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Abstract

Subcellular

Background: Single-cell RNA sequencing (scRNA-seq) provides new insights to address biological and medical
questions, and it will benefit more from the ultralow input RNA or subcellular sequencing.

Results: Here, we present a highly sensitive library construction protocol for ultralow input RNA sequencing
(UIRNA-seq). We systematically evaluate experimental conditions of this protocol, such as reverse transcriptase,
template-switching oligos (TSQO), and template RNA structure. It was found that Maxima H Minus reverse
transcriptase and rN modified TSO, as well as all RNA templates capped with m7G improved the sequencing
sensitivity and low abundance gene detection ability. RNA-seq libraries were successfully prepared from total RNA
samples as low as 0.5 pg, and more than 2000 genes have been identified.

Conclusions: The ability of low abundance gene detection and sensitivity were largely enhanced with this
optimized protocol. It was also confirmed in single-cell sequencing, that more genes and cell markers were
identified compared to conventional sequencing method. We expect that ulRNA-seq will sequence and
transcriptome characterization for the subcellular of disease tissue, to find the corresponding treatment plan.
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Background

Single-cell RNA sequencing (scRNA-seq) technologies
provide a unique opportunity to analyze the single-cell
transcriptional landscape. It is a transformative technol-
ogy that is rapidly deepening our understanding of
biology [1, 2]. This technology can be used for unbiased
assessment of cellular heterogeneity with high resolution
and high accuracy, identify the subtypes of single cells,
accurately determine the gene expression level of single
cells, and explain genetic information heterogeneity in a
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comprehensive and multi-level manner at the single cell
level. However, the limitations of scRNA-seq sensitivity
and the associated transcript absence events (dropouts)
limit cell clustering and the faithful delineation of cell
subtypes, which hamper downstream analyses. Based on
the full-length transcriptome sequencing, such as Smart-
seq [3], Smart-seq2 [4], MATQ-seq [5], etc., the full-
length transcripts can be detected, which improve the
sensitivity and accuracy of gene detection, and perform
various types of transcriptome sequencing, but this
method has less cellular throughput and higher cost-
efficiency. Based on the 3" or 5’ ends of transcripts se-
quencing, such as Drop-seq [6], CEL-seq2 [7], Seq-Well
[8], STRT-seq [9] etc., have high cellular throughput and
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low cost-efficiency. However, these methods only detect
one end of transcripts and have low sensitivity to detect
gene expression. So it is not suitable for the analysis of
variable splicing, allelic, and low abundance genes. At
present, scRNA-seq method is mainly applied to single
cells or 10 pg total RNA samples [10, 11], but the subcel-
lular sequencing scheme has not been studied. The
mapping of different subcellular RNA maps provides a
new perspective on studying the relationship between
the dynamic regulation of RNA subcellular space and
the occurrence of human diseases [12]. Although each
scRNA-seq platform has their advantages, they suffer
from low mRNA capture efficiency [6, 8, 13—15], and
their sensitivity for detecting genes with low expression
and coverage uniformity varies [16], which result in a
loss of valuable information. This has an important im-
pact on the detection of cancer-related mutant genes
and important low-expressed genes in biology, such as
transcription factors.

At present, the optimization of low mRNA capture ef-
ficiency and the sensitivity of detecting low-abundance
expressed genes is mainly from two aspects: scRNA-seq
technology and data analysis. Previous studies have
shown that droplet-based scRNA-seq methods suffer
from low mRNA capture efficiency, and the low
abundance transcripts detected are not representative.
However, cell lysis, mRNA capture, and reversed tran-
scription can be efficiently carried out by improving the
parameters of the microfluidic system, such as fluid
speed and pressure [17-19]. In addition, hybridization of
probes to RNA for sequencing (HyPR-seq), which can
easily detect more than 100,000 cells in a single experi-
ment, and achieve high sensitivity for individual tran-
scripts in single cells and low-abundance transcripts
[20]. However, multiple rounds of washes for probe
hybridization and ligation, which result in some cell loss.
Although the Smart-seq2 and Smart-seq3 schemes are
more efficient in detecting genes than other scRNA-seq
schemes, the sensitivity of detecting low-abundance
genes was lower (0 <RPKM <1, less than 2000 genes)
[21, 22]. On the other hand, Wu et al. present to solve
the problems of low capture efficiency, high noise, and
high variability in single-cell sequencing by optimizing
data analysis methods [23]. However, for large-scale con-
sortium projects, experience has shown that neglecting
benchmarking, standardization and quality control at the
start can lead to major problems later on in the analysis
of the results [24]. Therefore, we expect to optimize and
improve the scRNA-seq scheme for the technical
method to be suitable for ultralow RNA sequencing.

Based on the limitations of current scRNA-seq
schemes, we aim to explore a library construction
scheme for high sensitivity and low abundance gene
detection ability, and it is suitable for subcellular or
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ultralow RNA sequencing (ulRNA-seq). We have
optimized and improved from three aspects: Moloney
murine leukemia virus (MMLV) reverse transcriptase
(RT), template-switching oligos (TSO), terminal modifi-
cation and template RNA structure. Using this protocol,
we have sequence well-defined dilution series of total
RNAs (5 pg, 2 pg, 1 pg, 0.5 pg), to comprehensively assess
how mRNA capture efficiency, sensitivity, coverage uni-
formity, and detection of low abundance genes under
different amounts of starting material, and it was verified
in the single-cell micro-region obtained by glass hollow
needle. Compared with the existing methods, this
method can creatively apply an optimized and improved
scRNA-seq to the precise analysis of spatial transcrip-
tomes, subcellular, tissue biopsies, and rare samples such
as circulating tumor cells and early developing embry-
onic cells, which improved the accuracy and reliability of
single-cell sequencing results.

Results

Reverse transcription efficiency of different reverse
transcriptases at the low amount of RNA input

Reverse transcriptase is the most important factor affect-
ing the efficiency of reverse transcription. In this study,
we compared the performance of five Moloney murine
leukemia virus (MMLYV) reverse transcriptase that has
the necessary template-switching properties, each group
had 3 technical replicates. cDNA yields are one of the
most direct performance metrics of reverse transcriptase
efficiency. The results showed that Template Switching
showed higher ¢cDNA yield to input 5pg and 2 pg RNA
(Supplementary Fig. S1IA and B). However, at input
amounts below 2pg, Maxima H Minus reverse tran-
scriptase showed higher ¢cDNA vyields, closely followed
by SuperScript III (Supplementary Fig. S1C and D). In
addition, we set up a quantitative reverse transcription
(qQRT-PCR) system, which can detect the efficiency of
different reverse transcriptase based on the transcript
abundance. Fig. S1E and F show the average Ct values of
three genes measured by qPCR when using different re-
verse transcriptase, of which hypoxanthine phosphoribo-
syltransferase 1 (Hprt) is low-abundance expression in
dopaminergic neurons, while 18S ribosomal (18S) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
are high-abundance expression. At input amounts 5 pg
RNA, the Ct value of 18S and GAPDH was lower with
Template Switching reverse transcriptase, while the Ct
value of Hprt was lower with Maxima H Minus reverse
transcriptase (Supplementary Fig. S1E). Therefore, this
study shows that Maxima H Minus reverse transcriptase
has a higher sensitivity for low expression genes. For the
input amounts 0.5pg RNA (except SMARTScribe
reverse transcriptase), the results were similar. Using
SMARTScribe reverse transcriptase, the Ct value of
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Hprt, 18S, and GAPDH were highest for input amounts
0.5 pg RNA (Supplementary Fig. S1F), indicating that the
reverse transcription efficiency of SMARTScribe reverse
transcriptase was the lowest.

Maxima H minus reverse transcriptase improves the
sensitivity of ulRNA-seq

To improve the feasibility and sensitivity of single-cell or
even subcellular library construction, the optimized li-
brary construction protocol was used to construct cDNA
library for different input amounts of RNA. We evalu-
ated the number of genes detected with 5 reverse tran-
scriptases and 4 low-input RNAs. In this experiment,
there were 3 technical replicates in each group, and a
total of 60 libraries were constructed. The results
showed the number of detected genes decreased with re-
duced input RNA by each reverse transcriptase, while
the number of detected genes by Maxima H Minus re-
verse transcriptase were higher under different input
amounts (Fig. 1A). Using Maxima H Minus reverse
transcriptase, 11,754 genes were detected under 5pg
RNA input, which was less different from the number of
genes detected in 1 ng RNA bulk sample (18,743 genes)
(Fig. S2). We compared the detected genes to the identi-
fied cell marker gene database of mice, and calculated
the ratio of the detected genes in the identified cell
marker genes. The result showed that the mapping rate
of Maxima H Minus reverse transcriptase under
different RNA inputs was the highest, of which the map-
ping rate was 89.6% under 1ng RNA input, 64.65%
under 5 pg RNA input and 50.03% under 2 pg RNA in-
put (Fig. 1B and Fig. S2). To compare the sensitivity of
genes detected across protocols, an equal number of se-
quence depth was used per sample. The result showed
that Maxima H Minus reverse transcriptase performed
better compared with other reverse transcriptase (Fig.
1C-F). Overall, for the use of Maxima H- reverse tran-
scriptase, the average number of genes detected at any
depth of sequence is higher than any other reverse tran-
scriptase. Besides, using Maxima H Minus and SMART-
Scribe reverse transcriptases, no obvious 3'- or 5'-end
bias was observed in the transcripts detected under
different input amounts of RNA (Supplementary Fig.
S3A and B). Whereas SuperScript II, SuperScript III, and
Template Switching reverse transcriptases show mild 5'-
end bias (Supplementary Fig. S3A and B).

Maxima H Minus reverse transcriptase significantly
increase sensitivity. Precision is considered to be the
reproducibility of gene expression level estimation. Sen-
sitivity assessment refers to the ratio of true positive
genes detected at the same sequence depth. Using the 1
ng RNA input as a reference, we checked the precision
(True positive/(True positive + False positive)) and sen-
sitivity (True positive/(True positive + False negative)) at

Page 3 of 15

different input amounts of RNA in each reverse tran-
scriptase. The result showed that as input decreased,
precision remained robust among all five reverse
transcriptases (Fig. 2A). Compare with other reverse
transcriptase, Maxima H Minus reverse transcriptase
had better sensitivity at different input amounts of
RNA (Fig. 2B), and detect lower abundance genes
(fragments per kilobase of transcripts per million
(FPKM) at 0-5) (Fig. 2C-F). Therefore, we named
the optimized library construction method ulRNA-
seq.

In addition, we examined the reproducibility of gene
expression levels across different reverse transcriptase
and RNA inputs. Overall, high reproducibility was ob-
served across SuperScript II, SuperScript III, Maxima H
Minus, and SMARTScribe (R*>0.8), except the 0.5 pg
RNA inputs from SuperScript II reverse transcriptase
showing a lower level of concordance (R*<0.8) (Fig. 3).
Template Switching reverse transcriptase showed a low
correlation between other reverse transcriptase in differ-
ent RNA input (Fig. 3).

Terminal modification TSO improves the sensitivity and
low abundance gene detection ability of ulRNA-seq

Based on the ulRNA-seq protocol, the effects of dif-
ferent terminal modification TSO on library quality
were compared. In this experiment, there were 3
technical replicates in each group, and a total of 18
libraries were constructed. We used multiple metrics
to assess the quality of each library. The results are
shown in Table S1. At 5pg and 0.5pg RNA input,
the TSO-rN sequence detects a higher mapping rate,
lower base sequence error rate, and more uniform
GC content (Supplementary Table S1). We observed
both more detected genes and cell marker genes with
TSO-rN and TSO-rG sequence than TSO-rU se-
quences at input amounts 5pg RNA (Fig. 4A, B).
However, 0.5pg RNA inputs, TSO-rN sequence de-
tected the most genes and cell marker gene (Fig. 4A,
B). Using the 1ng RNA input as a reference, we
checked the precision and sensitivity at 5pg and 0.5
pg RNA inputs in different terminal modification
TSO. The results showed that precision remained ro-
bust among all three libraries (Fig. 4C). The sensitiv-
ity of TSO-rU library was lower under 5pg RNA
inputs (Fig. 4D). However, sensitivity further dropped
at 0.5pg RNA inputs, with TSO-rN library showing
higher sensitivity (Fig. 4D). The number of genes in
each library identified (mean FPKM > 0) with differ-
ent levels of sequence depth is shown in Fig. 4E, F.
Under 5pg RNA input, the number of genes
identified using TSO-rN and TSO-rG sequences was
significantly higher than that using TSO-rU with the
increase of sequence depth (Fig. 4E) (P<0.05).
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Fig. 1 Gene detection sensitivity for the different reverse transcriptase library construction. A The number of genes detected per reverse
transcriptase in different input amounts of RNA. B The ratio of the detected genes in the cell marker gene database of mice in different input
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However, at 0.5pg RNA inputs, TSO-rN detected has high sensitivity for 0.5 pg RNA inputs, which in-
more genes per sample at comparable sequence dicates that the protocol is suitable for the construc-
depth (Fig. 4F). These results showed that TSO-rN tion of subcellular or ultralow input RNA libraries.
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In addition, we performed principal component ana-
lysis (PCA) of all samples. In the MDS plot, the bio-
logical replicates clustered closely of the TSO-rN and
TSO-rG samples under 5pg RNA inputs (Supplemen-
tary Fig. S4A). Under 0.5 pg RNA input, the biological
repetition of TSO-rN samples clustered closely (Supple-
mentary Fig. S4B). Meanwhile, we also observed that the
correlation between TSO-rN and TSO-rG samples was
high (R* > 0.98) (Supplementary Fig. S4C), and the tech-
nical reproducibility was nearly 1 (R*>0.98) (Supple-
mentary Fig. S5A). However, the correlation between
TSO-rU sample and the other two TSO sequences sam-
ples was low (R*>0.6) (Supplementary Fig. S4C), and
the technical reproducibility was also low (R*>0.5) (in
0.5 pg RNA inputs) (Supplementary Fig. S5B).

We normalized the gene level expression data using
FPKM to assess the agreement on the different libraries
in terms of the number of genes captured and measure-
ment of gene expression level. The gene number was de-
tected by binning genes into 8 levels of expression of
FPKM of 0-1, 1-5, 5-10, 10-50, 50-100, 100—1000,
1000-10,000, and 10,000-100,000. The results showed
that most genes were detected in FPKM at 0-1, indicat-
ing that more genes with low expression could be de-
tected using TSO-rN sequence at 5pg and 0.5 pg RNA
inputs (Fig. 5A, B). The gene expression correlation re-
sults of different TSO sequences are shown in Fig. 5¢, d.
The correlation between gene expression of TSO-rN
and TSO-rG samples is very high, but the correlation

between TSO-rU samples is relatively low (Fig. 5C, D).
In addition, we compared the effects of different TSO
sequences on the alternative splicing (AS) events (exon
skipping (ES), alternative donor (AD), alternative
adaptor (AA), mutually exclusive exon (MXE), intron re-
tention (IR)). The results showed that there was few dif-
ferential expression alternative splicing (DEAS) events
between different groups, of which the difference ES
events were about 200, indicating that the different TSO
sequences had no effect on the AS analysis (Supplemen-
tary Fig. S6).

The effect of different RNA structures on gene detection
and RNA quantification

In this study, we sequence m7G-capped RNA and un-
capped RNA templates as a way to compare the per-
formance of scRNA-seq. In this experiment, there were
3 technical replicates in each group, and a total of 12 li-
braries were constructed. Using the ulRNA-seq protocol,
we detected more genes and cell marker genes in 5 pg
uncapped RNA templates (detected 9413 genes and
53.6% cell marker genes), but there was no significant
difference compared with m7G-capped RNA (Fig. 6A,
B). However, m7G-capped RNA templates were detected
more genes and cell marker genes than uncapped RNA
in 0.5 pg RNA input (Fig. 6A, B) (P <0.05). In addition,
we also examined the influence of the two libraries on
the number of genes in the range of FPKM values. The
figure showed that the template RNA structures didn’t
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effect on gene expression at 5pg RNA input (Fig. 6C).
However, at 0.5 pg RNA inputs, the number of genes de-
tected by m7G-capped RNA template was significantly
higher than that of uncapped RNA in FPKM 0-1, 1-5,
10-50, and 100-1000 groups (Fig. 6D). We examined
the reproducibility of gene expression levels across pro-
tocols and technical replicates. The result showed that
the correlation of protocols and technical replicates
showed a high correlation (R*>0.95 for m7G-capped
RNA and uncapped RNA sequencing) (Fig. 6E-H).

In addition, the precision and sensitivity are affected
by the template RNA structure. Using 1 ng RNA input
as a reference, the precision and sensitivity of sequence
different internal RNA sequences were analyzed. The se-
quence precision of different input amounts to m7G-

capped RNA and uncapped RNA templates were about
92% ~ 98%, and there was no difference between the two
RNA templates (Fig. 7A). However, using 0.5 pg total
RNA inputs, m7G-capped RNA showed higher sensitiv-
ity (Fig. 7B). Next, we analyzed the impact of sequencing
depth on the detection of genes. From a cost perspective,
researchers can control the sequencing depth to fit their
budgets and needs, which is especially important for the
scRNA-seq experiment. We found that sensitivity satu-
rated at 5 million reads per sample (Fig. 7C, D). Using 5
pg total RNA inputs, uncapped RNA template was more
sensitive, while using 0.5 pg total RNA inputs, m7G-
capped RNA was more sensitive (Fig. 7C, D). Coverage
analysis of gene showed that m7G capped RNA showed
more uniform 5° to 3" gene coverages, while uncapped
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RNA template showed 3’ biases under 0.5pg RNA
inputs (Supplementary Fig. S7A, B). In addition, we
compared five important AS events of different template
RNA structure data sets. The results showed that there
were few DEAS, of which only 255 were detected by
DESE, which may be caused by the difference caused by
sequencing (Supplementary Fig. S8). This reveals that
the template RNA structure has no significant effect on
the AS events of the sample.

Verify the sensitivity of ulRNA-seq protocol in single-cell

Finally, we applied Smart-seq2 and ulRNA-seq protocol
to single cells micro-region. By using a fine glass hollow
needle with a diameter of 28 pum obtained single-cell
samples by punching tissue slices from the same slice to
verify the sensitivity and feasibility of the optimized
protocol. In this experiment, Smart-seq2 data and
ulRNA-seq data have 3 and 5 technical replicates re-
spectively, and a total of 8 libraries were constructed.
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Using the ulRNA-seq protocol can detect more total
genes (9725 genes) and low abundance genes (Fig. 8A,
B). And 53.2% of the genes in the cell marker database
were detected in single cells (Fig. 8C). In addition, com-
pared with the Smart-seq2 protocol, ulRNA-seq has
higher sensitivity in single-cell library construction
(Fig. 8D), but there is no difference in precision be-
tween the two protocols (Fig. 8E). The high reprodu-
cibility between different samples reveals the high
stability of the ulRNA-seq protocol (Fig. 8F).

Discussion

The rapid development of single-cell genomics has
transformed our understanding of biological systems.
However, the limitations of single-cell library construc-
tion, such as dropout probability and low mRNA capture
efficiency, limit the sensitivity of gene detection and the
accuracy of cell subtype analysis, thus affecting the
reliability of downstream analysis results. Different
single-cell sequencing methods have different dropout
probability, among which MARS-seq had the highest
median dropout probability (74%) and Smart-seq2 had
the lowest (26%) [25], dropout event will lead to many

low expression or medium expression genes that can’t
be effectively detected. Single-cell sequencing technology
based on the microfluidic system can effectively improve
mRNA capture efficiency through adjusting the control-
lable valve and pump, but the total number of genes de-
tected by this scheme is less than 6000 [17]. However,
the use of poly (A) tagging strategy improved the effi-
ciency of conversion to a mRNA molecule to amplified
¢DNA, and used unique molecular identifiers (UMI) tags
for each cell can increase the detection of low expression
genes [19]. Although the sequencing technology based
on probe hybridization can improve the detection num-
ber of cells and transcript detection sensitivity, probe
hybridization requires multiple cleaning, resulting in the
loss of some cells [20]. Therefore, different single-cell
technologies have different limitations. We expect to
optimize and improve the single-cell library construction
method to improve the sensitivity of sequencing results.
In addition, the current research of subcellular RNAs is
still limited. High throughput sequencing of subcellular
RNA can be used to reveal the identity, abundance, and
subcellular distribution of transcripts, thus providing in-
sights into RNA processing and maturation [26]. This
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will provide an important resource to explain the com-
plex subcellular structure, cell dysfunction, and patho-
physiology of human diseases. Here, the total RNA of
different gradients is used to simulate the level of single-
cell or subcellular. We systematically analyze the effects
of five reverse transcriptases, three TSO terminal modifi-
cations, and two template RNA structures on single-cell
data, to provide a highly sensitive library construction
scheme for subcellular and spatial transcriptomics re-
lated research. As far as we know, this is the first time to
compare the effects of TSO terminal modification and
RNA template structure on the sensitivity of scRNA-seq.
We expect to generate high sensitivity transcriptomes
from single cells or subcellular according to the ulRNA-
seq protocol, to provide high-resolution inspections of
basic processes such as cell differentiation and
carcinogenesis.

For single-cell and low-input RNA library preparation,
template switching-based RNA-seq is increasingly gain-
ing popularity. However, the efficiency of reverse tran-
scription and template switching can affect single-cell
mRNA capture, thus reducing the sensitivity of single-

cell sequencing results. Among them, reverse transcript-
ase is the most direct factor affecting the efficiency of
reverse transcription [27]. In this study, we used cDNA
yield and low-abundance gene quantification to
characterize the reverse transcription efficiency, and the
results showed that the reverse transcription efficiency is
variable with different template input, which is consist-
ent with the results of other studies [28]. In addition, we
also found that Maxima H Minus reverse transcriptase
significantly improved the efficiency of gene detection,
with higher accuracy and sensitivity, so Maxima H
Minus reverse transcriptase is preferable for single-cell
application. Hagemann-Jensen et al’s studies also
showed that Maxima H Minus reverse transcriptase
could detect more genes than SuperScript II reverse
transcriptase in scRNA-seq [22]. The possible reason is
that Maxima H Minus reverse transcriptase is engi-
neered to have minimal RNase H activity to improve
their processivity, robustness, and synthesis rate. In
addition, Maxima H Minus reverse transcriptase is
thermostable, which can be used at higher reaction tem-
peratures within the protocols. Previous reports have
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shown that destabilization of the secondary RNA struc-
tures at increased temperature leads to more frequent
primer hybridization and stable reverse transcription,
which may be the main reason for the high efficiency of
Maxima H Minus reverse transcription [29, 30]. Our
findings are in accordance with Bagnoli et al. report, in-
dicating that the selection of reverse transcriptase is an
important factor affecting the sensitivity of single-cell
sequencing [31]. It is also worth noting that the sequen-
cing depth of transcripts is not only related to sequen-
cing cost, but also closely related to the number of genes
detected and the accuracy of gene expression. In this
study, Maxima H Minus reverse transcriptase detected
more low abundance genes at the same sequencing
depth, which effectively reduced the risk of missed de-
tection of low-abundance mutations in clinical samples
and found more clinical treatment opportunities. In
addition, using Maxima H Minus reverse transcriptase
to detect more cell marker genes in a single cell is help-
ful to the accurate identification of cell types, to better
understand the biological functions and characteristics
of cells. Therefore, we proved that Maxima H Minus re-
verse transcriptase has the best mRNA capture efficiency
and sensitivity regardless of the amount of input RNA.
Moreover, it has been reported that TSO terminal
modification or mRNA templates may lead to inefficient
amplification and therefore to affect the efficiency of
mRNA capture [32-34]. Due to the base preference of
the terminal transferase activity of Maxima H Minus re-
verse transcriptase, we compared three TSO terminal
modifications. The results showed that the use of ran-
domized TSO, such as TSO-rNrG+G, showed higher ac-
curacy and sensitivity for 0.5 pg total RNA, improved the
efficiency of mRNA capture, and detected more low
abundance genes. Pawel et al. showed that with increas-
ing distance from the end of the transcript, the prefer-
ence of reverse transcriptase for cytosine decreased, so
setting a degenerate base at the third ribose base at the
3 -most positions could capture more ¢cDNA molecules
[32]. In addition, the results also show that RNA cap
structures have more uniform coverage, higher sensitiv-
ity and reproducibility for 0.5 pg total RNA, and increase
the detection efficiency of low abundance genes, so they
are more suitable for single-cell or subcellular samples.
Wulf et al’s studies have shown that for uncapped
RNAs, some transcripts may be over-represented in se-
quencing reads, which limits the accuracy of small RNA
and highly degraded RNA sequencing results [33]. How-
ever, m7G-capped RNA has higher template switching
efficiency and smaller sequencing bias. The possible rea-
son is that the cap structure somehow stalls reverse
transcription, allowing more time for TSO to interact
and allow template switching to occur, thus improving
the efficiency of mRNA capture [33]. Vahrenkamp
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et al’s studies have also shown that adding a cap struc-
ture to FFPE-derived RNA can significantly improve the
quality of the library and accurately quantify the
transcript [34]. Therefore, optimization of the relevant
parameters in the library reaction, such as TSO and
mRNA template structure, can further improve the
template-switching efficiency and mRNA capture effi-
ciency, thereby improving the sensitivity and accuracy of
the ultra-low trace RNA sequencing results, and con-
structing a truly unbiased scRNA-seq platform. How-
ever, this protocol may not be suitable for low-quality
samples, as oligo-dT used in reverse transcription will
cause gene coverage bias. Therefore, random primers
can obtain more representative and comprehensive tran-
scriptome information for degraded samples. In addition,
we believe that ulRNA-seq can be applied to animals,
plants, and microorganisms. Although there are great
differences in RNA content and GC content between
different species, the structure of RNA is similar. mRNA
capture efficiency and ¢cDNA library yield can be in-
creased by changing reverse transcriptase and increasing
the PCR cycle. In addition, the library construction
method uses oligo-dT anchored primers for RNA cap-
ture, so it will not cause base imbalance in sequencing
results due to GC content deviation. Previous studies
have shown that ultra-low input RNA-seq analysis based
on Smart-seq2 has been applied in animal liver, lymph-
oid cell, fungi, and single-nematode [35-38].

At present, our results show that the ulRNA-seq
protocol has higher sensitivity at 0.5 pg total RNA input.
Therefore, this protocol may be applied to ultralow in-
put RNA samples, subcellular, or high-resolution spatial
transcriptome-related research. When we obtained a sin-
gle cell with spatial position, it may be not a complete
cell. The preparation of tissue sections leads to the loss
or degradation of RNA in a single cell, so that ultralow
RNA sequencing can be performed at the RNA input
level lower than single-cell levels. Liu et al. developed
the DBiT-seq technology and detected 2068 genes in ap-
proximately 4 pg of total RNA [39]. We believe that the
ulRNA-seq protocol may achieve higher spatial reso-
lution, and not only can increase the number of genes
detected per data point, but also increase the identifica-
tion of low-abundance expressed genes. To show the
high sensitivity of the ulRNA-seq protocol, we applied
this protocol to single-cell microregion samples and sys-
tematically compared its performance. The results
showed that 9725 genes and more low abundance genes
were detected in mouse brain single cells. Yamazaki
et al. only detected 8598 genes in mouse brain single
cells using Smart-seq2 [38]. However, low coverage may
lead to poor cell-type identification, which may result in
some rare cell types being undetectable. Therefore, it is
suggested that the ulRNA-seq library protocol has higher
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mRNA capture ability and low abundance gene detec-
tion ability. However, our validation experiment also has
limitations. Since the sample obtained by glass hollow
needle is not a single-cell sample, the results of this
study may be different from those of high-throughput
single-cell isolation.

Conclusion

In summary, we presented a template-switching based li-
brary preparation method in the study, which obtained
higher sensitivity, accuracy, and gene detection ability in
ultralow input RNA sequencing. It is concluded that
Maxima H Minus reverse transcriptase, rN modified
TSO and 5'-capped RNA templates contributed main to
the enhanced ability of low abundance gene detection
and ultralow RNA input in this method. More gene
numbers and cell markers were identified, and more uni-
form coverage was obtained in single-cell sequencing. It
is suggested that ulRNA-seq will help the further devel-
opment of single-cell and subcellular studies.

Methods

Animals and sample collection

One male C57Bl/6] mouse (8 weeks old) was purchased
from Shanghai Southern Model Biotechnology Co., Ltd.
It was anesthetized with tribromoethanol (500 mg/kg)
(Sigma, Saint Louis, USA), and then was killed by cer-
vical dislocation. This study was reviewed and approved
by the Ethics Committee of Zhongda Hospital Southeast
University. The brain was dissected from the skull, and
then the brain sample was washed with 0.9% pre-cooled
saline. The brain samples were immediately treated to
isolate the RNA.

Total RNA isolation and experimental design

Total RNA was extracted from brain tissue according to
the method of Chomczynski and Sacchi [40]. The RNA
integrity number (RIN) value was determined using the
Agilent 4200 Bioanalyzer and high sensitivity RNA
screen tape kit according to the manufacturer’s instruc-
tions. We selected samples with RIN value greater than
8.5 for dilution. RNA samples for the RT assays were
prepared (serial dilution from the same RNA pool) in
aliquots of 0.5, 1, 2, and 5pg total brain RNA. Five
reverse transcriptases, Maxima H- (Thermo Fisher),
SMARTScribe (Clontech), Superscript II (Thermo
Fisher), Superscript III (Thermo Fisher), and Template
Switching RT Enzyme Mix (New England Biolabs), were
evaluated for their ability to template switch and effi-
ciency of reverse transcription. Several dilutions ranging
from 0.5, 1, 2, and 5 pg of total RNA were used as input
for the RT reactions. In addition, we use 1ng of input
RNA sample (bulk sample) as a control. In this study, a
total of 116 samples were analyzed.
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Primer sequences

The oligonucleotide sequences are listed in Table 1.
Oligo-dT used for the synthesis of the first RNA strand
is an anchored primer. We designed three different TSO
terminal modifications. Then, the c¢cDNA library was
constructed with different TSO sequences.

Preparation of capped RNA templates

Whether the extracted RNA is complete or not, we
add capped structure to the extracted total RNA.
Capping RNA templates were performed using the
Vaccinia Capping System (catalog number M2080).
Briefly, 5pg or 0.5pg RNA, 1 x Capping Buffer, 0.5
mM GTP, 0.1 mM SAM, 2.5units of Vaccinia Cap-
ping Enzyme were incubated for 30 min at 37°C.
Then, the cDNA library was constructed with capped
RNA templates.

Single-cell library preparation and sequencing

First, the 2 pl capped RNA templates, 0.5 ul 10uM oligo-
dT primer, 1 ul 10 mM dNTP mix, and 0.25 pl 40 U pl™*
RNAse inhibitor were at 72°C for 3 min for denatur-
ation, and immediately placed on ice afterward. Next,
25ul 5 X first-strand buffer, 1 ul 10 uM TSO primer,
2 ul 5M betaine, 1 pl 25 mM MgCl,, 0.5ul 0.1 M DTT,
0.25ul 40U pl™! RNAse inhibitor, and 1ul 200U pl™*
reverse transcriptase were added to each sample. Differ-
ent reverse transcriptases have different template switch-
ing conditions. The reaction program of Superscript II
reverse transcriptase is 42°C, 90 min, then 10 cycles
(50°C, 2min; 42°C, 2min), and finally 70°C, 15 min.
The reaction program of Superscript III reverse tran-
scriptase is 50 °C, 60 min, and 70 °C 15 min. The reaction
program of Maxima H reverse transcriptase is 42 °C, 90
min, then 10 cycles (50 °C, 2 min; 42 °C, 2 min), and fi-
nally 85°C, 5min. The reaction program of SMART-
Scribe reverse transcriptase is 42 °C, 90 min, and 70 °C,
10 min. The reaction program of Template Switching
RT Enzyme Mix is 42 °C, 90 min, and 85 °C, 5 min. PCR
pre-amplification was performed directly after reverse
transcription by adding PCR mix, containing 12.5ul 2 X
KAPA HiFi HotStart Ready Mix and 0.5pul 5pM PCR
primer. The number of PCR cycles depends on the input
amount of RNA. We typically use 20 cycles for than 100

Table 1 Oligonucleotide sequences

Oligonucleotide Sequences

Oligo-dT 5-AAGCAGTGGTATCAACGCAGAGTACT30VN-3"

TSO-rN 5" Biotin-AAGCAGTGGTATCAACGCAGAGTA
CATINIG+G-3'

TSO-rG 5" Biotin ~-AAGCAGTGGTATCAACGCAGAGTA
CATrGrG+G-3'

TSO-rU 5" Biotin ~-AAGCAGTGGTATCAACGCAGAGTA

CATrGrU+G-3'




Jia et al. BMC Genomics (2021) 22:809

pg RNA input. The number of cycles can be increased
to 25 cycles for 1 pg~ 50 pg RNA input. We use 30 cy-
cles for less 1 pg RNA input. PCR was cycled as follows:
3 min at 98°C for initial denaturation, 25 cycles of 20's
at 98°C, 15s at 67°C and 6 min at 72 °C. Final elong-
ation was performed for 5min at 72°C. Then, we mea-
sured the cDNA concentration using the Qubit dsDNA
Assay Kit (Thermo Fisher). Finally, 1 ng of cDNA was
then used for the tagmentation reaction carried out with
One-step DNA Lib Prep Kit for Illumina (ABclonal),
with the addition of Tagment DNA Buffer and Tagment
DNA Enzyme, in a final volume of 50 pl. The tagmenta-
tion reaction was incubated at 55 °C for 5 min and then
purified with Ampure XP beads. After tagmentation, the
Tn5 transposon DNA will add adaptor adapters at both
ends of the RNA/DNA hybrid strand for subsequent
PCR amplification for the library building. The reaction
program is 72°C, 3min, 98°C, 45s, then 13 cycles
(98°C, 15; 60°C, 305s; 72 °C, 3 min), and finally 72°C, 5
min. The Agilent 2100 High Sensitivity DNA Assay Kit
was used to detect the distribution of amplified product
c¢DNA fragments. According to the detection results, the
quality of the amplified product cDNA was determined,
and the subsequent cDNA library was sequenced on the
[lumina HiSeq X10 PE150 platform (Illumina, USA).

Data analysis

Firstly, the raw data were filtered to generate clean data,
and FastQC software (v0.11.4) was used for the quality
control (QC) of the sequencing data. Then, clean data
were aligned to the mouse reference sequences by Hisat2
software using default parameters. The expression levels
of each transcript were normalized by quantifying FPKM.

Quantitative reverse transcription (QRT-PCR) analysis

To verify the efficiency of different reverse transcrip-
tases, quantitative real-time PCR (qPCR) was used to
analyze GAPDH, 18S [41], and Hprtl [41] (Table 2).
The reaction program was set as follows: for 30s at
95°C; 40 PCR cycles (95°C, 55; 60 °C, 34 s (fluorescence
collection)). The relative expression of target genes was
calculated by the 2 ~*“T method.

Table 2 Nucleotide sequences of the primers were used to
assay gene expression by RT-gPCR

Genes
GAPDH

Sequences

F: 5-CGTCCCGTAGACAAAATGGT-3"
R: 5-TTGATGGCAACAATCTCCAC-3'

18S F: 5-AAACGGCTACCACATCCAAG-3'
R: 5-CAATTACAGGGCCTCGAAAG-3'
F: 5-CAAACTTTGCTTTCCCTGGT-3'

R: 5-CTGGCCTGTATCCAACACTTC-3'

Hprt1

Note: F, forward primer; R, reversed primer
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PCR: Quantitative reverse transcription; GAPDH: Glyceraldehyde-3-phosphate
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