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A B S T R A C T   

Background: Incomplete data analysis continues to be a major issue for non-inferiority clinical trials. Due to the 
steadily increasing use of non-inferiority study design, we believe this topic deserves an immediate attention. 
Methods: We evaluated the performance of various strategies, including complete case analysis and various 
imputations techniques for handling incomplete non-inferiority clinical trials when outcome of interest is dif-
ference between binomial proportions. Non-inferiority of a new treatment was determined using a fixed margin 
approach with 95-95% confidence interval method. The methods used to construct the confidence intervals were 
compared as well and included: Wald, Farrington-Manning and Newcombe methods. 
Results: We found that worst-case and best-case scenario imputation methods should not be used for analysis of 
incomplete data in non-inferiority trial design, since such methods seriously inflate type-I error rates and produce 
biased estimates. In addition, we report conditions under which complete case analysis is an acceptable strategy 
for missing at random missingness mechanism. Importantly, we show how two-stage multiple imputation could 
be successfully applied for incomplete data that follow missing not at random patterns, and thus result in 
controlled type-I error rates and unbiased estimates. 
Conclusion: This thorough simulation study provides a road map for the analysis of incomplete data in non- 
inferiority clinical trials for different types of missingness. We believe that the results reported in this paper 
could serve practitioners who encounter missing data problems in their non-inferiority clinical trials.   

1. Introduction 

Non-inferiority (NI) clinical trials seek to show that efficacy of a new 
treatment is not considerably worse than that of a standard treatment 
[1]. Such minimally clinically acceptable deviation is called margin. 
While a portion of a standard treatment effect may be lost by a 
non-inferior agent, it offers other benefits, such as less severe adverse 
events, improved drug adherence and/or lower costs [2]. An NI trial 
design is considered when the use of placebo is unethical, as delaying 
treatment with a standard care would cause irreversible health damage 
or death [1,3]. 

As most clinical trials, NI trials are prone to have incomplete data, 
which if not properly analyzed might lead to bias in study results [4]. 
The importance of avoiding missing data, and performing appropriate 
analysis of incomplete data in clinical trials has been extensively dis-
cussed [5–9]. However, the missing data topic received a little attention 
with respect to NI trials [10–12]. Only a few simulation studies were 
conducted to assess impact of different analysis strategies for NI trials 

[12–14]. Moreover, the lack of deliberation around the missing data 
problem is evident in the published NI trials. Rehal et al. [15] reported 
that over 50% of reviewed NI trials didn’t mention any imputation 
methods used in the statistical analysis. Similarly Rabe et al. [16], 
showed that 50% of the reviewed NI and equivalence articles used 
complete case analysis (CCA), a method that is generally known to 
produce biased results [4]. 

One of the principled approaches that can be used for a proper 
analysis of incomplete data is multiple imputation (MI) [17]. In this 
paper we evaluate the performance of two-stage MI, an extension of a 
conventional MI method [18–20] along with CCA and best/worst-case 
imputation methods for analysis of incomplete NI data. Specifically, 
we focus on NI trials assessing difference between binomial proportions, 
a commonly used outcome of interest [16]. In-line with FDA’s recom-
mendation to use confidence intervals (CIs) to test NI [1], we consider 
the following commonly used methods for a straightforward construc-
tion of CI for a difference between binomial proportions: 
Wilson-Newcombe (WN) [26] Farrington and Manning (FM) [25], and 
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Wald [21]. Following a thorough simulation study while implementing 
different missingness mechanisms [4,22], we provide recommendations 
regarding the above incomplete data analysis strategies. 

According to the recent “Estimands and Sensitivity Analysis in 
Clinical Trials” (ICH E9(R1)) guideline, handling of the intercurrent 
events, such as treatment discontinuation is embedded in the estimand’s 
description [23]. Specifically, the guideline states that occurrence of the 
intercurrent events in the NI trials using treatment policy strategy might 
falsely contribute to apparent similarities between the treatment groups, 
and therefore requires a “careful reflection” [23]. We believe that, our 
work provides a useful road map regarding a proper handling of 
incomplete data for NI trials, and thus could be helpful in addressing the 
above regulatory warning. 

In Section 2, we introduce CI methods mentioned above, the general 
missing data framework, and two-stage MI strategy. In Section 3, we 
present the simulation set-up, followed by the results in Section 4, and 
conclusions in Section 5. 

2. Methods 

2.1. Confidence intervals for difference between proportions 

Let’s assume that the primary endpoint in our trial is a difference 
between proportions of favorable events in control (C) and new treat-
ment (T) groups. Let Yij � BernoullliðpiÞ be an event indicator for subject 
j; ðj ¼ 1;…; niÞ in treatment group i ði ¼ C; TÞ, where ni is the total 
number of subjects in group i and Yij ¼ 1 means that the subject expe-
rienced a favorable event. If pi is a true proportion of favorable events in 
group i, and the acceptable margin is Δ then the hypothesis of interest 
has the following form: 

H0 : pC � pT � Δ vs H1 : pC � pT < Δ : (1) 

We assume that the fixed margin approach is used for the above 
hypothesis testing, i.e., the margin is specified based on the relevant 
historical data prior to the current NI trial [1,24]. Further, we assume 
that H0 in (1) is rejected at the pre-specified α level if the upper bound of 
the 100ð1 � αÞ% CI for pC � pT is below Δ [1]. 

Using a maximum likelihood approach, the proportions of favorable 
events in each treatment group are estimated by the average number of 
events in each group, and are denoted as bpC and bpT. Let zα=2 be the upper 
α=2 quantile of a standard normal distribution, the approximate 
100ð1 � αÞ% CI for pT � pC using Wald method has the following form: 

bpC � bpT � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bpTð1 � bpTÞ

NT
þ
bpCð1 � bpCÞ

NC

s

: (2) 

FM method has a similar form to that of Wald’s CI, with only dif-
ference at the variance term estimation, where ~pC; ~pT are maximum 
likelihood estimates of pC; pT respectively under the restriction of the 
null hypothesis in (1) [25]: 

bpC � bpT � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~pTð1 � ~pTÞ

NT
þ

~pCð1 � ~pCÞ

NC
:

s

(3) 

Finally, WN method is based on the Wilson’s score method for a 
single proportion [26,27]. Let L;U be a lower and an upper 100ð1 � αÞ% 
CI bounds for pC � pT respectively, defined as: 

L¼ bpC � bpT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbpC � lCÞ2 þ ðuT � bpTÞ
2

q

; (4)  

U¼ bpC � bpT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuC � bpCÞ
2
þ ðbpT � lTÞ2

q

; (5)  

where 

½lC; uC� ¼

 

bpC þ
z2

α=2

2NC
� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpCð1 � bpCÞ

NC
þ

z2
α

4N2
C

s !, 

1þ
z2

α=2
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!

; (6)  

½lT ; uT � ¼

 

bpT þ
z2

α=2

2NT
� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bpTð1 � bpTÞ

NT
þ

z2
α

4N2
T

s !, 

1þ
z2

α=2

NT

!

: (7)  

2.2. Missing data framework 

2.2.1. Missing data assumptions 
A common framework for missing data is based on the following 

missingness mechanisms: missing completely at random (MCAR), 
missing at random (MAR), and missing not at random (MNAR) [4,22]. 
MCAR essentially means that the missing values in the study are 
completely random, and independent of the data observed or not 
observed in the study, MAR implies that the missing values depend on 
observed data, and MNAR means that the missing values depend on 
unobserved data. Since MCAR is unlikely to hold in clinical trials [9], 
analysis based on this assumption should be avoided. In addition to 
missingness mechanism, distinctness between data model parameters 
and parameter involved in generation of missing values plays a central 
role in incomplete data analysis. For the likelihood- and Bayes-based 
inferences, ignorability is the weakest, most general condition which 
allows ignoring the missingness model. It is characterized by both MAR 
and distinctness between the parameters mentioned above. As a result, 
non-ignorability holds when at least one of these two assumptions is 
violated. A detailed review of missingness mechanisms, ignorability, 
and the relation between these could be found elsewhere [19,28,29]. For 
simplicity, in this paper we will use MAR/ignorabile and 
MNAR/non-ignorabile terms interchangeably. 

2.2.2. Missing data methodology 
MI could be applied for any type of missingness structure, including 

MNAR. A detailed review and implementation of MI could be found 
elsewhere [28,30]. When data are MNAR, a missingness model needs to 
be specified. In practice, an exact specification of such model is difficult, 
if not impossible, as it relies on a set of unverifiable assumptions. Thus, 
the imputation model could be considered missing, and be multiply 
imputed together with subject level data using two-stage MI [19,20]. 
This approach allows to incorporate uncertainty associated with both, 
choice of the imputation model, and imputed subject level data into the 
final inference using simple arithmetic combination rules [18–20,31]. 

It is well known that while CCA generates unbiased estimates under 
MCAR, it is generally not the case for MAR [4]. Conventional MI on 
other hand produces unbiased results under both MCAR and MAR [4], 
and therefore is usually recommended over CCA. Despite this, there are 
still certain conditions under which CCA would result in unbiased esti-
mates under MAR and therefore could be safely used [32]. The advan-
tage of conventional MI over CCA for NI trials assessing difference 
between binomial proportions under MAR was previously shown in 
terms of unbiasedness and control of the type-I error [13]. The authors, 
however, did not evaluate cases in which CCA provides unbiased esti-
mates for the treatment effect. Therefore, we explore such conditions 
here. In addition, conventional MI may result in biased estimates under 
MNAR, unless, relevant auxiliary variables are included in the imputa-
tion model [33,34]. The inflation of type-I error for NI trials under 
MNAR, when analyzed with conventional MI was reported in [13]. To 
resolve the issue of type-I error inflation, and consequently treatment 
effect bias for NI trials under MNAR, we proposed to use the two-stage 
MI procedure described in the following section. 

2.3. Two-stage multiple imputation 

If, for example, we knew that the event probability of missing values 
is 10% greater than the event probability in the observed values, then we 
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could easily specify an imputation model to account for that. The 
imputation model could be based on a simple transformation of ignor-
able imputed values to non-ignorable ones using a multiplier k [17]. 
More specifically we can adjust ignorable imputed probability of event 
(bpign), to a non-ingorable imputed probability of event (bpnonign) as fol-
lows: bpnonign

¼ k*bpign. Unfortunately, in practice it is almost impossible 
to make a statement similar to the above 10% example, and conse-
quently set up one particular value of k with an absolute confidence. 
Therefore, following previous work by Siddique et al. [19,20] we sug-
gest to specify a distribution for k, which corresponds to the imputation 
model distribution. 

In practice, the imputation model distribution needs to be specified 
by either a study team, or by experts who collected the data. Such dis-
tribution represents the study team’s belief regarding the magnitude of 
the bias in the observed rate in treatment group i and their confidence in 
this belief. These two values represent the center of the missingness 
model distribution (μki) and its variance (σ2

ki), respectively. For example, 
if the team believes the study participants were more likely to drop-out 
due to lack of efficacy in the new treatment, then the team will antici-
pate that the observed rate in the new treatment is greater than the 
actual rate. As a result, μkT below 1 will be chosen, so that the ignorably 
imputed rate is closer to it’s true value. If for the same study the team 
believes the observed rate in the control treatment is unbiased, then 
μkC ¼ 1 would represent such belief. As a result, there is a separate 
imputation model distribution for each treatment group: kC � NðμkC;

σkCÞ and kT � NðμkT; σkTÞ for control and new treatment, respectively. 
We chose to use normality assumption on the ki distributions for 
simplicity. Other distributions can easily replace the normal 
distribution. 

After the imputation model distribution is specified, we can 
randomly draw M models from it. Within each of the imputed models, 
patient level data can be imputed D times, resulting in M� D complete 
datasets. Each of these complete datasets is then analyzed using a 
standard statistical method, such as methods presented in the previous 
sections. Results from the M� D analyses are then combined using 
nested imputation combination rules [18] described in the next section. 

2.4. Two-stage multiple imputation combination rules 

In order to introduce two-stage imputation rules, a notation close to 
that of Siddique et al. [18,20] is used. Let Q be a quantity of interest, that 
approximately follows Normal distribution for a completely observed 
data, i.e., ðQ � bQÞ � Nð0;UÞ, where bQ is a complete data statistic esti-
mating Q, and U is a complete data statistic for the variance of Q � bQ. 
The M� D imputations mentioned above correspond to M� D 

completed datasets, where 
�
bQ
ðm;dÞ

;Uðm;dÞ
�

represent estimate and vari-

ance of Q, respectively from a dth imputed datasets under model m (m ¼
1;…;M; d ¼ 1;…;D). 

Let Q be the overall mean of the M� D estimates: 

Q ¼ 1
MD
PM

m¼1
PD

d¼1
bQ
ðm;dÞ

, and let Qm be the mean of the estimated from 

the mth model: Qm ¼
1
D
PD

d¼1
bQ
ðm;dÞ

. 
Also, let U;W;B be the three sources of variability, defined as the 

overall mean of the associated variance estimates, within-model and 
between model variance terms respectively. Specifically: 

U ¼
1

MD
XM

m¼1

XD

d¼1
Uðm;dÞ ;

W ¼
1

MðD � 1Þ
XM

m¼1

XD

d¼1

�

bQ
ðm;dÞ
� Qm

�2

;

B¼
1

M � 1
X

m¼1

M

ðQm � QÞ2 :

Finally, the total variance of Q � bQ has the following form: 

Tvar ¼ Uþ
�

1þ 1
M

�

Bþ
�

1 � 1
D

�

W. The final inferences of the multiple 

imputed data are based on Student’s t distribution Tvar1
2ðQ � QÞ � tν, 

where ν is degrees of freedom, defined as: 

ν� 1 ¼

2

6
6
4

�

1þ 1
M

�

B

Tvar

3

7
7
5

2

1
M � 1

þ

2

6
6
4

�

1 � 1
D

�

W

Tvar

3

7
7
5

2

1
MðD � 1Þ

:

To implement the above procedure, we set bQ
ðm;dÞ

¼ bpðm;dÞ, where 
bpðm;dÞ is the estimated proportion of difference between control and new 
treatment from nth imputation and mth model. For Wald, and FM, the 
value of Uðm;dÞ was set to the corresponding variance term used in the 
method as presented under the square root in (2) and (3). For WN, Q for 
each treatment group was plugged into (4–7). 

3. Simulations 

3.1. Simulation of fully observed data 

In total 30 NI clinical trials scenarios were considered. The pC values 
were set to the range between 0.6 and 0.95 by increments of 0.05. The Δ 
values were set to: 0.05, 0.075, 0.1, 0.15 and 0.2. All possible combi-
nations of the above margins ðΔÞ and probabilities ðpCÞ were used, 
excluding cases where margin was greater or equal to the corresponding 
failure rate ð1 � pCÞ. A margin equal to the corresponding failure rate 
would mean that the usage of a new treatment doubles a failure rate of 
the treated condition. Therefore, a margin greater or equal to the cor-
responding failure rate, was redefined as half of the original margin. Due 
to the high volume of the results, we present here only 9 of the 30 
scenarios (unless stated otherwise), which are representative of the rest 
of the results. In addition, we assumed a one-sided type-I error of 2.5%, 
power of 90%, and 1:1 group allocation ratio. 

Since different methods for comparison of binomial proportions 
might require different sample sizes [35], sample sizes were calculated 
for each method separately using above scenarios assumptions. For 
Wald and FM methods, the sample size calculations were performed by 
inversion of the corresponding CI formulas [35], while sample sizes for 
WN were estimated based on 5000 simulations. As a result the sample 
size per arm ðnÞranged between 98 and 2017 patients. 

The outcome variable Y (subscripts are omitted for simplicity) was 
simulated for each subject using a logistic function of treatment (T ¼ 0 
for control treatment, T ¼ 1 for the new treatment) and two continuous 
baseline covariates (X1; X2) as follows: 

PðY ¼ 1Þ¼
�
1þ e� ðαyþβ1*X1ijþβ2*X2ijþβTout*TijÞ

�� 1
: (8) 

Further details regarding parameters setting in the above model are 
provided in the supplemental material. The total number of simulated 
trials per scenario and method under each hypothesis was set to 10,000 
repetitions. 

3.2. Simulation of incomplete data 

Let Rij be a missing indicator variable for outcome Yij, such that Rij ¼

1 indicates that the outcome for patient j in group i is missing while Rij ¼

0 means that the outcome for that patient is observed. Upon a generation 
of the complete datasets, the missing outcome values were imposed 
using the following logistic function (subscripts are omitted for 
simplicity): 
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PðR¼ 1Þ¼
�
1þ e� ðαþβT *TþβY *YþβTY *T*YþβX2 *X2Þ

�� 1
: (9) 

Parameters βT ; βY ; βTY ; βX2 
represent effects of treatment group, 

outcome, treatment group by outcome interaction and baseline covari-
ate X2 on missingness, respectively. In order to impose a specific miss-
ingness mechanism (MCAR, MAR and MNAR), different parameter 
values were used. The overall drop-out rates were set to 5%;10%; 15% 
and 20%. The 20% drop-out rate was chosen as an upper bound, because 
86% of NI and equivalence trials with incomplete data reported to have 
drop-out rates of up to 20% [16]. 

For MCAR, all model parameters but α were set to 0 (α ¼ �

log
�

1
DO � 1

�

, DO is a target drop-out rate). For MAR, βX2 
was set to 

βX2
¼ 1:5, while βT ranged between � 0.9 and 0.9 in order to assess 

unbalanced levels of drop-out rates of 5–15% between the treatment 
groups. MNAR was set up to implement scenarios where dropping out of 
the study is associated with either lack of efficacy in the new treatment 
or with overwhelming efficacy in the control treatment, therefore both 
βY ; βTY were set to non-zero values as follows: i) βY ¼ � 0:4; βTY ¼ 2 for 
MNAR due to lack of efficacy in the new treatment; ii) βY ¼ � 0:8; βTY ¼

� 2 for MNAR due to overwhelming efficacy in the control treatment. 
These two conditions were considered for MNAR, as both would lead to 
the observed difference between the treatments to appear smaller than it 
actually is, which leads to an incorrect study conclusion. 

3.3. Analysis strategies for incomplete data 

The following analysis strategies were used for the analysis of 
incomplete data: CCA, best-case scenario, worst-case scenario, two-stage 
MI using multiple imputation chained equations (MICE) [36]. 

Both best-case and worst-case scenario strategies were employed 
only for MCAR missingness mechanism. It was expected that these two 
strategies would inflate type-I errors, since they make the two treatment 
groups more alike, which in turn makes it easier to reject the null hy-
pothesis specified in (1). 

For MAR missingness, it was expected, that CCA strategy would lead 
to approximately unbiased estimates of pC and pT [32]. This is due to the 
fact that baseline covariates were balanced and had similar effect on the 
missingness in (9). Thus, it was expected that CCA strategy would result 
with type-I errors that only slightly deviate from the desired level. 

For MNAR missingness, it was expected that single value imputation 
methods, or CCA would produce biased results with inflated type-I error 
rates. Although, conventional MI might produce unbiased estimates 
when relevant auxiliary variables are used [33,34], our simulation 
set-up did not address such situation and therefore we anticipated that 
conventional MI would not be able to provide unbiased estimates for 
MNAR. In order to properly analyze the incomplete data that follow such 
missingness process, we used two-stage MI. Two-stage MI was compared 
to CCA rather than to conventional MI, due to the fact that both CCA and 
conventional MI ought to produce biased estimates, and because CCA is 
an easy and dominant approach in clinical trials. 

As specified in the previous section, two MNAR situations were 
simulated: drop-out due to lack of efficacy in the new treatment and 
drop-out due to overwhelming efficacy in the control treatment. For the 
first situation, it was expected that the observed rate in the new treat-
ment group will be higher than it actually is, while the observed rate in 
the control group will be unbiased, therefore we specified kT �

NðμkT; 0:05Þ where μkT was chosen below 1 and kC � Nð1; 0Þ. On the 
contrary, in the second situation it was expected that the observed rate 
in the control group is lower than it actually is, while the observed rates 
in the new treatment will be unbiased, therefore we set kC � NðμkC;

0:05Þ, where μkC was chosen above 1 and kT � Nð1; 0Þ. 
Similar to Siddique et al. [20]; D was set to 2, and M was set to 100. 

The multiple imputation of the subject level data, within each imputed 
missingness model (randomly drawn values of kT; kC) was performed 

using MICE with the two baseline covariates specified above. We also 
performed sensitivity analysis for k, by specifying different values for 
μkT;μkC, and doubling the standard deviation. 

3.4. Evaluation criteria 

The Wald, FM and WN performances along with analysis strategies 
used to handle missing data were assessed using empirical type-I error, 
empirical power and mean relative bias. Type-I error was estimated by 
the proportion of trials that reject H0 in (1) out of the trials simulated 
under H0 : pC ¼ Δþ pT , and was considered appropriately controlled if 
it fall within ½0:9α; 1:1α� ¼ ½0:0225;0:0275� bounds [37,38]. Power was 
estimated by the proportion of trials that reject H0 in (1) out of the trials 
simulated under H1 : pC ¼ pT . A relative bias was defined under H0 :

pC ¼ Δþ pT as ðbpC � bpT � ΔÞ=Δ per repetition. A result was considered 
unbiased if the mean relative bias fall within ½ � 0:1; 0:1� bounds. The 
negative bias implies that the new treatment (T) is worse than it appears, 
thus a non-inferiority of the new treatment may be incorrectly inferred. 

The simulations were run using the R-package nibinom we devel-
oped. The package with additional code to reproduce the presented re-
sults are available here: https://github.com/yuliasidi/nibinom_apply. 

4. Results 

4.1. Missing completely at random 

For MCAR, we present results for overall drop-out rate of 20%, as 
these are representative for lower drop-out rates. Also, since the three 
methods showed very similar results, only Wald method is presented for 
MCAR. As can be seen in Table 1, worst-case scenario imputation 
strategy produced inflated type-I error rates that were more than double 
of the completely observed data, along with significantly biased esti-
mates. On contrary, CCA produced unbiased estimates with type-I errors 
being either within the pre-specified range or very close to it. 

Due to the significant inflation of type-I error for worst-case impu-
tation method, empirical power was calculated for CCA strategy only. As 
expected the power is decreasing with higher drop-out rates, dropping to 
81.5% (see supplemental materials). Results for best-case scenario 
imputation were very similar to the worst-case scenario and are, 
therefore, omitted. 

4.2. Missing at random 

Empirical type-I errors under MAR assumption, analyzed using CCA 
for balanced drop-out rates were well controlled in most scenarios by the 
three methods (Fig. 1). In addition, this strategy resulted in unbiased 
estimates, while the empirical power went down to 81.7% (see supple-
mental materials). For unbalanced drop-out rates, as expected, CCA 
showed slight deviations from the desired level of the type-I error. The 
largest empirical type-I error was equal to 0.0419 for overall drop-out 
rate of 20%, when the drop-out rates between the treatment groups 

Table 1 
Empirical type-I errors and mean relative bias for MCAR, DO ¼ 20%, worst-case 
imputation scenario and CCA strategies, Wald method.   

Type-I Bias 

pC  Δ  Full Worst CCA Worst CCA 
0.65 0.05 0.026 0.103 0.029 � 0.214 � 0.019 
0.65 0.10 0.027 0.093 0.028 � 0.210 � 0.016 
0.65 0.15 0.025 0.090 0.026 � 0.211 � 0.015 
0.75 0.05 0.025 0.079 0.026 � 0.201 � 0.002 
0.75 0.10 0.026 0.087 0.029 � 0.205 � 0.004 
0.75 0.15 0.023 0.084 0.025 � 0.209 � 0.009 
0.80 0.15 0.024 0.074 0.026 � 0.212 � 0.011 
0.85 0.05 0.023 0.066 0.024 � 0.194 0.008 
0.85 0.10 0.028 0.067 0.026 � 0.198 0.003  
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differed by 15% (see supplemental materials). Nevertheless, the mean 
relative bias fall within the specified bounds for all of the scenarios, 
methods and drop-out rates (results are not presented). 

4.3. Missing not at random 

Empirical type-I errors rates for incomplete data under MNAR due to 
lack of efficacy in the new treatment were seriously inflated when 
analyzed using CCA (Fig. 2). This was not the case for two-stage MI, 
which produced type-I errors either within the specified bounds or very 

close to them (Fig. 3). In addition, for two-stage MI, WN method has 
shown a less favorable results when compared to Wald and FM. The 
advantage of two-stage MI over CCA is also demonstrated by the mean 
relative bias, with CCA resulting in mean relative bias as large as � 0.897 
for drop-out rate of 20% when using Wald method (Table 2). The cor-
responding mean relative bias results for the other two methods were 
similar to Wald and, therefore are omitted. Furthermore, while the mean 
relative bias was of a smaller magnitude for lower drop-out rates, CCA 
still resulted in biased estimates in most cases, while two-stage MI 
showed unbiased estimates (results not shown). The empirical power 
based on the two-stage MI was below the desired level of 0.9 with lowest 
rate of 65.8% for overall drop-out rate of 20%. This is not surprising due 
to variability introduced through the MI procedure (see supplemental 
materials). Results from MNAR due to overwhelming efficacy in the 
control treatment were similar in terms of type-I errors, bias and power 
to the MNAR due to lack of efficacy in the new treatment (see supple-
mental material). 

In Fig. 4, we present sensitivity analysis for the choice of distribution 
of imputation models specified by multiplier kT. Although type-I error 
rates are affected by the choice of the imputation model distribution, in 
all the cases the type-I errors are much smaller than the one observed for 
CCA strategy (solid black horizontal line). 

Fig. 1. Empirical type-I error CCA strategy for MAR: drop-out rates are 
balanced between the treatment groups. 

Fig. 2. Empirical type-I errors, CCA strategy for MNAR due to lack of efficacy 
in T. 

Fig. 3. Empirical type-I errors, two-stage MI strategy via MICE for MNAR due 
to lack of efficacy T. 

Table 2 
Mean relative bias for MNAR due to lack of efficacy in T, DO ¼ 20%, CCA and 
two-stage MI strategies, Wald method.  

pC  Δ  CCA MI 

0.65 0.05 � 0.897 � 0.032 
0.65 0.10 � 0.453 0.015 
0.65 0.15 � 0.300 0.022 
0.75 0.05 � 0.852 � 0.038 
0.75 0.10 � 0.458 0.000 
0.75 0.15 � 0.319 0.055 
0.80 0.15 � 0.328 0.019 
0.85 0.05 � 0.709 � 0.068 
0.85 0.10 � 0.422 � 0.001  
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5. Conclusion 

Our work presents a thorough simulation study that assesses 
different strategies for analysis of incomplete data, when NI design is 
employed and the outcome of interest is a difference between binomial 
proportions. We evaluated three commonly used methods for con-
struction of confidence intervals for the difference between binomial 
proportions: Wald, WN and FM. 

We found that both best-case and worst-case imputation strategies 
perform poorly even when the incomplete data follows MCAR. This is 
due to the fact that by treating incomplete cases similarly for both 
treatment groups, we make the estimated proportions similar, which 
leads to erroneous conclusion of NI. According to Rabe et al. [16]; 28% 
of the reviewed articles that encountered some amount of incomplete 
data in the primary analysis, used single imputation strategy, including 
best/worst-case imputation. The simulation results we present here, 
along with the review results reported by Rabe et al. [16] are concern-
ing. We believe that such imputation strategy should be abounded when 
dealing with an NI analysis. 

Similar to previous work by Barlett et al. [32]; we found that CCA 
performs well when incomplete data follows MAR, and both baseline 
covariates that affect the missingness and the corresponding drop-out 
rates are balanced between treatment arms. In addition, when the 
drop-outs rates were higher in the new treatment, type-I errors might be 
inflated, depending on the scenario. Among cases with unbalanced 
drop-out rates, the highest type-I error rate that was seen is 0.0419% for 
overall drop-out rate of 20% with 15% higher drop-out in the new 
treatment. Considering the levels of inflations seen for MNAR and the 
fact that 0.0419% rate was reached by a relatively extreme missingness 
scenario, we believe that CCA could still be considered as a safe choice 
for MAR incomplete data. It should be noted that, if researchers assume 
that MAR is affected by variables that have different levels between the 
treatment groups, then conventional MI strategy is recommended over 
CCA as suggested in [13]. The importance of the findings for MAR 
presented here, is to demonstrate when CCA could be used and what 
assumptions need to be made in order to have a valid inference. 

Importantly, we demonstrated that while CCA performs poorly for 

incomplete data under MNAR, which is also the case for conventional MI 
[13], two-stage MI strategy produces favorable results. We believe that, 
these results are of great importance for practitioners who encounter 
incomplete data in NI clinical trials. The limitation of this method is the 
specification of the distribution of the multiple imputation model, or the 
multiplier. Nevertheless, according to the sensitivity analysis we per-
formed, it is clear that even if the parameters of the multiplier’s distri-
bution are shifted, the type-I error rates are still substantially lower than 
those seen with CCA strategy. 

The results of the empirical power were in line with our expectation. 
In general, we saw a decrease of empirical power with increasing drop- 
out rates. In terms of the difference between the analysis methods 
considered here, we found that in most cases there was no difference 
between the three. However, when the two-stage MI procedure was 
used, WN performed less favorable than Wald and FM. This could be 
explained by the fact that we used a plug-in method for WN, rather than 
a proper MI combination rules. A method for a proper combination of 
multiple imputed data and analysis of difference between proportions 
using WN is unavailable yet and is of interest for a future research. 

Although, we have looked at a variety of different scenarios, one 
limitation of our work is that it does not cover each possible scenario. 
Therefore, before finalizing statistical analysis plan for an NI trial, re-
searchers should always consider the specific scenario they are dealing 
with. Another limitation of our work is that, we considered moderate to 
large sample sizes. We have not evaluated small sample sizes, which 
might require exact methods, such as the method due to Chan [39]; and 
thus might have different implications when applying MI strategy. In 
addition, only a simple transformation of ignorable to non-ignorable 
imputed values was evaluated for MNAR analysis. A more thorough 
examination of various functional forms of such transformation is of 
interest for future research. 

In summary, we recommend employing the following analyses 
strategies when dealing with incomplete data for NI trials assessing 
difference between binomial proportions: 1) if the incomplete data 
follow MAR and it is reasonable to assume that the missingness is caused 
by balanced baseline covariates only, then CCA could be used, 2) if the 
data are MAR, but the missingness is caused by other unbalanced vari-
ables then following the work by Lipkovich and Weins [13] conven-
tional MI should be used, 3) if MNAR is a more reasonable assumption, 
then two-stage MI should be used, 4) best-case and worst-case imputa-
tion should be avoided. 

We believe that, the above recommendations are useful for practi-
tioners who face incomplete data analysis of NI trials that assess dif-
ference between binomial proportions. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.conctc.2020.100567. 
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