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Decadal predictions of the North Atlantic
CO2 uptake
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As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the

global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre

region are associated with the evolution of the North Atlantic Oscillation, the Atlantic mer-

idional overturning circulation, ocean mixing and sea surface temperature anomalies. While

variations in the physical state of the ocean can be predicted several years in advance by

initialization of Earth system models, predictability of CO2 uptake has remained unexplored.

Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-

ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake

and demonstrate that its potential predictive skill in the western subpolar gyre region is up to

4–7 years. The predictive skill is mainly maintained in winter and is attributed to the improved

physical state of the ocean.
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T
he world’s oceans currently take over about 25–30% of
anthropogenic CO2 from the atmosphere, and the North
Atlantic is a key component of this oceanic carbon sink1,2.

Steered by deep convection, most of the North Atlantic CO2

uptake takes place in the subpolar gyre (SPG) region, a region
also characterized by pronounced variability in CO2 fluxes3–5.
The variability of carbon uptake in the subpolar North Atlantic
ocean was found to be largely related to variations of the North
Atlantic Oscillation (NAO), the Atlantic meridional overturning
circulation (AMOC), sea surface temperature (SST) and
ocean-mixing strength, and all these processes are intrinsically
related3,5–9. The SPG region experienced several abrupt warming
and cooling events in the twentieth century, with SST increasing
or decreasing by more than 1 �C in only a few years10–13. These
changes are related to variations of the NAO and the associated
AMOC, heat transports11,14, SPG circulation and Labrador Sea
convection15,16. The key elements such as AMOC and SST have
been shown to be predictable several years ahead by initialization
of Earth system models (ESMs)10–12,17. However, no such
investigation of predictability has been performed for the CO2

uptake so far. Are variations in the North Atlantic CO2 uptake
represented in decadal prediction simulations with an ESM? And
if so, to what extent is the CO2 uptake predictable?

We address these questions by using the Max Planck Institute-
ESI (MPI-ESM) decadal prediction system18, which includes an
assimilation simulation by nudging observations into the
atmospheric and oceanic components of the ESM (see the
Methods section) and a set of initialized retrospective prediction
simulations (that is, starting from the assimilation run). For
comparison, a set of uninitialized simulations is performed
without any observations nudged. No carbon cycle observations
are used in the assimilation run, so that the ocean biogeochemical
processes perform as a passive component. Such an assimilation
run, including both anthropogenic trends and natural
fluctuations, allows us to investigate the spatial and temporal
variability of the oceanic carbon uptake and its connection to
local and large-scale physical processes. The initialized
retrospective prediction simulations enable us to assess the
predictability of carbon uptake. Here we mainly focus on
interannual and longer timescale and if not stated otherwise use
multi-year and annual mean data set. In this study, we focus on
the SPG region because first it plays a prominent role in the
oceanic carbon budget. Second, both the physical and the
biogeochemical states of the ocean in the SPG region exhibit
pronounced natural variability, which is governed by processes
acting on decadal scales. Third, this region demonstrates robust
predictive skill for the physical fields offering promise for
predictions of the oceanic carbon uptake. Our analysis indicates
that the North Atlantic CO2 uptake shows large spatial and
temporal variations on decadal scale. Furthermore, these
variations are better represented in the initialized simulations
than in the uninitialized simulations. Direct comparison to
observations indicates improved representation of the ocean
surface pCO2 by initialization. We find the potential prediction
skill of the western SPG CO2 uptake until lead time of 4–7 years.
This predictability of CO2 uptake is related to the initialization of
SST and AMOC by observations.

Results
Spatial variations of CO2 flux in the North Atlantic. Spatial
distributions of trends in CO2 flux during the 25 years before the
mid-1990s SPG abrupt warming (that is, from 1970 to 1995)
show a remarkably different pattern between the uninitialized
and assimilation runs (Fig. 1). The oceanic CO2 uptake in the
uninitialized simulations increases at about 0.2 gC m� 2 per year2,

following the increase in atmospheric CO2 due to rising fossil fuel
carbon emissions, with a somewhat larger increase in the eastern
part of the North Atlantic. The CO2 flux in the assimilation run
does not increase uniformly in the North Atlantic; the largest
increase is found in the western SPG region (Fig. 1b), and
decreasing trends are found in the eastern SPG region. A zonal
dipole distribution in delta pCO2 anomalies was also found in a
previous study based on the simulations with an ocean only
model6. This dipole trend pattern of CO2 uptake can be attributed
to the NAO-related western–eastern heat loss gradient19 and the
related ocean-mixing strength changes (Supplementary Fig. 1 and
Supplementary Note 1). Regarding the mid-1990s warming,
further decomposition of the SPG region by a previous study20

suggests a longer predictive skill in the western SPG region, which
involves AMOC and meridional heat transport changes in
response to persistent positive NAO phase from 1988 to 1995,
and a shorter predictive skill in the eastern SPG region, which
involves gyre circulation adjustment in response to NAO phase
switch from positive to negative in 1995. Here we focus on the
western SPG region with the largest trend of CO2 uptake and with
longer prediction skill of the ocean physical state.

Temporal evolution of CO2 uptake and related processes. To
further explore the temporal variability of the oceanic carbon
uptake and how it is related to prominent local hydrodynamic
processes in the SPG region, we compare the CO2 flux calculated
in the assimilation run with the observed NAO index21, observed
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Figure 1 | Trends of annual mean CO2 flux into the ocean from 1970 to

1995. Ensemble mean of uninitialized simulations (a) and assimilation

simulation (b) (units: gC m� 2 per year2). The trends are calculated based

on linear regression. The dots show grid points where the trends are

significant at 95% level, based on a two-sided t-test. The green box in a

denotes the SPG region where the mid-1990s abrupt warming occurred11,

and the green box in b denotes the western SPG region where the CO2 flux

increases the most.
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SST22 and mixed layer depth (MLD) in the assimilation run
(Fig. 2). The western SPG MLD and CO2 flux from our model
results are highly correlated (with a correlation coefficient of
0.78), and both are highly correlated (with correlation coefficients
of 0.69 and 0.56, respectively) with the observed December–
January–February–March (DJFM) NAO index. The correlations
are significantly different from zero with P values below 0.01.
Consistent with previous model studies6, the close connection
between the NAO and the North Atlantic CO2 uptake at
interannual and decadal timescales is also reproduced in the
assimilation run. On the one hand, the heat loss related to a
positive NAO leads to an enhancement of the ocean mixing and
deep-water formation in the North Atlantic19; this is indicated by
the relatively high correlation (0.69) between NAO and MLD.
Moreover, the SST anomalies in the SPG region with deep
convection recur from winter to winter through a re-emergence
process23,24, which works as follows. The winter thermal
anomalies related to positive NAO remain at depth below the
shallow summer mixed layer, these anomalies persist through
summer and are partially re-entrained into the following winter
mixed layer. On the other hand, the North Atlantic atmospheric
circulation changes can also affect CO2 uptake through the
associated changes in AMOC and the corresponding meridional
heat transport changes. Enhanced northward heat transport leads
to increased SST thereby affecting the oceanic carbon uptake in
the SPG. These processes lag the NAO changes by several years14.
Accordingly, given all the processes, the correlation between CO2

flux and SST is not significant in our simulations.

Potential predictive skill of CO2 flux and SST. The state-of-the-
art decadal prediction systems consistently identify the North
Atlantic as a key region with pronounced forecast skill for
different parameters of the climate system25–31. Several abrupt
climate events in the twentieth century have been shown to be
predictable several years ahead10–13. The SPG abrupt warming
and cooling events are also well captured in our initialized

simulations, whereas the uninitialized simulations only capture
the long-term warming trend and display large spread among
ensemble members (Supplementary Fig. 2 and Supplementary
Note 2). Given the robust predictive skill of the physical state of
the ocean, can variations in the North Atlantic CO2 uptake be
predicted as well? A previous study explored multi-year
predictability of tropical marine productivity and found a
predictive skill of 3 years, whereas the predictive skill of SST
there is only 1 year32. In our analysis, as indicated by the
initialized time series at different lead times (Supplementary
Fig. 3 and Supplementary Note 3), the variability of CO2 flux,
which is absent in the uninitialized simulations, can be
reproduced by the model with initialization several years in
advance and implies predictability of CO2 uptake.

Owing to lack of observational data, we first use model fields
calculated in the assimilation run as a proxy to quantify the
potential predictive skill of SST and of the CO2 flux into the ocean
(Fig. 3, see the Methods section). The correlation coefficients of
the initialized 4-year mean SST exceed the uninitialized
correlations for lead times of 1–4 and 2–5 years. The correlation
goes down in the intermediate lead time, however, it recovers
from a lead time of 5–8 years. The results suggest improved
potential predictive skills of the background ocean physical fields.
The correlation coefficient of initialized CO2 flux is significantly
higher than the uninitialized correlation until a lead time of
4–7 years. The P values are lower than 0.05 until the lead time of
4–7 years suggesting significant improvement of potential
predictive skill due to initialization of the physical states
constrained by observations.

Further investigation of the potential predictive skill with
seasonal and monthly time series (Fig. 3c,d) reveals that the high
predictive skill of CO2 flux in the initialized simulations is mainly
maintained during winter months. This is related to the seasonal
shift of processes in regulating the CO2 uptake and the fact of
assimilation for the decadal prediction system. In winter,
the CO2 uptake in western SPG region is regulated primarily by
physical process such as the ocean-mixing strength and ocean
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Figure 2 | Normalized time series of CO2 flux and related physical variables. The observed (Obs.) DJFM NAO21, observed JFM SST22 in SPG region,

western SPG (WSPG) MLD and CO2 flux calculated with the assimilation run are shown with black solid line, black dashed line, blue solid line and red solid

line, respectively. The location of SPG and WSPG refers to green box in Fig. 1a,b, respectively. The correlation (Cor.) coefficients between time series and

NAO (CO2 flux) are shown on the top (bottom) of the figure. The normalized time series are calculated by dividing individual variable anomalies with their

respective standard deviation.
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circulation33–35. The variations of ocean physical fields are well
represented in the initialized simulations, as the corresponding
initial states are constrained by observations through assimilation.
However, in spring and early summer, when the ocean warms,
the biological primary production draws down seawater pCO2

and regulates the oceanic CO2 uptake in the western SPG
region33–35; the correlation of the initialized simulations goes
down from May, as no ocean biological observations are
assimilated into the system.

We further explore possible causes of the potential predictive
skill of CO2 uptake in comparison with that of the SST and MLD
(Fig. 3d). The SST correlations peak in December and go down
from late winter, which is coherent with that of the MLD and the
CO2 uptake. It suggests that both the evolution of the ocean
thermal state and the local mixing strength contribute to the
predictive skill of CO2 uptake in winter. Although the correlation
skill of MLD is generally lower than that of CO2 uptake, both
share similar seasonal cycle of predictive skill, indicating effects of
MLD changes in maintaining the predictive skill of CO2 uptake.
Moreover, the potential predictive skill of CO2 uptake is related to

the AMOC variability. As revealed by previous studies, the
predictive skill of SPG SST is assured by initialization of the
AMOC variability27, and the AMOC shows predictive skill up to
4 years17. The potential predictive skill of AMOC in our system is
up to 2–5 years (figure omitted). The AMOC at lead time of
1 year is highly correlated with CO2 flux at lead time of 1 year and
onwards (Supplementary Fig. 4 and Supplementary Note 4).
An observational study also suggested a close connection between
the AMOC and the CO2 uptake in SPG region3.

From these our results suggest that the potential predictive
skill of CO2 uptake in the western SPG is up to 4–7 years.
The predictive skill is mainly attributed to the combination of
improved ocean physical states and circulation variability,
primarily in winter.

Evaluation of model predictions against observations. The
high potential predictability of CO2 uptake provides a basis
for assessing our predictions against observations using the
surface ocean CO2 atlas (SOCAT) measurement36. Although
observational data from SOCAT are sparse in the SPG region,
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Figure 3 | Potential predictive skill of CO2 flux and related physical variables. Correlation skill of ensemble mean of 4-year mean SST (a), 4-year mean

CO2 flux into the ocean (b), seasonally stratified 4-year mean CO2 flux into the ocean (late winter, that is, January–February–March) (c) and monthly

stratified 4-year mean CO2 flux, SST and MLD (d) in the western SPG region. Shown are uninitialized (blue dot in a–c) and initialized (red dots in a–c)

simulations at different lead time verified against assimilation. The correlations are calculated from 4-year mean predictions (that is, years 1–4, 2–5 and so

on) of initialized simulations, and 4-year running mean of the corresponding assimilation and uninitialized time series. To ensure that the number of

validation years is the same for both initialized and uninitialized simulations, we use the common time period from 1967–1970 mean to 2008–2011 mean.

The blue dashed line in a–c extends the uninitialized correlation for easy comparison. The vertical lines in a–c provide 90% confidence intervals based on a

bootstrap approach46. The numbers on the top of the bars in a–c show the P values based on the hypothesis that the difference of correlations between the

initialized and uninitialized simulations is smaller or equal to zero based on 1,000 bootstrapped resamples. The potential predictive skills of monthly

stratified 4-year mean CO2 flux, SST and MLD in d are shown with red, black and blue curves, respectively. Three-month running mean is applied before

monthly correlation estimation in d. The horizontal dashed grey line in d shows the 95% level of significance based on a two-sided t-test. The vertical

dashed grey lines in d are added to better distinguish different lead year results.
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these are the best ocean surface observations we can get for this
region. The ocean surface pCO2 in the SPG region peaks in winter
as a result of the enhanced vertical supply of carbon from the
intermediate waters by deep convection; surface pCO2 values
reach a minimum in summer due to biological draw down33–35

(Fig. 4). The initialized predictions produce ocean surface pCO2

closer to SOCAT observation than the uninitialized simulations
as indicated by the correlations and root mean squared errors.
The correlations of assimilation (0.60) and initialized simulation
at a lead time of 3 years (0.44) are significantly larger than the
correlation of initialized simulation (0.29) at 95% significance
level. The root mean squared error is lower in the assimilation
and initialized simulations than in the uninitialized simulation.
As we use monthly data due to lack of continuous observations,
the better performances of initialized simulations are partially due
to better representation of the seasonal cycle in the initialized
simulations. We further separate the time series seasonally, and
find that in addition to the seasonal cycle there is an
improvement of the initialized run against the uninitialized run
particularly in the winter months when the pCO2 is high. The
root mean squared error of ocean surface pCO2 is much smaller
in the assimilation (7.3 p.p.m.) and initialized simulations at a

lead time of 3 years (13.0 p.p.m.) than in the uninitialized
simulations (24.0 p.p.m.; Fig. 4b). The coherences between model
simulations and observations are generally lower in spring
months (Fig. 4c). The improvement of prediction in individual
seasons further demonstrates that the interannual variations of
oceanic carbon cycle are improved in the initialized simulations.
The higher correlations between SOCAT and initialized
simulations and the lower root mean squared error of the
initialized simulations against SOCAT confirm that the oceanic
carbon cycle can be predicted several years ahead by initialization
of the ESM (Supplementary Fig. 5 and Supplementary Note 5).
However, owing to temporal and spatial gaps in observations, the
precise prediction skill with respect to observations cannot be
estimated. Comparison of simulations against SOCAT
observations only confirm that prediction of the state of the
oceanic carbon cycle is improved by initialization of the physical
ocean state with observations.

Discussion
We have focused here on the impacts of the ocean physical state
on the variability and predictability of the North Atlantic CO2
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Figure 4 | Observed and model simulated monthly mean ocean surface pCO2 in western SPG region. (a) All season time series, (b) only

January–February–March are shown and (c) only April–May–June are shown. The SOCAT observations36 are shown with grey bars, and model output

of assimilation, uninitialized simulations and initialized simulations at a lead time of 3 years (yr3) are shown in black, blue and red dots, respectively.

The grey dashed lines connect outlier dots with the grey bars to make the comparison clearer. The numbers in legend are correlation coefficients and root

mean squared error (in brackets) between model simulations and SOCAT observations. For the all season time series in a the correlations of the

assimilation and initialized simulations at lead time of 3 years are significantly larger than that of the uninitialized simulations at 95% significant level based

on a bootstrap test. Note the SOCAT observational data are not continuously distributed in space and time; the model simulations are averaged over the

grid points where SOCAT data are available.
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uptake. The drawdown of pCO2 by biological processes such as
carbon fixation during seasonal phytoplankton growth, with
consequent export of carbon into the deep ocean is also critical
for the air–sea carbon exchange in the nutrient-rich SPG
region37. These marine biogeochemical processes themselves are
influenced by variability in climate and circulation. For instance,
an increase in ocean temperature leads to a decrease of CO2

uptake through decrease in solubility. Biological production starts
in spring when the ocean warms up. This draws down the ocean
surface pCO2 and enhances CO2 uptake. However, the growth of
phytoplankton in the North Atlantic is more limited by nutrient
supply than by temperature. The nutrient supply, in turn, is
constrained by the enhanced thermal stratification associated
with the ocean warming, thus resulting in a decrease of primary
production38. Therefore, while the biological CO2 drawdown
regulates the seasonal cycle of CO2 flux, the physical regulation is
more important for interannual and decadal variations of CO2

flux in the SPG region39. Our findings show that there is an
improved representation of the oceanic carbon flux because the
background oceanic circulation and thermal state are well
reproduced. Physical processes such as the ocean thermal state,
local mixing and large-scale circulation contribute to the
predictability of CO2 uptake. It requires further large ensembles
of multi-model decadal prediction simulations and sensitivity
experiments to disentangle the relative role of an individual
physical mechanism on the predictability of CO2 uptake.

We find that beside the trend due to CO2 emissions,
predictions of the oceanic uptake and storage of carbon show
considerable decadal variations that are not fully captured in the
uninitialized simulations with modern ESMs. We demonstrate
that variations in the oceanic carbon cycle can be predicted
several years ahead. Hence, predictions of the North Atlantic
carbon sink considering both anthropogenic change and natural
fluctuations are important to understand the evolution of climate
and ocean acidification and to reduce uncertainties in CO2 uptake
estimates. Predictions of the oceanic carbon sink are also
necessary to provide information to monitoring programs aimed
at the present and future oceanic carbon sink.

Methods
Model description. We use the MPI-ESM40 to conduct historical (uninitialized)
experiments and retrospective decadal prediction (initialized) experiments for the
period 1961–2013. A low-resolution configuration (MPI-ESM-LR) is used with the
resolution of the ocean model being 1.5� on average with 40 vertical levels. The
ocean component of MPI-ESM-LR use bipolar configuration, with one pole over
Greenland and another over Antarctica, so the resolution in the North Atlantic
SPG region is from B20 km in the north (65� N) to B70 km in the south (45� N).
MPI-ESM-LR is capable of producing North Atlantic deep convection confined to
the Labrador Sea, which is close to observation41. The ocean biogeochemistry
component of MPI-ESM is represented by the Hamburg Ocean Carbon Cycle
Model (HAMOCC)42.

Numerical simulations. An ensemble of 10 uninitialized historical simulations
and RCP4.5 scenario simulations is performed for the periods 1850–2005
and 2006–2013, respectively. The uninitialized experiments are started from a
preindustrial control simulation and forced with historical greenhouse gas and
aerosol concentrations together with solar variability and volcanic eruptions. The
initial conditions of the uninitialized run ensemble members differ based on the
preindustrial control simulation starting from every 50 years. On the basis of an
assimilation run, an ensemble of 10 initialized simulations is started on 1 January
in every year over the period 1960–2012. The ensemble members of the initialized
simulations are generated with lagged 1-day initialization, that is, the runs start
from 10 consecutive days centred on 1 January. Each initialized simulation
has a length of 10 years18. The assimilation experiment is also performed with
MPI-ESM-LR. For the oceanic component, monthly temperature and salinity
anomalies from the ECMWF ocean reanalysis system 4 (ORAS4)43 are added to the
model climatology and nudged into the model state at every time step. For the
atmospheric component, globally full-field temperature, vorticity, divergence and
surface pressure data from the ECMWF ERA4044 and ERA-Interim45 reanalyses
are nudged.

Predictive skill assessment. We mainly show ensemble mean results in this
study. For the uninitialized experiments, the anomalies are calculated by removing
the climatology of the ensemble mean. For the initialized experiments, the
anomalies are calculated in terms of the climatology of the ensemble member and
the lead time. The observed temporal evolution of the DJFM NAO index (station
based)21 and the SST22 in SPG is investigated together with the mixing and CO2

flux around the SPG region in the assimilation run. We use the fields in the
assimilation run as a proxy to quantify the historical variability and to estimate the
potential predictive skill of CO2 uptake. The potential predictions are verified with
skill scores based on anomaly correlation coefficients against the assimilation run.
As short-term/small-scale variability may add noise and hence reduce predictive
skill, temporal and spatial averaging was recommended46 and has been used in
most decadal prediction studies25,31,47. A set of 4-year mean (that is, 1–4, 2–5, y,
7–10 years) predictions is verified in this study against corresponding running
mean of the assimilation and uninitialized simulations.

Bootstrap approach for significance test. Statistical tests and confidence
intervals of the correlations in Figs 3 and 4 are calculated through a bootstrapping
approach46. The resampling scheme considers uncertainty arising from both
ensemble size and hindcast period. A block size of 2 is used to account for
autocorrelation in the SOCAT time series (Fig. 4). Note that the significance of
correlation differences in Fig. 3 remains unaltered for the same block size.

Conversion of ocean surface CO2 observation data. The gridded observations of
the SOCAT36 surface ocean fugacity of CO2 (fCO2) from 2002 to 2011 are used to
verify model simulations. The fugacity is converted to partial pressure48. As
observational data are not continuously distributed in space and time, for the
model evaluation presented in Fig. 4 and Supplementary Fig. 5 we only consider
those model grid points where SOCAT data are available.

Code availability. The MPI-ESM model is freely available to the scientific
community. The code can be accessed with a license agreement on the Max Planck
Institute for Meteorology model distribution website: http://www.mpimet.mpg.de/
en/science/models/license/
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