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Abstract 

The rapid growth of multi-omics datasets, in addition to the wealth of existing biological prior 

knowledge, necessitates the development of effective methods for their integration. Such methods 

are essential for building predictive models and identifying disease-related molecular markers. We 

propose a framework for supervised integration of multi-omics data with biological priors represented 

as knowledge graphs. Our framework is based on the use of graph neural networks (GNNs) to model 

the relationships among features from high-dimensional ‘omics data and set transformers to integrate 

low dimensional representations of ‘omics features. Furthermore, our framework incorporates 

explainability methods to elucidate important biomarkers and extract interaction relationships 

between biological quantities of interest. We demonstrate the effectiveness of our approach by 

applying it to Alzheimer’s disease (AD) multi-omics data from the ROSMAP cohort, showing that the 

integration of transcriptomics and proteomics data with AD biological domain network priors improves 

the prediction accuracy of AD status and highlights robust AD biomarkers. 

Introduction 

Advances in high-throughput technologies have led to an explosion in the generation and availability 

of molecular data, encompassing the analysis of diverse biomolecules such as DNA, RNA, proteins and 

metabolites (Schneider, 2011). This has, consequently, enabled the study of fundamental processes 

such as gene expression (Hrdlickova, 2017) and DNA methylation (Chen Y. R., 2018), and opened new 

avenues for understanding complex biological systems and disease mechanisms. Profiling multiple 

‘omics modalities in a disease cohort can provide a more comprehensive understanding of how distinct 

molecular processes operate in tandem to contribute to disease development and progression. 

Deriving such insights necessitates the development of methods for multi-modal integration. Indeed, 

suitably designed integrative analysis can not only improve predictive outcomes but also help identify 

novel therapeutic targets, enabling the development of personalized medicine (Günther, 2012). 

Integrating and analyzing multi-omics datasets poses significant computational challenges. These 

datasets are typically high-dimensional and heterogeneous, making data reduction and identification 

of shared patterns essential. Additionally, omics coverage may be incomplete, leading to missing data 

and potential biases. A variety of unsupervised methods have been proposed to address these 

challenges and derive insight from multi-omics datasets. The standard approach to dealing with the 

high dimensionality of multi-omics data is to employ matrix factorization techniques. Methods such as 
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multi-omics factor analysis (Argelaguet, 2018), iCluster (Shen, 2009) and iNMF (Gao, 2021) look for 

latent factors shared across data modalities. Another class of unsupervised methods attempts to 

produce a unified representation of heterogeneous ‘omics modalities by clustering samples based on 

similarities shared between their omics profiles – see, for instance, similarity network fusion (SNF) 

(Wang B. M., 2014) and unsupervised graph kernel learning approaches (Speicher, 2015; Mariette, 

2018). 

In spite of their applications to a variety of bulk and single-cell multi-omics datasets for discovering 

molecular mechanisms and identifying biomarkers (Vahabi, 2022), unsupervised methods do not allow 

one to detect signals or patterns pertinent to a specific target phenotype, such as a particular disease 

of interest. Meanwhile, methods for integrating heterogeneous data in the supervised setting are 

relatively sparse, where the challenge posed by the high dimensionality of multi-omics data is further 

compounded by the small dataset size (i.e., the number of patient samples is significantly smaller than 

the total number of biological molecules profiled); particularly in the bulk ‘omics setting. Existing 

methods for supervised integration seek to exploit structures in ‘omics datasets: patients with similar 

‘omics profiles are likely to share similar disease diagnoses. Based on this principle, several methods 

have been proposed to leverage graph neural networks (GNNs) to pose the task of patient phenotype 

prediction as a graph node classification problem. MOGONET (Wang T. S., 2021) leverages GNN feature 

extractors by using empirically generated patient similarity networks. MoGCN (Li X. M., 2022), on the 

other hand, learns a unified GNN model using a patient similarity graph topology generated with SNF 

and low-dimensional node features learnt through an autoencoder. While methods based on patient-

similarity structures can alleviate the computational challenges associated with high-dimensionality in 

data features and low sample size, they do not leave any room for exploiting structures in the feature 

space, i.e. prior information about the relationship between biomolecules being measured. 

In this work, we propose a novel explainable GNN framework, or GNNRAI (GNN-derived representation 

alignment and integration), for supervised integration of multi-omics data. Unlike existing methods, 

such as MOGONET and MoGCN, which use networks to model relationships among samples, we use 

graphs to model relationships among modality features (for example, genes in transcriptomics and 

proteins in proteomics data). This enables us to encode prior biological knowledge as graph topology. 

Given k ‘omics modalities, each sample is represented as k graphs in our framework. We leverage 

supervised GNNs to learn modality-specific low-dimensional embeddings. These low-dimensional 

embeddings are first aligned to each other to enforce shared patterns, and then integrated using a set 

transformer (Lee & Teh, 2019). The integrated multi-omics representations are used to predict the 

target phenotype. Our model architecture allows us to incorporate samples with incomplete ‘omics 

measurements and avoid a reduction in statistical power. To identify predictive modality features, we 

employ the method of integrated gradients (Sundararajan, 2017) which estimates the importance of 

each feature to model predictions. We demonstrate the effectiveness of our framework by applying it 

to the task of predicting Alzheimer’s disease (AD) status by integrating transcriptomics and proteomics 

data from the Religious Order Study/Memory Aging project (ROSMAP) cohort. Given that proteomics 

data typically have a much smaller number of features relative to transcriptomics data, exacerbated 

by the smaller number of samples with proteomic data in the ROSMAP cohort, multi-omics integration 

methods might mask the role of the proteomics modality (Yang, 2023). Our results show that 

proteomics data are more predictive than transcriptome data in the ROSMAP cohort and the 

integration of the two data modalities using our GNNRAI improves upon the predictive performance 

of the two unimodal models. Graph topology for our ‘omics-specific GNNs is derived from recent work 

on AD biological domains (biodomains, or BDs), which are expertly curated knowledge graphs for AD-

associated endophenotypes (Cary, 2024). Our modeling framework is compared to the MOGONET 

approach on held-out validation data and shows improved prediction metrics. We derive important 
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‘omics features within AD-associated biodomains via the integrated gradients method. Finally, we 

probe our trained single-biodomain models to derive interactions between these biodomains using a 

set transformer in a second modelling stage. Interpretation of biodomain interactions via the method 

of integrated Hessians (Janizek, 2021) allows us to gain further insight into AD biology. 

Results 

GNNRAI for supervised multi-omics integration and biomarker identification 

In this work we developed an AI framework, GNNRAI (GNN-derived representation alignment and 

integration), for performing supervised multi-omics data integration, accommodating potentially 

incomplete data and identifying informative biomarkers and biological interactions. The backbone of 

our proposed method consisted of GNN-based feature extractor modules. Omics data, coupled with 

prior knowledge graphs, were processed through these GNN-based feature extractors to produce low-

dimensional embeddings. Modeling the relationships between markers reduced the training sample 

size burden since correlation structure reduces the effective dimensions in high dimensional omics 

data. Leveraging prior pathway knowledge and integrating multi-omics data maximized the likelihood 

that the identified informative features were functional. 

A schematic of our end-to-end GNNRAI model is shown in Figure 1. The MLP classifiers were designed 

for samples with a single modality, while the set transformer module was used exclusively for samples 

with complete multi-omics measurements. This architecture facilitated efficient training on incomplete 

multi-omics datasets, as the feature extractor modules were updated by all samples regardless of the 

completeness of their omics data. To explain the predictions from our model, we leveraged the 

integrated gradients method (Sundararajan, 2017), a method for post-hoc interpretability of black-box 

models. Furthermore, we used the method of integrated Hessians (Janizek, 2021) to extract 

informative biological interactions between single-biodomain model representations. Though we only 

demonstrated the integration of two modalities, it is straightforward to extend to multiple modalities. 

 

   

   

 
 

  
 
  

 
 

  
 
  

 
  
 
 

    

           

    

          

    

          

Figure 1: Schematic of our end-to-end integrative model GNNRAI. Data from individual ‘omics modalities are processed in 
their respective GNN feature extractors to produce low-dimensional embeddings (z1 and z2). z1 and z2 are then aligned and 
integrated through a set transformer. They are also processed through separate MLP (multi-layer perceptron) classifiers to 
produce modality-specific predictions of the target  when a sample has incomplete multi-omics measurements.   
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Alzheimer’s disease patient classification datasets. 

In our study, we implemented the GNNRAI framework to integrate transcriptomic and proteomic data 

for the binary classification of Alzheimer’s disease within the ROSMAP cohort. We analyzed gene and 

protein data from the dorsolateral prefrontal cortex (DLPFC) brain region. The processing of the data 

and the criteria for AD diagnosis were elaborated in the Methods section. Building on Cary’s 2024 

research on AD biodomains (Cary, 2024), we created 16 datasets for AD classification, each 

representing a different biodomain. These datasets were complemented with knowledge graphs 

derived from querying the Pathway Commons database. Refer to the Methods section for details on 

biodomains and graph sizes for each biodomain. After data processing, we had 228 samples with both 

transcriptomic and proteomic data, 59 with only proteomic data, and 336 with only transcriptomic 

data. Our GNNRAI models were trained on each of these 16 biodomain-specific datasets. The datasets 

consisted of graphs with nodes representing genes or proteins from a biodomain, with their expression 

or abundance values as node features, structured by the biodomain’s knowledge graph from querying 

the Pathway Commons. Each sample was labeled with a binary indicator to denote whether it was 

from an AD patient or a healthy control. 

Proposed GNNRAI AI framework outperformed benchmark MOGONET method on 

AD/control classification. 

The multi-omics graph convolutional network, or MOGONET (Wang T. S., 2021), framework was a 

supervised learning framework for integrating multi-omics data using GNNs. MOGONET processed 

individual modalities separately by constructing patient similarity networks using the cosine distance 

metric to assign edges. Graph neural networks operated on these patient similarity networks to make 

modality-specific predictions, which were then integrated through a view correlation discovery 

network (VCDN). In contrast to MOGONET, our approach imposed a network topology over the space 

of input features within each modality. The MOGONET architecture made it implausible to incorporate 

priors on the space of features (such as AD biodomains). Furthermore, MOGONET required samples 

to have complete measurements (i.e., no missing modalities). We trained our unimodal and integrative 

models on the set of samples with both transcriptomics and proteomics measurements for each of the 

16 BDs and compared their validation predictive performance to that of MOGONET trained on the 

same datasets. A comparison of the validation performance between these models is shown in Figure 

2. We observed that when trained on an equal number of samples, unimodal proteomics models 

Figure 2: Validation performance of our proposed integrative model (red) compared to validation performance of the 
benchmark MOGONET model (cyan) on the set of common saples having both proteomics and transcriptomics measurements. 
The performance of the integrative models is also compared to unimodal GNN transcriptomics (blue) and proteomics (green) 
models. 
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consistently outperformed unimodal transcriptomics models. Despite having fewer features (see Table 

3), proteomics data were more predictive in the ROSMAP cohort, aligning with (Johnson, 2022). Our 

integrative models outperformed the integrative MOGONET models in 13 out of 16 BD datasets 

(except for apoptosis, Tau homeostasis and vasculature). Additionally, for seven BD datasets (cell cycle, 

endolysosome, immune response, lipid metabolism, metal binding, oxidative stress and proteostasis), 

our unimodal proteomics models surpassed the multimodal MOGONET models. This was likely 

because proteomics and transcriptomics data were not always consistent, and MOGONET integrated 

modality-specific predictions rather than modality representations. In contrast, our framework’s 

integration of transcriptomics and proteomics modalities improved the unimodal predictive 

performance across all 16 BD datasets, demonstrating the effective integration. 

Multi-omics GNNRAI models outperformed unimodal GNNRAI models trained on 

transcriptomics and proteomics alone.  

For samples with complete measurements, our model’s performance was evaluated using the held-

out validation set predictions from the integrative component (i.e., the set transformer in Figure 1). 

For samples with incomplete measurements, predictions were based on their respective unimodal 

classifiers. We found that integrating the two modalities resulted in better performing classifiers 

compared to the unimodal counterparts. This finding was significant given that we had 564 samples 

with transcriptomic data but only 287 with proteomic data. A larger number of less predictive 

transcriptomic samples could obscure the superior performance of proteomic samples if the useful 

information from both modalities was not effectively aligned and integrated.  

To ensure a fair comparison, we used two sets of validation samples for evaluating the performance. 

The first validation dataset comprised samples with transcriptomics measurements (used to test the 

unimodal transcriptomics GNN models). The second validation dataset included samples with 

proteomics measurements (used to test the unimodal proteomics models). Figure 3 compares the 

validation accuracy of GNN models trained solely on transcriptomics and proteomics samples with the 

end-to-end multi-modal models trained on all samples. Validation performance for unimodal models 

were denoted as ‘unimodal-RNA’ and ‘unimodal-prot’, while the two validation scores from the 

integrative model were denoted as ‘integrated-RNA’ and ‘integrated-prot’ respectively. In spite of the 

smaller training dataset, ‘unimodal-prot’ consistently outperformed ‘unimodal-RNA’ across all 16 BDs, 

Figure 3: Validation performance of the integrative multimodal model (red and cyan) compared to performance of unimodal 
GNN models (blue and green) trained on the incomplete multi-omics datasets for 16 AD biodomains. The performance of 
the multimodal model is calculated on two sets of validation samples – the set of all validation samples with transcriptomics 
measurements and that with proteomics measurements. 
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reiterating that proteomics data provided more AD-predictive information than transcriptome data in 

the ROSMAP cohort. When we compared the multimodal to unimodal performance, ‘integrated-RNA’ 

consistently surpassed ‘unimodal-RNA’ across all 16 BDs, demonstrating that integrating proteomics 

with transcriptomics data enhanced classification performance. Similarly, there was a consistent 

performance improvement from ‘unimodal-prot’ to ‘integrated-prot’, albeit less pronounced than in 

the RNA modality. Furthermore, ‘integrated-prot’ was generally better than ‘integrated-RNA’ except 

for lipid metabolism BD, despite the fact that the proteome-specific classifier was trained on only 59 

samples compared to 336 samples for the transcriptome-specific classifier. This suggests that the 

target-predictive signals from transcriptomic and proteomic embeddings were aligned and integrated 

effectively, resulting in smaller performance differences between samples with transcriptomic data 

and proteomic data than in unimodal transcriptomic models.  

Validation on ROSMAP, Mount Sinai Brain Bank (MSBB) and Mayo Clinic transcriptomics and 

proteomics data 

To validate the predictive ability of our models trained on ROSMAP DLPFC samples, we curated samples 

with transcriptomics and/or proteomics measurements from the following studies and brain regions -  

1) ROSMAP samples from the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) 

brain regions with transcriptomic measurements. 

2) MSBB samples from the parahippocampal gyrus (PHG), frontal pole (FP), inferior frontal gyrus 

(IFG), and superior temporal gyrus (STG) brain regions. Only PHG tissue had both 

transcriptomic and proteomic data, while the remaining tissues had transcriptomics only. 

3) Mayo Clinic samples from the temporal cortex (TCX) brain region. Although TCX tissue had 

both transcriptomic and proteomic data, the proteomics measurements were acquired by 

label-free quantification, different from the tandem mass tag (TMT) quantification platform 

used in ROSMAP and MSBB. Hence, we did not validate ROSMAP-derived models on Mayo 

proteomics data.  

Table 1 shows the sample counts of the curated validation datasets. The procedure for annotating 

MSBB and Mayo samples with ground truth labels were described in the Methods section. We noted 
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that MSBB and ROSMAP adopted similar diagnostic criteria, while Mayo clinic cohort followed Mayo 

neurologist guidelines (McKhann, 1984).  

We first applied the ROSMAP DLPFC-trained transcriptomics model to transcriptomics data from 

ROSMAP ACC and PCC brain regions, MSBB PHG, FP, IFG and STG brain regions and Mayo TCX brain 

region. For comparison, we also included the predictive accuracy on the ROSMAP DLPFC validation 

dataset (Figure 4). Figure 4 shows that the same GNN model has different predictive performance on 

different brain regions. Generally, ROSMAP PCC had slightly higher predictive accuracy than DLPFC, 

which was in turn higher than the predictive accuracy of ACC. For MSBB, PHG had the highest 

predictive accuracy, followed by IFG and STG, which predicted better than FP. MSBB PHG had the 

highest predictive accuracy across the 

three cohorts. MSBB IFG and STG had 

comparable performance with ROSMAP 

PCC, while MSBB FP had comparable 

performance with ROSMAP DLPFC, which 

predicted better than Mayo TCX. ROSMAP 

ACC had the lowest predictive accuracy 

on average. Nevertheless, ROSMAP ACC 

predictive accuracy was above 0.6 across 

the 16 AD biodomains, better than a 

random guess. The different predictive 

performance on transcriptomic data from 

different brain regions might be explained 

in terms of neuropathological burdens – 

the FP and DLPFC regions are impacted at 

a similar disease stage, whereas the PHG 

tends to be affected much earlier in 

disease progression. This could be further 

exacerbated by the differences in cohort 

sample selection between ROSMAP and MSBB. MSBB samples were selected for multi-omics profiling 

based on the presence of remarkable AD neuropathology, whereas the ROSMAP study was a 

longitudinal cohort and did not pre-select samples for extreme neuropathology. Thus, disease 

signatures learned in the ROSMAP DLPFC samples could be amplified in the MSBB samples, leading to 

an increase in the predictive accuracy of our models. This also implied that transcriptomic signatures 

might be translational across relevant brain tissues.  

Next, we applied the ROSMAP DLPFC-trained proteomics and integrative models to proteomics and 

multi-omics data from MSBB PHG brain region respectively (Figure 5). We also included ROSMAP 

DLPFC and MSBB PHG transcriptomics performance in Figure 5 for comparison. MSBB PHG had lower 

predictive accuracy than ROSMAP DLPFC for proteomics and integrative models. Unlike in ROSMAP, 

where proteomics data had higher predictive accuracy than transcriptomics data and the integrative 

model improved upon the two unimodal models, proteomics data were less predictive than 

transcriptomics data, and the integrative model had lower predictive accuracy than the proteomics 

model for 9 AD biodomains in MSBB. This might be due to the fact that the GNN models were trained 

Figure 4: Predictive performance of applying unimodal transcriptomics 
model trained on ROSMAP DLPFC training dataset to validation 
transcriptomics samples from various cohorts and brain tissues. 
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on a much smaller set of ROSMAP 

proteomics data (287×2/3=191 

samples) than ROSMAP transcriptomics 

data (564×2/3=376 samples), causing 

poor generalization performance on 

unseen data. 

Identification of biomarkers relevant to 

AD 

We applied the integrated gradients 

method to our trained multi-omics 

GNNRAI models to derive importance 

scores on input graph nodes (genes and 

proteins). We used a permutation-based 

approach to determine the importance 

score threshold by controlling the false 

discovery rate (FDR) to be below 0.05. 

Like standard permutation procedure for 

multiple hypothesis testing, we treated 

the original importance scores as the 

observed test statistics, generated 300 

permuted datasets by randomly 

permuting the training labels and trained our integrative models on the permuted datasets. The 

resulting models were called null models. The importance scores for all genes/proteins in a graph from 

each sample of the 300 null models were used as background test statistics. Since we calculated FDR 

Figure 5: Predictive performance of applying unimodal and multimodal 
models trained on ROSMAP DLPFC training dataset to samples from 
ROSMAP DLPFC validation and MSBB PHG validation datasets. Prot: 
protein; Int: integrative. 
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rather than corrected p-values, the estimated empirical FDR was confidently accurate for B=100-200 

(Millstein, 2013). See Methods for the procedure to calculate permutation-based FDR. 

We determined whether a gene/protein was informative only in correctly predicted validation 

samples. To rank the informative genes/proteins identified across these analyses, we added the total 

number of non-overlapping sample IDs for which a given gene/protein was identified as informative 

across modalities and AD biodomains for each study, divided by the total number of correctly predicted 

validation samples in each study, then calculated the average fraction of informative samples across 

studies/brain tissues, based on which genes/proteins were ranked. The top 20 AD-predictive  

genes/proteins are shown in Table 2. The top ranked gene in these analyses was MDK, which was 

informative in the binary classification task for 210 unique validation samples (average of 97.9% of 

correctly predicted validation samples). MDK is a secreted growth factor that has consistently been 

identified among a suite of matrisome proteins that associate with Aβ plaques (i.e., Module M42 in 

(Johnson, 2022; Drummond, 2022)), and has been shown to influence the aggregation of amyloid-

beta, both in vitro and in vivo (Levites, 2023). VGF was another top-ranked gene in these analyses and 

Table 2: Top 20 informative genes across modalities, tissues, and AD biodomains. Total samples are 
the count of unique sample identifiers for which the gene is identified as informative to model 
prediction. 
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has consistently been identified as a robust biomarker for AD (Tandon, 2023; Watson, 2023), as well 

as being a top predicted regulator of multiscale AD networks (Beckmann, 2020).  

The three genes in the top 20 that had the highest integrated AD Target Risk Score (TRS (Cary, 2024)), 

were APP, LGMN and LTF. Each of these genes were informative for over 80 total samples and had TRS 

in the top 2% of all scored genes. APP is a well-known disease gene that is the proteolytic precursor of 

the Aβ peptide, which is a major component of one of the hallmark neuropathologies of the disease, 

and variants within APP are causal for rare autosomal dominantly inherited forms of AD. LTF, or 

lactotransferrin, has recently been identified as a predictor of Aβ burden (Tsatsanis, 2021). LGMN, also 

known as δ-secretase, is an asparagine endopeptidase that is involved in the cleavage of both tau 

(Zhang, 2014) and APP (Yao, 2021) proteolysis, which is linked to increased pathogenicity in each case. 

This corresponded with the findings from the individual gene/protein analyses where LGMN was the 

most impactful in Tau Homeostasis and APP Metabolism biodomains.  

There were also two genes among the top 20 that were novel candidate biomarkers and did not have 

prior publications directly linking their functions to AD pathogenesis. For example, IQGAP3 was ranked 

#11 in this analysis, had a TRS in the top 10%, and was differentially expressed in both transcriptomics 

and proteomic samples. Despite having no publications where IQGAP3 is implicated in AD, it was linked 

with cytoskeletal maintenance and neurite 

outgrowth (Wang S. W., 2007) which is 

consistent with its role in the Structural 

Stabilization domain in these analyses. 

OLFM4 was another example of a highly 

ranked gene in these analyses (#16), with 

limited evidence in the literature linking it 

with AD. 

At least seven genes among the top 20 were 

strongly related to AD biology, showing that 

our integrative method identified functional 

features due to the integrated prior biological 

pathway knowledge. 

Detecting interactions among biodomains 

For a multi-modal integrative model trained 

on a given biodomain, the class token 

representation from the final set transformer 

was a single low-dimensional embedding 

that unified information across modalities 

within the biodomain. We, therefore, 

collected class token representations in 

integrative models from all 16 BDs, and 

trained an auxiliary set transformer to 

integrate information across biodomains. Integrated Hessians (Janizek, 2021) was applied to this 

second set transformer model to derive interaction scores between its input tokens. The biodomains 

partition gene functions into distinct molecular endophenotypes. However, these endophenotypes 

can and do interact during the etiology of the disease. Therefore, a primary goal of utilizing the 

biodomain framework is to identify interactions between domains that could broaden our 

understanding of the disease development.  

Figure 6: Interactions between biodomains based on Integrated 
Hessians analysis on multi-modal model trained on samples with 
complete multi-omics. The nodes represent biodomains and edges 
represent interactions with the edge annotations being the rank of 
the interaction. The biodomain names based on the 3-letter 
abbreviations are: apoptosis (apo), lipid metabolism (lip), synapse 
(syn), endolysosome (end), metal binding  (met), cell cycle (cel), 
mitochondrial metabolism (mit), myelination (mye), vasculature 
(vas), proteostasis (pro) and APP metabolism (app). 
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The top interactions detected are shown as a graph where each node is a BD in Figure 6. Interactions 

were ranked by repeating the model training and informative interaction identification process ten 

times with different random weight initializations. From each iteration, the top ten percent of 

interactions, determined by ranking the number of samples for which each interaction was 

informative, were noted. Interactions present in the top ten percent three or more times out of ten 

were recorded. Rank was determined first by the number of appearances in the top ten percent, then, 

in the case of ties, by the total number of samples in which the interaction was informative. The 

domain nodes with the largest degree were Lipid Metabolism (degree = 9), followed by Mitochondrial 

Metabolism (degree = 5), Synapse and Endolysosome (degree = 4, each). The centrality of these 

domains was supported by the observation that Synapse, Lipid Metabolism, and Mitochondrial 

Metabolism were among the top risk-enriched biodomains (Cary, 2024). The observation that Lipid 

Metabolism was a hub in this graph suggested that aspects of Lipid Metabolism influenced many other 

disease processes. The centrality of Lipid Metabolism to AD pathogenesis was supported by myriad 

observations from recent decades, including genetic studies that implicate Lipid Metabolism 

associated genes (e.g. APOE, CLU, ABCA7, SORL1) in driving AD risk (Bellenguez, 2022), the observation 

that amyloid-beta production occurs in lipid raft membrane microdomains (Ehehalt, 2003), recent 

lipidomic studies that identify changes in lipid species that are specific to the disease (Baloni, 2022; 

Batra, 2023), and many more.  

Other interaction relationships represented in this graph were informative and supported by evidence 

from the literature. As mentioned above, the edge between APP Metabolism and Lipid Metabolism 

was supported by the influence of lipid rafts on amyloid-beta production. The link between Lipid 

Metabolism and Mitochondrial Metabolism was also very well supported given that β-oxidation of 

fatty acids, which is the primary catabolic pathway, occurs in the mitochondrial matrix. Given that 

mitochondria provide the requisite energy and precursor metabolites for cell cycle progression, and 

that mitochondrial biogenesis and dynamics are influenced by cell cycle regulators, the 

interdependence of Cell Cycle and Mitochondrial Metabolism was also well supported. The top ranked 

edge between Lipid Metabolism and Apoptosis evoked ferroptosis, which is an iron-dependent cell 

death mechanism that is distinct from apoptosis but involves the accumulation of peroxidated lipid 

species (Yan H. F., 2021) and is the focus of newly emerging hypotheses of disease pathogenesis (Wang 

F. W., 2022). Further, supporting this association is the observation that 7 of the top 20 identified 

informative genes – i.e. APOB (Wu, 2024), LGMN (Chen C. A., 2021; Yan L. H., 2023), LTF (Xiao, 2022; 

Wang Y. L., 2020), NOX4 (Park, 2021), CD44 (Liu, 2019; Ye, 2024), PRKCD (Lv, 2024), and CYP51A1 (Li Y. 

R., 2024) – are associated with regulating aspects of ferroptosis in diverse contexts. It was noted that 

the immune response biodomain, which is strongly involved in AD, is absent in Figure 6. The interplay 

between the immune response and lipid metabolism BDs ranked seventeen in these analyses – the 

highest ranking interaction not included in Figure 6. The reason for this omission in our list of top 

pairwise interactions remains unclear and warrants further investigation which is beyond the scope of 

our current work. 

Discussion  

In this work, we proposed an end-to-end AI framework, or GNNRAI, for supervised alignment and 

integration of multi-omics data with prior information expressed as knowledge graphs. Our method 

was based on the use of GNNs for learning low-dimensional embeddings from high-dimensional data 

and could accommodate samples with missing modalities. Using the ROSMAP data, we curated 16 

binary classification datasets – each dataset comprising a view of the ROSMAP gene expression and 

protein abundance data within an AD-associated biodomain. We noted that the size of biological 

domains varied significantly from smallest to largest domains and therefore allowed us to test the 
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robustness of our approach to varying input dimensionality. Our approach has validated its efficacy in 

the task of integrating transcriptomics and proteomics data from the ROSMAP cohort. It has outshined 

the benchmark MOGNET method in 13 of the 16 BDs and shown improvements over the two unimodal 

models for all 16 BDs. This outcome is noteworthy considering the disparity in sample sizes, with 564 

transcriptomic samples and only 287 proteomic samples. The abundance of less predictive 

transcriptomic samples could potentially conceal the enhanced performance of the proteomic samples 

unless the valuable insights from both data types are properly synchronized. 

The task of integrating multi-omics data is computationally challenging for several reasons. We 

demonstrated that the curse of dimensionality arising from the large number of ‘omics features 

relative to the sample size could be overcome by leveraging the correlation structure in graphs and 

message passing in GNNs. Additionally, we showed that the separation of feature extraction modules 

and set transformer-based integration allowed us to utilize samples with missing modalities – a 

characteristic feature of multi-omics datasets.  

Our framework allows one to integrate modalities where prior information about the relationship 

between input features can be expressed in the form of knowledge graphs. We leveraged existing work 

on AD biodomains to extract network topologies for transcriptomics and proteomics modalities. Our 

approach did not make a distinction in the structure of the knowledge graphs used for these 

modalities, thereby implicitly imposing a simplified assumption that network relationships between 

transcripts is exactly reproduced in the proteins they code for. Furthermore, we did not incorporate 

data from other modalities within the ROSMAP study, such as methylomics and metabolomics, due to 

the current unavailability of direct prior knowledge graphs for these modalities. However, existing 

transcriptomic and proteomic networks can be leveraged for the construction of gene-centered 

methylomics and metabolomic knowledge graphs. For instance, metabolites catalyzed by the same 

genes/proteins may be determined to share a relationship. For genes that have an edge in a 

transcriptomic network, CpG sites within their regulatory regions (promotors, enhancers etc.) may be 

determined to share the same edge within the corresponding methylation network. Finally, we 

identified informative features through the model-agnostic method of integrated gradients which 

derived importance scores on individual graph nodes independently. Interpretation of GNN predictions 

can, in theory, be enhanced by using an explanation method to identify informative subgraphs, or 

motifs. While methods in this direction did exist (Ying, 2019), our experience was that we were unable 

to extract meaningful subgraph/motifs through the application of such methods. How to identify 

correlated informative features efficiently is one of the important future research directions for GNNs. 

Methods 

Data preprocessing 

To investigate AD mechanisms, we adopted a combination of clinical and neuropathological criteria 

used in (Johnson, 2022) to assign ground truth labels (AD case or control) to patients within the 

ROSMAP cohort. In particular, we used clinical cognitive tests, such as MMSE (the Mini-Mental State 

Examination (Folstein, 1975)), or CDR (Clinical Dementia Rating) to assess dementia: MMSE score <= 

24 or CDR >= 1. Neuropathological assessment of patients was conducted post-mortem using Braak 

staging (Braak, 2006) and CERAD (The Consortium to Establish a Registry for Alzheimer’s Disease) 

scoring (Wolfsgruber, 2014) to reflect AD hallmarks. CERAD scores 0-3 correspond to no AD/none, 

possible/sparse, probable AD/moderate, and definite/frequent, respectively. The Braak score, or seven 

Braak stagings, classifies the severity and distribution of tau pathology in the brain. Cases with CERAD 

0–1 and Braak 0–3 without dementia at last evaluation were annotated as controls (if Braak score 
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equals 3, then CERAD must equal 0); cases with CERAD 2–3 and Braak 3–6 with dementia at last 

evaluation were annotated as AD.  

Downloaded RNA-Seq count data were log2 transformed and corrected for age, sex and postmortem 

interval (PMI) covariates. Downloaded protein abundance data were log2 transformed and median 

zero centered per feature. Finally, age, sex and postmortem interval (PMI) were regressed out.  

For validation MSBB samples, we used similar diagnostic criteria, except MMSE was replaced with CDR 

(Wang M. B., 2018) since MSBB did not provide MMSE information. MSBB gene expression/protein 

abundance data were processed similarly to ROSMAP data. In addition, patient race was regressed 

out. 

For patients in the Mayo study, AD and controls were taken to be the reported diagnosis according to 

Mayo neurologist guidelines, as described in (McKhann, 1984). In contrast to ROSMAP and MSBB, 

which made use of tandem mass tag (TMT) quantification, Mayo proteomics data were acquired with 

label-free quantification, hence we did not validate our models on Mayo proteomics data. Mayo gene 

expression data were processed similarly to ROSMAP data. 

Network priors from Alzheimer’s disease biological domains 
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The prior biological knowledge ascribed to nodes and edges in the knowledge graphs used for the 

analysis was derived from publicly accessible biological databases. These graphs provided a topological 

organization to the biological domains, which were 19 AD-associated endophenotypic descriptors, 

such as immune response and mitochondrial metabolism (Cary, 2024). The biological domains were 

lists of functional biological definitions describing aspects of AD, and were defined with suites of 

relevant Gene Ontology (GO) terms (Ashburner, 2000). Each GO term was annotated with a set of 

genes, and biological processes within a domain that were enriched for composite metrics of disease 

risk (Cary, 2024) could be identified using standard enrichment procedures. We used significantly-

enriched GO terms (gene set enrichment analysis adjusted p-value < 0.01 and normalized enrichment 

score > 1.7) – 16 of the 19 biological domains had GO terms that met these criteria – and extracted 

the leading edge genes from each term to seed knowledge graph generation through a pathway 

reconstruction pipeline. We performed a shortest path reconstruction among all risk-enriched genes 

for each domain using protein-protein interaction (PPI) edge annotations from the Pathway Commons 

database (Cerami, 2010), version 13. Given the nonlinear relationships implicated in most biological 

interactions, the shortest path to connect two genes was selected for creating an edge between two 

nodes. For a given protein, expressed by a gene in the biological domain, an edge was derived from 

the larger PPI network. The final network object consisted of edges, which were the PPI, and nodes, 

which were the GO term-derived gene list. A summary of the sizes of the transcriptomics and 

proteomics prior networks within each biodomain is shown in Table 3.  

Modeling framework for multi-omics integration 

In this work, we proposed an end-to-end framework for supervised integration of incomplete multi-

omics data. Our modeling framework comprised two key components: 1) graph neural network-based 

feature extractors and 2) feature alignment as well as set transformer-based feature integration among 

modalities. 

Graph Neural Network-based feature extractors 

Let 𝒙𝑖 ∈ 𝑅𝑑𝑖 be the set of features for the 𝑖𝑡ℎ modality and 𝒢 be an undirected graph with 𝑑𝑖  nodes, 

with each node representing a feature in 

the 𝑖𝑡ℎ modality. 𝒢 may be constructed 

empirically via binarizing the matrix of 

correlation coefficients among features 

or may represent prior knowledge on 

the space of features defining known 

pairwise relationships. Let ℰ be the list of 

edges in 𝒢 and 𝒲 be an optional list of 

corresponding vector-valued edge 

weights such that |𝒲| = |ℰ|. Given a 

sample of ‘omics measurements 𝒙𝑖 and 

an associated graph topology 𝒢, we set 

up a graph neural network (GNN) and 

learned 𝒛𝑖 = 𝑔(𝒙𝑖, ℰ, 𝒲), where 𝒛𝒊 ∈

𝑅𝑚 is a vector of low-dimensional 

embeddings. A schematic of the GNN-

based feature extractor is shown in 

Figure 7. 
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First, we constructed a positional encoding of 𝑑𝑖  features into 𝑘 (𝑘 <  𝑑𝑖) learnable communities using 

a standard lookup table embedding function in Pytorch which were softmax-normalized. The input 

node feature vector 𝒙𝑖 to 𝑔 was linearly transformed by using the 𝑘 communities as bases, followed 

by passing through a stack of graph convolution blocks. Each block (round-corner rectangular box in 

Figure 7) comprised two sub-blocks. The first sub-block was a message passing graph convolution layer, 

followed by a ReLU activation. The second sub-block was a residual connection adding input node 

features to the output of ReLU, followed by a batch normalization. Input node features which passed 

through 𝑁 graph convolution blocks were transformed into latent node features �̃�𝑖 ∈ Rdi. The 

associated graph topology remained unchanged since we did not employ edge-updating in our model. 

The transformed node feature vector �̃�𝑖 passed through a memory pooling layer (Hosein Khasahmadi, 

2020) which learned a coarse graph representation through soft cluster assignments. Subsequently, �̃�𝑖 

was reduced to �̃�𝑖 ∈ Rdi
 ′×dc, where 𝑑𝑐 is the number of clusters and 𝑑𝑖′ is the number of features in a 

cluster, which was then flattened. Lastly, a residual connection was employed adding the linearly 

transformed original input node feature vector to the flattened �̃�𝑖, which was subsequently linearly 

mapped to 𝑧𝑖 ∈ Rm. 

Graph convolution layer 

Let ℎ𝑖𝑛 ∈ 𝑅R×𝐶𝑖𝑛 denote the input matrix to our graph convolution layer, where R was the number of 

nodes, and 𝐶𝑖𝑛 represented the number of features in an input node. Let 𝐶𝑜𝑢𝑡 be the number of 

features in an output node of a graph convolution layer. Suppose R nodes were mapped to k 

communities, and the softmax-normalized positional encoding were 𝑝 ∈ RR×k. We first mapped the 

input node features linearly: ℎ′ = ℎ𝑖𝑛W, where 𝑊 ∈ RCin×�̂�𝑜𝑢𝑡 were learnable weights, �̂�𝑜𝑢𝑡 = 𝑘 ∙

𝐶𝑜𝑢𝑡, ℎ′ ∈ RR×�̂�𝑜𝑢𝑡. Linearly transformed node features ℎ′ were then reshaped to ℎ′ ∈ RR×k×Cout. The 

positional encoding was then used to linearly weight node features along each output channel - ℎ̂:,𝑖 =

∑ ℎ′
∶,:,𝑖 ⊙ unsqueeze(p), where ⊙ is the element-wise product operation and the summation was 

among k communities. The resulting node features were ℎ̂ ∈ RR×Cout . Finally, a message-passing 

update on the node features was performed: 

ℎ𝑜𝑢𝑡,𝑗 = 𝑏 + ∑  
𝑢𝑛𝑠𝑞𝑢𝑒𝑒𝑧𝑒(ℎ̂𝑗)𝑒𝑟,𝑗

�̂�𝑟�̂�𝑗𝑟∈{𝑗}∪𝒩𝒿

, 

 

where ℎ̂𝑗 ∈ RCout  was the feature vector of the 𝑗𝑡ℎ node, 𝒩𝒿 was the set of indices of the neighbor 

nodes to node 𝑗, �̂�𝑗 and �̂�𝑟 were the degrees of nodes 𝑗 and 𝑟 respectively, and 𝑒𝑟,𝑗 ∈ Rne  was a vector 

of 𝑛𝑒 attributes for the edge connecting nodes 𝑗 and 𝑟. Note that our graph convolution layer was an 

extension of the standard graph convolution of (Kipf, 2016) where we allowed for the inclusion of 

positional embeddings and vector-valued edge attributes. 

Aligning embeddings among modalities 

Before integration, we calculated the absolute pairwise correlation (for samples with complete multi-

omics data) or the absolute pairwise cross-correlation (for samples with incomplete multi-omics data) 

among modality representations and took its negative value as a loss component. 

Integration using set transformers 

Let 𝑧𝑖 ∈ Rm be the GNN embeddings corresponding to the 𝑖𝑡ℎ ‘omics modality. We collected 

embeddings from GNNs corresponding to each individual modality into a set 𝑍 = (𝑧0, 𝑧1, ⋯ , 𝑧𝐾)𝑇 ∈

R(K+1)×m, where 𝐾(≥ 1) was the number of modalities and 𝑧0 ∈ 𝑅𝑚 was a set of learnable 

parameters called the class token. We then used the standard transformer encoder architecture 
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described in (Vaswani, 2017) to set up an integrative classifier. The prediction from the integrative 

classifier, �̂� ∈ RC (where 𝐶 was the number of classes) was given by - 

�̂� = MLP (Encoder(𝑍)0), 

where Encoder(𝑍)0 ∈ 𝑅𝑚 was the latent representation of the input learnable class token 𝑧0, and 

MLP(⋅): 𝑅𝑚 → 𝑅𝐶 was a fully connected neural network which mapped the final class token 

representation to the target label space. The transformer encoder was a composition of 𝑛 encoder 

blocks i.e., Encoder(𝑍) = 𝐸𝑛 ∘ 𝐸𝑛−1 … ∘ 𝐸1(𝑍). The sequence of operations within each encoder 

block was as follows: 

1. Multi-head self-attention (MSA), residual connection and layer normalization (LN) (Ba, 2016) 

on the set of ‘omics tokens - 𝑍′ = 𝐿𝑁(𝑍 + 𝑀𝑆𝐴(𝑍)),  

2. Position-specific feedforward network followed by a residual connection and layer 

normalization (LN) - 𝑍𝑜𝑢𝑡 = 𝐿𝑁(𝑍′ + 𝐹𝐹𝑁(𝑍′)), where 𝐹𝐹𝑁(⋅): Rm → Rm was a one hidden 

layer MLP with ReLU activation and operated on each token individually, i.e., 𝐹𝐹𝑁(𝑍) =

𝐹𝐹𝑁(𝑧0, 𝑧1, … , 𝑧𝐾) = (𝐹𝐹𝑁(𝑧0), 𝐹𝐹𝑁(𝑧1), … , 𝐹𝐹𝑁(𝑧𝐾))𝑇). 

Full model architecture and training  

Our full integrative multi-omics model was expressed as: 

𝑦 =  ℎ( 𝑔1(𝑥1, ℰ1, 𝒲1), 𝑔2(𝑥2, ℰ2, 𝒲2), … , 𝑔𝐾(𝑥𝐾 , ℰ𝐾 , 𝒲𝐾)), 

where, ℎ(⋅) was a set transformer which integrated feature representations generated by the ‘omics 

GNNs 𝑔𝑖𝑠, 𝒙𝑖𝑠 were the node features for the 𝑖𝑡ℎ ‘omics modality and ℰ𝑖, 𝒲𝑖  were the edge index list 

and edge attribute list associated with the 𝑖𝑡ℎ modality. A schematic of the architecture is shown in 

Error! Reference source not found.. Given multi-omics data for a given sample, measurements for 

each modality were processed through their respective GNN modules. The parameters of the GNN 

were trained by classifying the embeddings to the corresponding target labels using multi-layer 

perceptrons (MLP) or a set transformer which collected embeddings for all available modalities, 

integrated them, then made a prediction on the target label.  

Training with complete samples  

We first describe the training of our model when the multi-omics data set had complete samples, i.e., 

we had measurements in all available ‘omics modalities for all patients. We split the total dataset into 

three folds, maintaining the ratio of sample labels in each fold as in the whole dataset. Samples from 

two of these splits were chosen as training samples while samples from the remaining split were used 

as validation samples. Since samples in our dataset had binarized labels (AD/control) we therefore 

used the binary cross entropy loss function. We set up our end-to-end integrative model as detailed in 

the previous sections and trained it using stochastic gradient descent optimization, specifically the 

Adam optimization method (Kingma, 2014), using mini-batches of training data. The objective function 

we optimized was as follows –  

ℒ = ∑ ℒ𝑖 + 𝜆1ℒint

𝐾

𝑖=1

+ 𝜆2 ∑ ℒ𝑖,𝑗
align

i>j

+ 𝜆3ℒreg, 

where ℒ𝑖  was the loss incurred on the predictions made by the MLP classifier on the embeddings of 

the 𝑖𝑡ℎ modality, ℒint was the loss incurred on the predictions made by the integrative module, i.e., 

the set transformer, ℒ𝑖,𝑗
align

 was the alignment loss between the 𝑖𝑡ℎ and 𝑗𝑡ℎ modalities, and ℒreg were 
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norm penalties on the learnable parameters in the model. 𝜆1, 𝜆2,𝜆3 were trade-off hyper-parameters. 

Furthermore, we applied sample weights on our prediction losses (ℒ𝑖  and ℒint) to account for any 

potential class imbalance.  

Training with incomplete samples  

To account for incomplete samples (i.e., samples with missing measurements in one or more 

modalities), we split our total training dataset into disjoint subsets based on modality representation. 

For our transcriptomics and proteomics datasets, we split the total dataset into three subsets – the set 

of common samples and two additional sets comprising samples having measurements in 

transcriptomics or proteomics alone. Each epoch of training for our integrative model now comprised 

a single epoch through each disjoint subset. The common sample subset was trained with the full loss 

function as described in the previous section. The loss function was modified for training data subsets 

with missing modalities. For a subset of the training data with measurements in a single modality only, 

the components ℒint and ℒ𝑖,𝑗
align

 were set to 0. The order in which the disjoint data subsets were 

processed to update the model weights during training was randomized from epoch to epoch.  

Hyperparameter selection  

As described in the previous section, we created 3 stratified splits of our dataset, from which we picked 

one fold for validation and used the remaining two for training. For any given combination of 

hyperparameters, we trained our models 3 times per split, each with a different random initialization, 

and cross-validated on the validation dataset. In total, we trained the model 9 times with the same 

hyperparameters. We averaged the validation performance of our model on each of these 9 trials and 

reported it as the predictive performance corresponding to a given setting of hyperparameters. We 

performed a grid search over our hyperparameters and picked the hyperparameters with the highest 

average validation accuracy over 9 trials. 

Biomarker identification and interaction analysis 

Given the complex, nonlinear nature of deep compositional models, explaining model predictions and 

thereby elucidating important features and feature interactions is nontrivial. Here we described the 

method of integrated gradients for extracting important biomarkers and the method of integrated 

Hessians for deriving informative interactions between AD biological domains.  

Integrated gradients 

Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑)T ∈ R𝑑 be the input features to a deep learning model, 𝑓: R𝑑 → R𝐶, where 𝐶 

was the number of classes of the target label. Let 𝑓𝑐(𝑥) be the model output score for the 𝑐𝑡ℎ class. 

The components of the gradient vector, ∇𝑥𝑓𝑐, represented the sensitivity of the class score to small 

perturbations of the input features, and the magnitude of its components may be interpreted as a 

proxy for the importance of input features. The integrated gradient attribution of the 𝑖𝑡ℎ input feature 

on the 𝑐𝑡ℎ class was defined as follows: 

ϕ𝑖 = (𝑥𝑖 − 𝑥𝑖
 ′) × ∫

∂𝑓𝑐(𝑥′ + α(𝑥 − 𝑥′))

∂𝑥𝑖

1

α=0

dα,  

where 𝑥′ was a user-defined baseline input. The integrand represented the model evaluation at an 

input constructed by the linear interpolation between the baseline 𝑥′ and the true input 𝑥. The choice 

of the baseline was task dependent. For instance, in image classification tasks, where the input 𝑥 is a 

tensor representing pixel intensities, it is customary to pick the zero tensor as the baseline, i.e., 𝑥′ =
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0. In our multi-omics model, inputs were node features representing gene expression/protein 

abundance levels. We set our baseline as the average expression/abundance level in our training 

control samples. Features with large magnitude attribution scores on the disease class label (i.e., class 

label 1) were implicated as informative disease biomarkers. 

Integrated Hessians 

Integrated Hessians for pairwise feature interactions (Janizek, 2021) is a natural extension of the 

method of integrated gradients. Let ϕ𝑖: R𝑑 → 𝑅 be the integrated gradient attributions on the 𝑖𝑡ℎ input 

feature. Applying integrated gradient explanations on the function ϕ𝑖(𝑥) resulted in a new 𝑑-

dimensional vector whose 𝑗𝑡ℎ component Γ𝑖,𝑗(𝑥) = ϕ𝑗(ϕ𝑖(𝑥)) explained the contribution of feature 

𝑥𝑗 to the model attributions on feature 𝑥𝑖. We interpreted the quantity Γ𝑖,𝑗(𝑥) as the interaction 

between features 𝑖 and 𝑗. For 𝑖 ≠ 𝑗, the feature interaction scores were given by:  

Γ𝑖,𝑗(𝑥) = (𝑥𝑖 − 𝑥𝑖
 ′)(𝑥𝑗 − 𝑥𝑗

 ′) × ∫ ∫ αβ
∂2𝑓𝑐(𝑥′ + αβ(x − x′))

∂𝑥𝑖 ∂𝑥𝑗

1

β=0

1

α=0

dαdβ, 

where 𝑥′ was a baseline input. The self-interaction term Γ𝑖,𝑖(𝑥) was given by: 

Γ𝑖,𝑖(𝑥) = ϕ𝑖(𝑥) − ∑ Γ𝑖,𝑗(𝑥)

𝑖≠𝑗

, 

where the 𝑖𝑡ℎ feature integrated score ϕ𝑖(𝑥) represented the marginal contribution of 𝑥𝑖 to model 

prediction. The self-interaction score Γ𝑖,𝑖(𝑥) was, thus, defined as the difference between the marginal 

contribution of 𝑥𝑖 and every pairwise interaction involving 𝑥𝑖. 

Identify informative markers or marker interactions with specified false discovery rate (FDR) 

To determine the importance score threshold above which a marker or a marker interaction was 

viewed informative, we adopted the permutation approach to compute the empirical FDR. Specifically, 

we randomly permuted the order of the ground truth labels to generate 𝐵 permuted datasets of 

ground truth labels. We then trained the GNN model on each of the 𝐵 permuted datasets and 

computed importance scores for markers using integrated gradients or marker interactions using 

integrated Hessians. Following the non-parametric procedure outlined in (Xie, 2005), we calculated 

the false discovery rate for a given threshold 𝑑 as: 

𝐹𝐷𝑅(𝑑) =  𝜋0

(∑
# {𝑖: 𝑧𝑖

(𝑏)
> 𝑑}

𝐵
𝐵
𝑏=1 )

#{𝑖: 𝑍𝑖 > 𝑑}
, 

where, 𝑍𝑖  was the importance score of marker or interaction 𝑖 in the unpermuted data, 𝑧𝑖
(𝑏)

 was the 

importance score of marker or interaction 𝑖 in the 𝑏𝑡ℎ permutation, 𝜋0 was the prior probability that 

a marker or an interaction was uninformative. For AD study, 𝜋0 is close to 1, and we took the value of 

0.97. The scores obtained under the null hypothesis (permuted data) could be used by different 

analyses from the same dataset – for instance, analyses from different random initializations and 

different training dataset folds. For an FDR threshold of ≤0.05, the estimated empirical FDR was 

confidently accurate for 100 to 200 permutations (Millstein, 2013) . 
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