34]. However, it is a challenge to develop a LATV that not only has
immunogenicity for all four dengue serotypes but also has sufficient attenuation of each monovalent
component [35–37]. The 3′- UTR region of the flavivirus genome was chosen as a target for mutagenesis
because it plays an important role in viral RNA replication [38]. The LATV rDEN4∆30 vaccination
stimulated a seven-fold or greater increase in serum neutralizing antibody titer (mean titer = 1:580)
on day 28 post-vaccination, and was found to be very tolerant to all of the vaccinees, in which
only a mild, asymptomatic macular rash developed, and a transient elevation in the serum level
of alanine aminotransferase was noted in several volunteers [39]. Prior to this, the experiments
testing the ability of the vaccine virus spreading from vaccinees to mosquito vectors showed that
no vaccine virus was found in all 352 experimental mosquitoes [40]. Moreover, in order to increase
the decay rate of rDEN4∆30 and to reduce the side effects, many studies have optimized the paired
charge–mutation of alanine and obtained rDEN-4∆30NS5-K200A and rDEN-4∆30NS5-H201A, which
show good compatibility in human vaccination [41–43]. Researchers also constructed rDEN4∆30
through chemical mutagenesis and successfully obtained rDEN-4∆30 NS3-S158R [41,44].

TV003 is a mixture of four attenuated recombinant dengue vaccine candidates including rDEN1D30,
rDEN2/4D30, rDEN3D30/31, and rDEN4D30, which is in the clinical trial phase and has more resistance
against DENV2 than CYD-TDV does [45,46]. It was found that, after vaccinated with TV003, antibodies
of the four DENV serotypes were detected in 91.7% of subjects and that the protective potency against
DENV2 was superior to that of CYD-TDV vaccination, with the only adverse reaction presenting
a mild rash [47]. More DENV2 attenuated virus components were added to TV005 than to TV003.
A phase I clinical trial showed that a single vaccination of TV005 caused a relatively balanced immune
response in 90% of vaccinnees while TV003 vaccination only caused immune response in 76% of
recipients [46]. TV003 and TV005 induce the most balanced neutralizing antibodies among the five
LATVs (TV001–TV005) [27].

TV003/TV005 is very different from CYD-TDV in characteristics due to their different virus particle
structure, infectivity, and immunogenicity. For example, CYD results in a higher risk of viremia, lower
resistance against DENV2 virus, and lower level of induced immune balance than TV003/TV005 [27].

2.3. Live Attenuated Chimeric Tetra-Dengue Vaccines

Scientists used the attenuated virus DENV2 PDK-53 as a genetic backbone to replace its coding
sequences with that of DENV1, DENV3, and DENV4; the recombinant RNAs were used to transfect
Vero cells to produce a vaccine candidate called DENVax [48]. These tetra-live attenuated virus (TLAV)
vaccines are undergoing clinical trials [44]. To investigate whether the vaccination of DENVax in
mothers would affect the re-inoculation effects in offspring, AG129 mice were used as the model,
and it was found that the vaccination effects of the pups born by PDK53 immunized mothers may be
interfered with by their maternal antibodies [23].

In summary, the live attenuated vaccine CYD-TDV has a definitive protectivity in DENV
seropositive subjects over 9 years old. The rDEN∆30 vaccine makes up for the low immune balance of
CYD-TDV. DENVax is highly immunogenic tolerant and is hard to induce systemic reactions.
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3. Inactivated Virus Vaccines

Inactivated vaccines are antigenic substances composed of inactivated material from a pathogen
(such as virus or bacterium) which can elicit protectivity against the live pathogen [49]. A DENV2
inactivated vaccine named S16803 was developed by formalin inactivation and sucrose centrifugal
purification and demonstrated its effectiveness in rhesus monkeys [49,50]. The immunogenicity of
the recombinant subunit protein vaccine (R80E) and live attenuated vaccine (DENV2 PDK-50) was
compared with the inactivated vaccine S16803 in rhesus monkeys, and it was found that only DENV2
PDK-50 can produce stable titers of antibodies [51]. Tetravalent purified formalin-inactivated virus
(TPIV) is an inactivated vaccine containing four inactivated dengue serotypes [52]. Rhesus monkey
vaccination initiated with TPIV or tetravalent DNA vaccine (TDNA) and then enhanced with TLAV
showed promoted humoral immunity against dengue virus compared with the vaccination using only
one type of vaccine [53]. It is reported that the antibody titers of four serotypes of DENV reached a
certain height by using TPIV to initiate immunization and then TLAV to enhance immunization [52].

Inactivated dengue virus vaccine uses C, M, E, and NS1 protein components as antigens to
stimulate immunity, but composite vaccines arouse better protectivity than single-type vaccines.
Compared with live attenuated vaccines, inactivated virus vaccines are safer with no hidden danger of
reactivation and better controlled immune balance.

4. Recombinant Subunit Vaccines

Recombinant subunit vaccines are antigenic proteins expressed by prokaryotic or eukaryotic
cells to stimulate long-lasting protective/therapeutic immune responses [54–56]. Expression of the
recombinant dengue proteins in E. coli is relatively easy, but meanwhile, there are some problems
of endotoxin contamination and improper protein folding [57]. The recombinant envelope protein
domain III (EDIII) expressed by E. coli and purified by metal affinity membrane chromatography
was shown to successfully induce antibodies against the four serotypes of dengue in mice [58], and
these antibodies also protected lactating mice from infection [59]. Another tetravalent recombinant
subunit vaccine combined with alum adjuvant in vaccination produces high titers of antibodies in mice,
but it induced only DENV2 antibodies in adult macaques [60,61]. Recombinant dengue proteins fused
with a lipoprotein were expressed in a lipid form, thereby eliminating the use of adjuvants, and the
viral antigens successfully provoked immune responses against the four serotypes in mice [60,62,63].
In addition, EDIII-P64K was an adjuvant-containing tetravalent dengue vaccine expressing P64K of
Neisseria meningitidis and EDIII of different DENV serotypes [64]. The mice were immunized with
EDIII-P64K three times, and high titers of antibodies against DENV1–3 and low titers of antibodies
against DENV4 were produced [65]. Furthermore, a combination of DENV1–2 EDIII and DENV3–4
EDIII linked with a Gly-Ser linker was expressed in E. coli, and this vaccine successfully induced
immune protection against the four serotypes of DENV in mice. [66]. LTB-scEDIII was a fusion protein
expressed by Saccharomyces cerevisiae, containing the E. coli heat-labile toxin protein B-subunit (LTB)
and the synthetic consensus dengue envelope domain III (scEDIII) from the four serotypes. Oral
immunization with the intact recombinant yeast cells (rYC) and the cell-free extracts (CFE) was found
to stimulate systemic humoral and mucosal immune responses in mice. The titers of neutralizing
antibodies in CFE-fed mice were higher than that in rYC-fed mice [67].

The most promising subunit vaccine is V180, which consists of a truncated protein DEN-80E
expressed in insect cells. V180 vaccination in a low dose successfully induced a high level of immune
protection against DENV in mice and rhesus monkeys [68]. It has been reported that V180-immunized
rhesus monkeys can be protected from viremia [69]. Sf-9 cells expressing DENV E protein elicited
not only specific Th2 responses and weak Th1 responses but also neutralizing antibodies against
DENV1-4 [70,71]. Furthermore, recombinant DENV2 NS1 protein expressed with S-2 cells successfully
elicited immune protection in mice [12]. A fusion protein containing the DENV consensus domain III
(cEDIII) and polymeric immunoglobulin G scaffold (PIGS) was expressed in Chinese ovary hamster
cells and transgenic plants, which induced high titer of IgG antibody in mice and showed neutralizing
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potential against DENV2 [72]. The production of DENV EDIII in transgenic non-nicotine tobacco
illustrates the feasibility of plant transgenic vaccine [73], but it had not been tested in any animal
models. A single polypeptide chain comprising EDIII of all four serotypes tetra-EDIII (tEDIII) and
coenzyme 1 (Co1) was expressed in rice, and the transgenic rice containing 100 µg of tEDIIII-Co1 was
fed to mice, presenting strong antigen-specific B and T cell responses [74].

Compared with live attenuated vaccines, recombinant subunit vaccines are more likely to trigger
balanced immune responses against the four serotypes, reducing the incidence of ADE effect [55,56].

5. Viral Vectored Vaccines

Vaccinia virus, adenovirus, and alphavirus vectors have been used as delivery vectors for DENV
antigens in vaccine development [11]. It is recorded that prM, E, NS1, and NS2A proteins of DENV4
expressed low efficiency in Cidofovir-resistant vaccinia (WR) strain [75]. Full-length or c-terminal
truncated vaccinia virus were recombinated to express DENV E protein to enhance their protectivity [76].
However, the non-attenuated WR strain may bring safety hazards. Immunization of mice with these
recombinant vaccines induced only a low level of specific antibodies against E protein [77,78]. Based
on the safer modified vaccinia Ankara (MVA) virus, MVA-DENV2–80%E and MVA-DENV4–80%E
were then constructed, which can induce high anti-E antibodies in mice, but the former produced low
levels of antibodies against DENV2 in rhesus monkeys [79].

Adenoviral vectors show many advantages such as easy gene manipulation, easy detection of
gene replication defects, and high level of protein expression [80]. A recombinant replication-defective
adenovirus (rAd) expressing the E protein of DENV2 was constructed to vaccinate the mice
intraperitoneally, which successfully stimulated DENV2 antibodies and specific T cell immunity
in these mice [81,82]. Furthermore, when first immunized with rAd and then boosted with a DNA
vaccine expressing EDIII, the mice presented protectivity against DENV2 and DENV4 [83]. The
cAdVaxD (1–2) and cAdVaxD (3–4), two divalent complex Adenovirus (cAd) -vectored vaccines
expressing prM and E of the DENVs, could induce antibodies against four serotypes and T cell immune
protection in rhesus monkeys [84,85].

In addition, the alphavirus-vectored dengue vaccines have high potential. High levels of antigen
expression were detected in a single round of vaccination with Venezuelan equine encephalitis virus
replicon particles (VRP), and antigen presentation was guaranteed due to the adjuvant activity of VRP
and the effect of VRP on dendritic cells (DC) in lymph nodes [86,87]. VRP expressing the M and E
proteins of DENV1 induced protective antibodies in cynomolgus monkeys [88]. Immunization with
DENV2 VRP in mice produced specific IgG and neutralizing antibodies against DENV2. VRP was
constructed to express prM-E and E85; both E85-VRP and prM-E-VRP produced a serotype-specific
antibody against EDIII in rhesus monkeys immunization, but E85-VRP developed antibodies faster and
with higher titers [89]. The tetravalent E85-VRP dengue vaccine induced a balanced immune response
and protectivity against DENV1–4 in monkeys with 2 doses given 6 weeks apart [89]. A tetravalent
VRP vaccine induced antibodies at an equivalent level as a monovalent vaccine did after a single
immunization, indicating that it could overcome serotype interference [90]. Although the magnitude
of the neonatal immune response was lower than that of adult mice, experiments have shown that the
VRP vaccine produced a strong protective immunity after a single neonatal immunization [90].

Viral vectored vaccine is still the best way to induce cellular immunity, and it is hopeful to
induce stronger humoral responses. Compared with the other viral vectored vaccines, adenoviral
vectors are superior in easy genetic manipulation, detection of gene replication defects, and high
antigen expression.

6. DNA Vaccines

A DNA vaccine is a plasmid containing one or more genes encoding specific antigens, which
can be injected in vivo to express antigens and to stimulate immune responses [91]. A DNA vaccine
expressing prM and 92% of E protein of DENV2 was used to vaccinate BALB/c mice intradermally,
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and anti-dengue antibodies were detected in all these mice [91]. When the DNA vaccine expressing
E80 (80% of E protein) was compared with the one expressing ME100 (prM and 100% of E protein),
the ME100 was found to stimulate antibody production more efficiently in mice [92]. Aotus nancymae
monkeys were immunized with D1ME100 intradermally and intramuscularly and then boosted at 1
and 5 months post priming; Aotus monkeys were partially or completely protected against DENV1
challenge at 6 months post priming [93]. In a human test, D1ME100 showed safe and well-tolerant
effects in the first phase of vaccination and the most common side effect was mild pain or tenderness at
the injection site. However, the immunogenicity of the vaccine was poor; only 41.6% of the subjects
receiving high-dose vaccination produced neutralizing antibodies, and no neutralizing antibody
response was detected in the low-dose group [94].

A DNA vaccine expressing DENV2 prM/E fused with the immunostimulatory CpG motif was
reported to produce protective immunity against DENV2 and to improve the neutralizing antibody
response efficiently compared with the DENV2 prM/E DNA vaccine [95]. Moreover, the DENV2 DNA
vaccine expressing a recombinant protein containing DENV2 EDIII and Escherichia maltose-binding
protein (MBP) was used to immunize mice and was found to be able to elicit neutralizing antibodies
in mice [96]. Scientists have evaluated the efficacy of three nonreplicating DENV2 vaccines in
rhesus monkeys alone or in combination: DENV2 prM/E DNA vaccine (D), DENV2 EDIII and MBP
recombinant fusion protein (R), and purified inactivated virus particles (P). The results showed that
DNA vaccine used alone induced a moderate level of neutralizing antibodies while DNA vaccine
combined with recombinant proteins induced higher titers of antibodies and neutralization levels. The
antibody titers of DR/DR/DR, DP/DP/DP, and R/R/R vaccination were the highest, while the titer of
D/D/D vaccination was the lowest. Interestingly, significant immune protection against viremia was
observed only in the animals vaccinated with P [97].

Some guiding proteins targeting the immune system were used to enhance the protectivity in
DNA vaccine development. For example, integrating antigen sequence into lysosomal membrane
protein increases the expression of MHC class II antigens, thereby enhancing the production of CD4
T cells and anti-CD4 antigens and ultimately improving the immunogenicity of the DENV2 prM/E
DNA vaccine [98]. A DNA vaccine expressing an antigen fused with a single-chain Fv antibody (scFv)
specific for the DC endocytic receptor DEC205 could induce a strong immune response to the target
antigen [99].

The combination of tetravalent DNA vaccine (TVDV), tetravalent purified formalin-inactivated
virus (TPIV), and tetra-live attenuated virus (TLAV)-enhanced vaccination strategy was tested in
rhesus monkeys, and monkeys immunized with TVDV/TVDV/TLAV were partially protected while
TPIV/TLAV immunized monkeys were completely free of viremia [64]. In phase 1 clinical trials,
a TVDV with Vaxfectin® (Vical, Boulder, CO, USA) adjuvant was found to trigger anti-dengue T cell
IFNγ response with ideal safety [100].

DNA vaccines are stable, easy to prepare, low in cost, and suitable for mass production but lack
high immunogenicity. Therefore, plasmid modification with highly efficient promoters, alternative
delivery strategies, multiple doses, and co-immunization with adjuvants may be the ways to solve this
problem [101].

7. Conclusions and Future Perspectives

In general, there are five types of vaccines against DENV including live attenuated vaccine,
inactivated vaccine, recombinant subunit vaccine, viral vectored vaccine, and DNA vaccine. Among
the dengue vaccine candidates in use or in clinical trials (Table 1), live attenuated tetravalent dengue
vaccine (CYD-TDV) can stimulate neutralizing antibodies in humans, but the lack of ability to neutralize
DENV2 virus limits its use. Immunization of female mice with the live attenuated vaccine DENVax
may interfere with the vaccination effect of the born pups. Compared with the live attenuated vaccines,
recombinant subunit vaccines are more likely to trigger a balanced immune response against the four
serotypes but bring problems of endotoxin contamination and improper protein folding. Adenoviral



Vaccines 2020, 8, 63 7 of 13

vectored vaccines show many advantages, such as ease of genetic manipulation, easy detection of
gene replication defects, and high levels of protein expression. Alphavirus-vectored dengue vaccines
produce a strong protective immunity after a single neonatal immunization in mice. DNA vaccines are
stable, low in cost, and easy for mass production; however, the problem of low immunogenicity remains
to be solved. In terms of vaccination strategy, the immunization priming and boosting with different
vaccine combinations has been used to develop successful protectivity in animals. Furthermore,
new vaccine development concepts have been proved to be viable, such as DENV NS1-based and
mosquito-based immunization strategies [12]. In addition, studying the immune mechanism of viral
components in disease transmission is helpful to break through the bottleneck of vaccine development.

Table 1. Dengue vaccine candidates in use or in clinical trials.

Vaccine Type Name Strategy Clinical Trial Phase

Live Attenuated vaccine

CYD-TDV
Replacing the prM/E gene of the
YF17D virus with genes of the

DENV1–4

Evaluation after part of
the license

TV003/TV005

Attenuation by truncating 30
nucleotides in the 3′ UTR of

DENV1, DENV3, DENV4, and a
chimeric DENV2/DENV4

Phase III

DENVax

Replacing the coding sequences of
DENV2 PDK-53 attenuated
vaccine with that of DENV1,

DENV3, and DENV4

Phase III

Inactivated virus PIV Purified formalin-inactivated
virus and adjuvants Phase I

Subunit vaccine V180 A recombinant truncated protein
containing DEN-80E Phase I

DNA vaccine
D1ME100 Recombinant plasmid vector

encoding prM/E Phase I

TVDV
Recombinant plasmid vector
encoding prM/E proteins of

DENV1–4
Phase I

Heterologous
prime/boost

TLAV Prime/PIV boost
and reverse order Initial immune-boost strategy Phase I

CYD-TDV: the live attenuated chimeric yellow fever 17D virus-tetravalent dengue vaccine; DENVax: the live
attenuated tetravalent dengue vaccine; PIV: the purified formalin-inactivated virus vaccine; TVDV: the tetravalent
DNA vaccine; TLAV: the tetra-live attenuated virus vaccine.
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