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Abstract: Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of
monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded
by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of
myeloma defining events followed by a stage termed smoldering multiple myeloma (SMM), which
finally progresses to active myeloma if signs of organ damage are present. The reciprocal interaction
between tumor cells and the tumor microenvironment plays a crucial role in the development of
MM and the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma
progression. Since myeloma cells depend on signals from the bone marrow microenvironment
(BMME) for their survival, therapeutic interventions targeting the BMME are a novel and successful
strategy for myeloma care. Here, we describe the complex interplay between myeloma cells and the
cellular components of the BMME that is essential for MM development and progression. Finally, we
present BMME modifying treatment options such as anti-CD38 based therapies, immunomodulatory
drugs (IMiDs), CAR T-cell therapies, bispecific antibodies, and antibody-drug conjugates which
have significantly improved the long-term outcome of myeloma patients, and thus represent novel
therapeutic standards.

Keywords: microenvironment; multiple myeloma; immunology; targeted therapy; CD 38 antibody
therapy; daratumumab; isatuximab; CAR T cell; bispecific antibody

1. Introduction

Multiple myeloma (MM) is an incurable, heterogeneous malignancy characterized
by malignant expansion of monoclonal terminally differentiated plasma cells in the bone
marrow or more rarely, at extramedullary sites. In most patients, MM is characterized
by the secretion of a monoclonal immunoglobulin (Ig), or Ig chain known as monoclonal
protein or M-protein, which is produced by the abnormal plasma cell clone leading to the
characteristic clinical manifestations of end-organ damage such as hypercalcemia (C), renal
failure (R), anemia (A), and osteolytic bone destruction (B), collectively known as CRAB
features [1,2]. The Revised International Myeloma Working Group (IMWG) diagnostic
criteria for MM define active myeloma as clonal bone marrow (BM) plasma cell infiltration
of ≥10% or a biopsy-proven bony or extramedullary plasmacytoma and at least one
myeloma defining event such as the presence of a CRAB feature or presence of a biomarker
associated with high-risk for end-organ damage. These biomarkers comprise of clonal bone
marrow plasma cell infiltration ≥60%, involved/uninvolved serum free light chain (sFLC)
ratio of ≥100, or >1 focal lesion of at least 5 mm in size on MRI studies.

Multiple myeloma belongs to a wide range of disorders referred to as monoclonal
gammopathies. MM is consistently preceded by an asymptomatic monoclonal gammopathy
of undetermined significance (MGUS), which is characterized by serum monoclonal protein
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(non-IgM type) <30 g/L, clonal bone marrow plasma cell infiltration <10%, and absence of
end-organ damage (CRAB criteria). If the M-protein (IgG or IgA) is ≥30 g/L (or urinary M-
protein ≥500 mg per 24 h) and/or the clonal bone marrow plasma cell infiltration reaches
10–60% in the absence of myeloma defining events the definition of smoldering multiple
myeloma (SMM) is fulfilled [2] (Figure 1). Over 25 years, approximately 15% of patients
with MGUS will progress to active MM. As mentioned, MGUS and SMM consistently
precede MM with a 1% per year, life-long risk of progression to active myeloma in MGUS,
and a 10% risk of progression in 5 years in SMM.
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Figure 1. The development process of monoclonal gammopathies. Multiple myeloma arises as a result
of complex and multistep changes in the bone marrow and is preceded by precursor states such as
monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma
(SMM). Adapted from Kumar et al. [1]. Created with BioRender.com (accessed on 30 June 2022).

However, the molecular basis underlying malignant transformation from MGUS
to active myeloma has not yet been entirely delineated. It is believed that malignant
transformation is the consequence of clonal evolution of post-germinal center (GC) or
plasma cells (PC) initiated by a primary genetic event and fueled by multiple accumulating
secondary genetic events. Initiating events can be subcategorized into IgH-translocations
or hyperdiploidy, whereas secondary genetic events responsible for progression are copy
number variations, mutations, or epigenetic changes accumulating in the plasma cell clone.
In the continuum of the distinct disease stages from MGUS to MM, progression is also
promoted by a remodeling process exerted by various immune cells in the bone marrow
microenvironment (BMME).

2. The Role of Microenvironment and Immunology

It has become increasingly clear that the reciprocal interaction between tumor cells and
the tumor microenvironment plays an essential role in the development of myeloma. In
solid tumors, the establishment of tumor-associated stroma facilitates not only tumor growth
and progression but also invasive and metastatic growth [3]. Similar to healthy plasma
cells, myeloma cells initially depend on signals from the BMME for their survival [3–6]. The
MGUS-to-MM progression requires multiple genomic events and the establishment of a
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permissive BMME, although it is generally unclear if the various microenvironmental events
are causative or consequences of disease progression [7–9]. Furthermore, the mainstay of
myeloma therapy includes immunomodulatory drugs (IMiDs) such as thalidomide and its
analogs lenalidomide, and pomalidomide [10,11], exerting their function, at least in part, by
affecting the bone marrow microenvironment.

The BM is a complex organ consisting of numerous highly specialized cell lineages
responsible for different tasks such as blood production, immunity, and skeletal integrity.
The BMME has been classically divided into several niches such as the vascular niche, the
endosteal niche, and the immune microenvironment, which refers more to a functional
compartment of differentiated immune cells located in the BM stroma [12,13].

The interplay between myeloma cells and the bone marrow microenvironment is
essential for malignant transformation, treatment, and progression (Figure 2). Many cell
types are found in the BMME belonging to one of the niches and could be divided into
hematopoietic cells (B cells, T cells, natural killer (NK) cells, myeloid-derived suppressor
cells (MDSCs), and osteoclasts) and nonhematopoietic cells such as BM stromal cells,
osteoblasts, and endothelial cells.
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Figure 2. Three major mechanisms of immune evasion mediated by bone marrow microenviron-
ment in MM: immune resistance, immune exhaustion, and immune suppression. Adapted from
Holthof et al. [14]. For explanation see text. Created with BioRender.com (accessed on 30 June 2022).

As an immunological organ, the BM includes a wide range of immature and mature
innate and adaptive immune cell types and because of the high metabolic turnover the BM
is also densely vascularized with different types of arterioles, capillaries, and sinusoids.

3. Immunosuppressive BMME and Immune Exhaustion

The progressive transformation of an asymptomatic MGUS into active myeloma is
not only accompanied by an increased mutational load but also by significant changes
in the cellular composition of the BMME. The subsequent loss of functional immune
surveillance leads to BMME-induced immune exhaustion and suppression [14,15]. These
dysfunctional cellular compositions involve the recruitment of various immunosuppressive
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cells, including MDSCs, regulatory T cells (Tregs), regulatory B cells (Bregs), and tumor-
associated macrophages (TAMs) in the BMME.

MDSCs are a heterogeneous population of immature myeloid cells, which normally
differentiate into macrophages, granulocytes, or dendritic cells and frequently increase
during the development of myeloma, peaking in relapsed and/or refractory myeloma
patients [16]. It was demonstrated that cancer patients with a high number of MDSCs
have a shorter survival compared to patients with a lower MDSC-level. Driven by the
activation of the STAT3 pathway that in turn is stimulated through various cytokines
such as interleukin 6 (IL-6) or vascular endothelial growth factor (VEGF), MDSCs are
able to suppress immune responses by the secretion of nitric oxide (NO), reactive oxygen
species (ROS), or prostaglandin E2 and these immune-suppressive cytokines inhibit the
proliferation and expansion of Th1 cells, cytotoxic T lymphocytes (CTLs), and NK cells,
thereby enabling the differentiation and recruitment of Th17 cells, Tregs, and TAMs to the
microenvironment [16,17].

Tregs are one of the most pronounced immunosuppressive cell populations in myeloma.
Tregs inhibit Th1, Th17, CTL, macrophage, and dendritic cell (DC) function by direct cellu-
lar interactions and via secretion of suppressive cytokines, such as transforming growth
factor-beta (TGF-β) and IL-10 [18].

Analogous to MDSCs, the frequency of Tregs gradually increases in the BMME dur-
ing the progression of MGUS to active myeloma [19], and, conversely, decreases after
successful treatment with lenalidomide plus dexamethasone [14,19]. The activation of
the STAT3 pathway is crucial for the development, proliferation, and function of Tregs,
which is achieved through upregulation of transcriptional expression of forkhead box
P3 (FOXP3) [20]. Most importantly, a common feature of all immunosuppressive cells,
including Bregs and TAMs, is the expression of high levels of CD38, which can be targeted
by CD38-directed antibodies such as daratumumab and isatuximab [21,22]. Treatment
with daratumumab can rapidly deplete CD38+ Tregs, MDSCs, and Bregs and is associated
with clonal expansion of CD4+ and CD8+ T cells in myeloma patients (Figure 3). Hence,
CD38-directed antibody therapy—besides targeting CD38-positive myeloma cells—can
also restore an immunologically functional BMME exerting appropriate anti-MM T-cell
responses [23].

Mesenchymal stromal cells (MSCs) and osteoclasts also contribute to an immunosup-
pressive environment. Crosstalk between myeloma cells and MSCs mediated by toll-like
receptor 4 (TRL4) signaling promote tumor microenvironment transformation and drives
MSCs into a phenotype promoting tumor growth and immune escape [14,24]. MSCs in the
myeloma BMME suppress T cell activation and proliferation, impair DC maturation, and
induce Tregs via the secretion of several cytokines and interleukins such as IL-6, TGF-β,
IL-10, and upregulation of surface molecules such as VCAM-1, ICAM-1, or CD40 [14,24,25].
Osteoclasts contribute to an immunosuppressive environment by the production of A
proliferation-inducing ligand (APRIL), which is the ligand for B cell maturation antigen
(BCMA) that is expressed on virtually all myeloma cells, and for transmembrane acti-
vator and calcium modulator and cyclophilin ligand interactor (TACI) that is expressed
on myeloma cells and Tregs. APRIL facilitates myeloma cell growth and survival and
stimulates the upregulation of TGF-β and IL-10, thereby promoting the survival of Tregs
via TACI signaling [26].

As with various solid tumors and hematological cancers, immune-suppressive BMME
involves a significant upregulation of immune checkpoint molecules during the transi-
tion of MGUS to myeloma. CD8+ T cells from myeloma patients express multiple im-
mune checkpoint receptors, including programmed cell death protein 1 (PD-1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin mucin-3 (TIM-3),
lymphocyte activation gene 3 (LAG-3), and, recently, T cell immunoglobulin and ITIM
domain (TIGIT) [27,28]. Terminal T cell exhaustion is associated with the loss of cytotoxi-
city by CD4+ and CD8+ T cells subsets that produce IFN-γ, a critical cytokine for tumor
immunity [27]. The expression of immune checkpoint molecule PD-1 on effector T and NK
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cells, and its ligands PD-L1/2 on myeloma cells is a well-described phenomena induced by
an immune-mediated interferon-γ (IFN-γ) response [29]. The PD-L1/2 expression on MM
cells can also be enhanced through the stimulation of TLR ligands, interactions with MSCs,
or APRIL signaling [14,29]. Recently, the progression of myeloma has been associated with
high levels of TIGIT expression on CD8+ T cells, which exhibit impaired proliferative and
cytokine responses upon antigen stimulation [30]. Although immune exhaustion seems
to play an important role in the pathogenesis of myeloma; monotherapy with antibod-
ies blocking immune checkpoints in relapsed and/or refractory myeloma patients was
not effective [31]. Moreover, a randomized phase 3 trial including a checkpoint inhibitor
combined with an immunomodulatory substance and dexamethasone for patients with
relapsed or refractory multiple myeloma was unsuccessful, raising questions about future
targeting of PD-1 and PD-L1 in myeloma [32,33].
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Figure 3. Therapeutic approaches in multiple myeloma targeting the bone marrow microenvironment.
Among these, five main types can be distinguished: (i) monoclonal antibodies targeting CD38 such as
daratumumab and isatuximab, (ii) immunomodulatory substances such as thalidomide, lenalidomide,
and pomalidomide, (iii) CAR T cells target mainly BCMA, other targets such as CD38, CD138, and
SLAMF7 are being developed, (iv) bispecific antibodies bind mainly CD3 and BCMA, which are
currently under clinical investigation, (v) antibody-drug conjugates, including the FDA-approved
belantamab mafodotin along with MEDI2228 and HDP-101, which are still being tested. Created
with BioRender.com (accessed on 30 June 2022).

4. From Bench to Bedside: Therapeutical Targeting of the BMME in MM

During the last years several BBME therapeutical approaches, which modes of action
are summarized in Figure 3, have been developed. Furthermore, these approaches are
described in the following sections.

4.1. Anti-CD38 Therapies

CD38 is a transmembrane glycoprotein expressed on plasma cells and other hematopoi-
etic cells. The introduction of anti-CD38 monoclonal antibodies has changed the treatment
landscape of MM in the past years (Figure 3). Daratumumab and isatuximab are approved
in different combinations and lines of therapy and are broadly used in myeloma treatment
(Table 1) [34,35]. Two trials of combination therapy including the anti-CD38 monoclonal
antibody daratumumab, set the new standard of care for non-transplant eligible newly
diagnosed multiple myeloma (NDMM).
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Table 1. Selected trials of daratumumab and isatuximab in RRMM.

Study Name Phase Setting Treatment Number of
Patients ORR (%) CR (%) MRD Neg

(%)
NCT

Number References

ALCYONE
(MMY3007) 3 NTE NDMM Dara-VMP vs. VMP 706 90.9 vs. 73.9 42.6 vs. 24.4 22.3 vs. 6.2 NCT03158688 [36,37]

MAIA
(MMY3008) 3 NTE NDMM Dara-Rd vs. Rd 737 92.9 vs. 81.3 47.6 vs. 24.9 24.2 vs. 7.3 NTC02252172 [38,39]

CASSIOPEIA
(MMY3006) 3 TE NDMM Dara-VTD vs. VTD 1085 92.6 vs. 89.9 39 vs. 26 64 vs. 44 NTC02541383 [35,40]

POLLUX
(MMY3003) 3 RRMM Dara-Rd vs. Rd 569 92.9 vs. 76.4 43.1 vs. 19.2 22.4 vs. 4.6 NCT02076009 [41]

CASTOR
(MMY3004) 3 RRMM Dara-Vd vs. Vd 500

85 vs. 63
92 vs. 74

(1 prior line
treatment)

30 vs. 10
43 vs. 15

14 vs. 2
20 vs. 3 NCT02136134 [42]

CANDOR 3 RRMM Dara-Kd vs. Kd 466 84.3 vs. 74.7 29 vs. 10 14 vs. 3 NCT03158688 [35,43]
IKEMA 3 RRMM Isa-Kd vs. Kd 302 87 vs. 83 40 vs. 28 30 vs. 13 NCT03275285 [35,45]
ICARIA-

MM 3 RRMM Isa-Pd vs. Pd 307 60 vs. 35 5 vs. 2 5 vs. 0 NCT02990338 [44,46]

NTE = non transplant eligible, TE = transplant eligible, RRMM = relapsed/refractory multiple myeloma,
ORR = overall response rate, CR = complete response, and MRD = minimal residual disease.

The phase III ALCYONE trial randomized non-transplant eligible NDMM patients
(age >65 years old or exhibiting comorbidities) between standard VMP or daratumumab
(Dara)-VMP (bortezomib, melphalan, and prednisone) treatment. A total of 706 patients
were enrolled and the rates of overall response (ORR), very good partial response (VGPR),
complete response (CR) as well as minimal residual disease (MRD) negativity were sig-
nificantly higher in the Dara-VMP arm. With more than 3 years of follow-up, Dara-VMP
even prolonged overall survival (OS) in patients with newly diagnosed multiple myeloma
ineligible for autologous stem cell transplantation (ASCT) and therefore, the combination
of daratumumab with VMP was approved by the Food and Drug Administration (FDA) in
May 2018 and thereafter, by the European Medicines Agency (EMA) [36,37].

In the randomized phase III M trial, non-transplant eligible NDMM patients received
either lenalidomide and dexamethasone (Rd) or Dara-Rd. The rates of ORR, VGPR, CR,
and MRD-negativity (evaluated by NGS, threshold of 1 tumor cell per 105 white cells) were
significantly higher in the Dara-Rd arm [38]. In a recent update conducted after 48 months
of follow-up, the addition of daratumumab to Rd continued to demonstrate a significant
PFS benefit, with an estimated 48-month PFS rate of 60% with Dara-Rd vs. 38% with Rd.
More patients continued to have deeper and more durable responses with Dara-Rd vs. Rd
alone [39].

The CASSIOPEIA study in transplant eligible NDMM patients investigated the efficacy
of adding daratumumab to VTD (bortezomib, thalidomide, and dexamethasone) induction
and post ASCT consolidation therapies. Overall, 1085 patients were included and received
four induction cycles of VTD with or without daratumumab, high dose therapy followed
by ASCT, and two additional cycles of consolidation (Dara-VTD or VTD). Patients who
responded underwent a second randomization to either daratumumab maintenance or
observation. The ORR after consolidation was only slightly higher in the daratumumab
arm (92.2% vs. 89.9%). However, rates of MRD negativity (64% vs. 44%; p < 0.0001) and
stringent CR were significantly better in the D-VTD arm. The addition of daratumumab
to VTD improved PFS (HR 0.47; p < 0.0001) which was observed across all subgroups of
patients [35,40]. CASSIOPEIA was the first study that demonstrated the clinical benefit of
adding daratumumab to standard of care in transplant eligible NDMM.

In the relapsed/refractory setting (RRMM), the POLLUX and CASTOR trials com-
pared Dara-Rd and Dara-Vd to Rd and Vd alone, respectively. The POLLUX trial included
569 patients with a median of one previous line of therapy. Rd was administered with or
without daratumumab until progression or intolerance. Dara-Rd showed an exceptional
ORR of 93% in RRMM, with 55% of patients reaching CR or better. The median PFS was
44.5 months in the Dara-Rd arm and 17.5 months in the Rd arm [41]. Dara-Rd reduced the
risk of progression or death by 56%. The benefit was seen across all patient subgroups,
including high-risk patients [35]. In the phase 3 CASTOR study, RRMM patients were
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randomized to Dara-Vd or Vd alone. Vd was discontinued after eight cycles and daratu-
mumab was continued until progression [42]. The ORR, as well as the VGPR, CR, and
MRD negativity rates, were significantly better in the Dara-Vd group. The median PFS
was 16.7 months in the Dara-Vd arm compared with 7.1 months in the Vd arm (p < 0.0001).
Daratumumab was also superior in the high-risk cytogenetic group (median PFS 11.2 vs.
7.2 months; HR, 0.45; p = 0.0053).

Finally, the combination of daratumumab and carfilzomib was studied in the phase 3
CANDOR trial evaluating carfilzomib and dexamethasone (Kd) with or without daratu-
mumab (Dara-Kd). Four hundred and sixty-six patients were included. The ORR was 84.3%
in the Dara-Kd arm vs. 74.7% in the Kd arm, and, particularly, the CR (28.5% vs. 10.4%)
and MRD negativity (17.6% vs. 3.9%; threshold 10−5) rates were significantly better in the
Dara-Kd arm. The median PFS was 28.6 months in the Dara-Kd group vs. 15.2 months in
the KD group (HR 0.59) [35,43].

Isatuximab is another anti-CD38 IgG kappa monoclonal antibody with a similar
mechanism of action as daratumumab and is characterized by a strong anti-myeloma
activity via direct tumor cell killing and a unique direct proapoptotic effect independent of
Fc crosslinking [44].

In the IKEMA trial, RRMM patients were randomly assigned to isatuximab plus
carfilzomib–dexamethasone (Isa-Kd) or carfilzomib–dexamethasone (Kd, control group).
Treatment was continued until progression or unacceptable toxicity. The study included
302 RRMM patients with one to three prior treatment lines. Median PFS was not reached in
the Isa-Kd group vs. 19.2 months in the Kd group (HR 0.531; p = 0.0007), representing a
47% reduction in the risk of disease progression or death. The benefit was seen across all
subgroups. ORR was 86.6% in the Isa-Kd arm vs. 82.9% in the Kd arm. Additionally, CR
(39.7% vs. 27.6%) and MRD negativity (threshold 10−5; 29.6% vs. 13.0%) rates were better
in the Isa-Kd arm [35,45].

The phase III ICARIA trial compared the triplet Isa-Pd (isatuximab, pomalidomide,
and dexamethasone) to Pd in 307 patients with RRMM who had received at least two
previous lines of therapy (with a median of three lines). After a median follow-up of
11.6 months, a benefit in terms of ORR (60% vs. 35%; p < 0.001) and PFS (median PFS 11.5
vs. 6.5 months; HR 0.59; p = 0.001) for the triplet arm was observed. The PFS advantage
was not statistically different in high-risk patients (median PFS 7.5 vs. 3.7 months; HR 0.66,
95% CI 0.30–1.28) [44,46].

4.2. Immunomodulatory Substances (IMiDs)

The outcomes of patients with MM have improved substantially. One reason is
the development of the immunomodulatory drugs (IMiDs), which include thalidomide,
lenalidomide, and pomalidomide (Figure 3). Although thalidomide is now less commonly
prescribed because of well-known side effects such as polyneuropathy, it is still used within
the CASSIOPEIA schedule in transplant-eligible NDMM patients, and has been designated
as an IA indication in recent ESMO guidelines [47]. Lenalidomide is more widely used
than thalidomide and is approved for treating transplant-eligible and transplant ineligible
NDMM patients. Lenalidomide is also included in many combination triplet schemes
in the RRMM setting and is also the standard of care in post-transplant maintenance.
Pomalidomide, on the other hand, is currently only approved in the RRMM setting. IMiDs
have been described to exert a multitude of functions including anti-angiogenic, cytotoxic,
and immunomodulatory ones. On a molecular basis, recent publications report that their
mechanism of action is based on binding cereblon and thus regulating the ubiquitination
of key transcription factors including Ikaros and Aiolos [48].

In the first-line setting, lenalidomide combined with bortezomib and dexamethasone
(VRd) is still one of the most commonly used triplet regimens in transplant eligible (IIB)
and transplant non-eligible (IA) NDMM patients and is recommended for MM front-line
therapy in the recent ESMO guidelines [47] based on the SWOG S0777 trial comparing
VRd vs. Rd in patients with previously untreated MM without an intent for immediate
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ASCT [49]. This updated analysis included 460 patients. After a median follow-up of
84 months, the median PFS was 41 months for VRd and 29 months for Rd. The addition
of bortezomib to lenalidomide and dexamethasone for induction therapy resulted in a
statistically significant and clinically meaningful improvement in PFS and a better OS.

In transplant-eligible NDMM, maintenance with lenalidomide is still considered the
standard of care for all myeloma patients post-ASCT [47]. Lenalidomide maintenance
after ASCT offers PFS and OS benefits over placebo, as reported in two large randomized
trials [50,51] and a meta-analysis including more than 1200 patients, with a median follow-
up of 79.5 months [52]. Compared to placebo, lenalidomide maintenance offered more than
2 years of PFS (52.8 vs. 23.5 months) and 2.5 years of OS benefit [52].

In RRMM, lenalidomide-sensitive patients in whom a salvage ASCT is not considered,
based on both HR and absolute values of median PFS, Dara-Rd (POLLUX regimen) provides
the longest PFS for patients with RRMM with one to three prior lines of therapy and
standard-risk cytogenetic profile. However, another potent triplet is the combination of the
most efficient proteinase inhibitor carfilzomib with Rd (KRd). KRd has shown a significant
OS benefit over Rd: median OS 48.3 months vs. 40.4 months for KRd vs. Rd (HR 0.79;
p = 0.0045), respectively [53].

However, since most patients progressing after first-line therapy are considered
lenalidomide-refractory these days, they should not receive lenalidomide in any further
treatment line. Instead, such lenalidomide-refractory patients could receive either Dara-Vd
(CASTOR), or combinations of daratumumab or isatuximab with carfilzomib and dexam-
ethasone (Dara-Kd or Isa-Kd) as new standard options for this setting. A further option is
combining Pomalidomide with Vd (PVd) (OPTIMISSM study). This triplet was compared
with Vd in RRMM patients who had received one to three prior lines of therapy that
included lenalidomide. More than 70% of the patients were refractory to lenalidomide.
After a median follow-up of 16 months PVd significantly improved PFS compared with Vd
(median 11.2 months vs. 7.1 months; HR 0·61; p < 0·0001) [54] and supports the use of PVd
in lenalidomide-refractory RRMM patients.

In conclusion, IMiDs exhibit pleiotropic effects directly targeting myeloma cells and
enhancing the immune response in the immuno-suppressive BMME. Further, their syner-
gistic potential with monoclonal antibodies, e.g., daratumumab or isatuximab, represents
a novel treatment standard and has significantly improved the long-term survival of
myeloma patients.

4.3. CAR T Cells

Chimeric antigen receptor (CAR) T cells are genetically modified to target antigen-
expressing tumor cells. CAR T cells express chimeric proteins that consist of extracellular
tumor antigen recognition domains along with intracellular T cell receptor effector do-
mains and co-stimulatory molecules. This results in tumor cell recognition and subsequent
activation of CAR T cells. The main advantages of CAR T cells for cancer treatment are
the following: (1) CAR T cells recognize their native targets without the need for prior
antigen processing and human leukocyte antigen (HLA)-dependent antigen presentation.
Importantly, this allows them to effectively act even under immunosuppressing condi-
tions. (2) They can be used as a polyclonal T-cell population against a selected antigen
represented on the surface of tumor cells, consequently augmenting tumor-targeted T-cell
numbers [55–57]. To date, CAR T cells have been successfully tested in a broad range of
tumor settings. CAR T cell therapy [58,59] is currently approved by the FDA and EMA to
treat aggressive B-cell lymphomas and achieved impressive response and remission rates
even in refractory stage [60–62]. However, CAR T cells possess, besides their great anti-
tumoral capacity, severe side effects reported especially for B-cell malignancies. Among
them are B-cell aplasia, cytokine release syndrome (CRS), macrophage activation syndrome,
and neurotoxicity [63–65].

The first CAR T cells targeting BCMA, also known as TNFRSF17 or CD296, were
pre-clinically tested in 2013 on myeloma cell lines and showed a marked activity against
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them (Figure 3) [66]. Since then, several new anti-BCMA CAR T-cell constructs have been
developed and are explored mainly in RRMM patients, as summarized in Table 2. The
expression of BCMA was reported to be restricted to the B-cell lineage, especially on the
surface of plasmablasts, differentiated plasma cells, and malignant myeloma cells, but not
on hematopoietic stem cells, naïve B, and memory B cells. Two distinct ligands, B-cell
activating factor (BAFF) and a proliferation-inducing ligand (APRIL), bind to the BCMA and
are responsible to support the long-term survival of B cells during differentiation [67–69].
However, it was recently reported that BCMA is also involved in the neural development;
thus, it is speculated that neurotoxicity with BCMA-directed CAR-T therapies, might be a
direct on-target neurotoxicity [70]. To date, idecabtagene vicleucel (ide-cel, bb2121) and
ciltacabtagene autoleucel (cilta-cel) are the only approved CAR T-cell products to treat
RRMM. In addition to ongoing clinical trials with anti-BCMA CAR T cells, CAR T cells
targeting CD38, CD138, and SLAMF7 are under investigation.

Another interesting approach of CAR T-cell therapy in MM is the use of allogenic T
cells in the UNIVERSAL study, in which only a small number of patients were treated. In
this study, the allogenic T cells were genetically modified to express the CAR construct
on the one hand and to disrupt the TCR constant region preventing the graft-versus-host-
disease (GVHD) on the other hand. The allogenic CAR T cells were well tolerated at all
tested doses. Remarkably, no GVHD and neurotoxicity were described although high
response rates were detected. The great advantage of this technique is the rapid availability
of the CAR T-cell product [71–73].

Table 2. Characteristics, efficacy, and safety data from selected clinical trials of anti-BCMA CAR T
cell constructs in RRMM.

CAR
Construct Study Name Antigen Number of

Patients

High
Risk/EMD

(%)
CR (%) CRS (%) Neurotoxicity

(%) NCT Number References

Ide-cel
(bb2121)

CRB-401,
Phase 1 BCMA 62 27/37 39 76 36 NTC02658929 [71]

Ide-cel
(bb2121)

KarMMa,
Phase 2 BCMA 128 35/39 33 84 18 NCT03361748 [74,75]

Cilta-cel
(LCAR-
B38M)

LEGEND-2,
Phase 1/2

Biepitope to
BCMA

(VHH1 and
VHH2)

57 NR 74 90 1 NCT03090659 [76]

Cilta-cel
(JNJ-4528)

CARTITUDE-
1, Phase

1b/2

Biepitope to
BCMA

(VHH1 and
VHH2)

97 24/13 80 95 21 NCT03548207 [77,78]

Orva-cel
(JCARH125)

EVOLVE,
Phase 1/2 BCMA 62 41/23 36 89 13 NCT03430011 [79]

bb21217 CRB-402,
Phase 1 BCMA 69 33/NR 29 70 16 NCT03274219 [80]

CAR-BCMA Phase 1 BCMA 24 46/NR 8 71 NR NCT02215967 [81,82]

UPenn-
CART-
BCMA

Phase 1 BCMA 25 96/28 8 88 32 NCT02546167 [83]

CT053
LUMMICAR

STUDY 2,
Phase 1b/2

BCMA 20 55/25 25 79 16 NCT03915184 [84]

ALLO-715 UNIVERSAL,
Phase 1 BCMA 31 48/23 VGPR: 40 45 0 NCT04093596 [73]

C-CAR088 Phase 1 BCMA 23 81/NR 44 91 4

NCT03751293
NCT03815383
NCT04322292
NCT048295018

[85]

CAR = chimeric antigen receptor, EMD = extra-medullary disease, CR = complete remission, CRS = cytokine
release syndrome, NR = not reported, VGPR = very good partial remission, and BCMA = B cell maturation antigen.
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4.4. Bispecific Antibodies

A promising novel alternative possibility to redirect T cells to tumor cells is the strategy
to use bispecific antibodies (BsAbs) because these antibodies are available off-shelf and
are relatively easy to administer (Figure 3). The BsAbs activate T cells by binding CD3ε
of the T-cell receptor complex leading to T-cell activation, which is independent of the
major histocompatibility complex (MHC) restriction [86,87]. Furthermore, BsAbs possess
the ability of T-cell activation in the absence of co-stimulatory signals, finally resulting in
T-cell-mediated tumor cell lysis [88,89].

Based on the presence or absence of an Fc domain, two distinct groups of BsAbs can be
distinguished. Fc domain-containing BsAbs induce additional immune responses mediated
by innate immune cells and/or the complement system. Antibodies without an Fc region
consist of two different single-chain variable regions and are known as bispecific T-cell
engagers (BiTEs) (Figure 3) [90].

The main toxicities of BsAbs are CRS and neurotoxicity—although occurring to a
lesser extent and severity than CART cell therapy—mainly during the step-up dosing or
during the first administrations. Further side effects include cytopenia and infections [91].
Another challenging fact is T-cell exhaustion, antigen escape, or an immunosuppressive
microenvironment resulting ultimately in tumor cell resistance. However, different strate-
gies to overcome these problems have been developed, i.e., a combination of BsABs with
immunomodulatory drugs [92,93].

To date, more than 10 different BsAbs, mostly targeting CD3 and BCMA, are under
clinical investigation with promising results (Table 3).

Table 3. Characteristics, efficacy, and safety data of bispecific antibodies in RRMM.

Agents Type Phase Target Number of
Patients ORR (%) CRS (%) NCT Number References

AMG420 BiTE 1 BCMAxCD3 42 70 38 NCT03836053 [94]
AMG701 BiTE 1/2 BCMAxCD3 75 83 61 NCT03287908 [95]

Teclistamab
(JNJ-64007957) BsAb 1/2 BCMAxCD3 149 69 55 NCT04557098

NCT03145181 [96–98]

REGN5458 BsAb 1/2 BCMAxCD3 49 62.5 39 NCT03761108 [99]
TNB-383B BsAb 1 BCMAxCD3 58 80 45 NCT03933735 [100]

Elranatamab
(PF-06863135) BsAb 2 BCMAxCD3 30 83.3 73 NCT04649359 [101]

CC-93269 BsAb 1 BCMAxCD3 30 89 77 NCT03486067 [102]
GBR1342 BiTE 1 CD38xCD3 19 NR NR NCT03309111 [103]
AMG424 BsAb 1 CD38xCD3 NR NR NR NCT03445663 [104]

Talquetamab
(JNJ-64407564) BsAbs 1 GPRC5dxCD3 NR NR NR

NCT04108195
NCT03399799
NCT04773522

[105,106]

Cevostamab
(BFCR4350A) BiTE 1 FCRH5xCD3 160 54.8% 80.7% NCT03275103 [107]

ORR = overall response rate and CRS = cytokine release syndrome.

4.5. Antibody-Drug Conjugates Targeting BCMA

One of the approaches targeting BCMA involves the use of an antibody-drug conjugate
(ADC), which is a combination of (i) a monoclonal antibody (mAb), (ii) a cytotoxic agent,
and (iii) a linker joining these two elements. The mAb provides selective delivery of ADCs
to target cells by binding to specific cell surface molecules and inducing cell death after
internalization of the ADC (Figure 3) [69,108].

SG1-vcMMAF8 containing the drug monomethyl auristatin F (MMAF) was the first
potent ADC targeting BCMA and demonstrated cytotoxic activity against BCMA-positive
myeloma cell lines [109].

Belantamab mafodotin (GSK2857916; belamaf), an afucosylated humanized mAb
conjugated to MMAF that inhibits tubulin polymerase, was the first anti-BCMA ADC to
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be tested in clinical trials [110]. The therapeutic effect of this ADC is achieved through
three distinct mechanisms of action: (i) antibody-dependent cytotoxicity (ADCC), which
is enhanced by increased binding of the afucosylated domain of Fc to FcgR (FcgRIIIa)
expressed on effector cells, (ii) induction of apoptosis by disruption of microtubules by
MAAF, and (iii) prolonged stability of ADC in the blood and reduced killing of non-target
cells, provided by the uncleavable maleimidocaproyl linker [110]. Based on the results from
DREAMM-2 (NCT 03525678) multicenter trial, which showed an overall response rate of
31% [111], the U.S. Food and Drug Administration (FDA) approved belantamab mafodotin
in August 2020 as monotherapy for adult patients with RRMM who have been treated with
at least four prior therapies, including an anti-CD38 mAb, a proteasome inhibitor (PI) and
an immunomodulatory drug.

MEDI2228 is another ADC targeting BCMA, consisting of a fully human anti-BCMA
antibody conjugated by a protease removable linker to a DNA cross-linking pyrrolobenzo-
diazepine dimer (PBD). Results from a phase 1, first-in-human, open-label, dose-escalation
trial (NCT03489525) of MEDI2228 in patients with RRMM demonstrated clinical efficacy at
all dose levels tested. MEDI2228 at 0.14 mg/kg administered intravenously every three
weeks had a safe profile and an objective response rate of 61% in the RRMM patient
population heavily pretreated with PIs, IMiDs, and mAbs [112].

HDP-101 is an anti-BCMA ADC that has been tested in preclinical MM models. It
exhibits cytotoxicity regardless of the proliferation state of tumor cells through the use
of alpha-amanitin, an inhibitor of eukaryotic RNA polymerase II. HDP-101 showed high
efficacy against both primary MM cells from patients with newly diagnosed and RRMM
in vitro, induced tumor regression in mouse xenograft models, and was well tolerated with
a promising therapeutic index in cynomolgus monkeys [113].

4.6. BMME Mediated Therapy Resistance

Since most of the BMME targeting therapies, described in Sections 4.1–4.5,
restore/activate an anti-MM immune response, it is observed that the BMME plays a
key role in therapy resistance for these drugs.

One possibility could be the recruitment of immunosuppressive cells, including MD-
SCs, Tregs, Bregs, and TAM into the BMME of MM. These immunosuppressive cells might
secrete NO, arginase, ROS, prostaglandin E2 (PGE2), or indoleamine 2,3-dioxygenase
(IDO) [14,24,25] as well as of immunosuppressive cytokine (e.g., IL-10 and TGF-β) inhibit-
ing the proliferation and expansion of Th1 cells, CTLs, and NK cells [15,16]. Additionally,
it has also been demonstrated that MSCs exert immunomodulatory properties, which
can be mediated by secretion of several factors, including IL-6, TGF-β, IL-10, PGE2, and
upregulated expression of several surface molecules such as VCAM-1, ICAM-1, and CD40
also resulting in immunosuppressive conditions [24,25,114–117]. Another possibility for
BMME targeting therapy resistance might be caused by the cross-talk of BMME and MM
cells via soluble factors such as IL-6, APRIL, and growth factors, but most importantly via
the integrin-mediated cell adhesion and Notch signaling resulting in inhibition of apop-
tosis [118–121], on which the major cytotoxic machinery of the immune cells significantly
depends [122–125].

For therapeutic approaches employing CAR T cells as well as bispecific antibodies, it
was observed that MSCs could protect MM cells from highly lytic BCMA-CAR T-cells [126],
whereas the lytic function of BCMA/CD3 bispecific antibodies was not that much influ-
enced by MSCs [127].

5. Conclusions

The interaction between tumor cells and the tumor microenvironment plays a crucial
role in the stepwise development of myeloma from MGUS to active MM. Furthermore,
the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma
progression. Since myeloma cells depend on signals from the microenvironment for their
survival and growth, therapeutic strategies targeting the microenvironment represent novel
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therapeutic approaches to treat MM patients. At present, these novel treatment options are
often allocated in the later course of disease when most of the patients are already heavily
pretreated and display a dysfunctional/compromised immune system. Treatment efficacy
may be increased by bringing these new agents into the earlier lines of therapy.

Over the past few years, a number of novel treatment strategies have been developed,
such as bispecific antibodies that recognize both BCMA and CD3ε (allogeneic), CAR
T cells, ADCs, and anti-CD38 antibodies or second-generation IMiDs, and proteasome
inhibitors which have significantly improved patient outcomes. However, there is a lack
of clear consensus on the use, combination, and sequence of these new therapies and
finally, most myeloma patients will experience relapse due to the development of resistance
mechanisms because of continuous treatment with (novel) agents. Understanding the
pathophysiology of resistance to commonly used anti-myeloma agents requires further
research. Furthermore, new targets in the myeloma cells or in the BMME have to be
identified to develop therapeutical approaches with a novel mode of action, which might
help to overcome this drug resistance.
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ADC antibody-drug conjugate
ADCC antibody-dependent cytotoxicity
APRIL A proliferation-inducing ligand
BCMA B cell maturation antigen
BM bone marrow
BMME bone marrow microenvironment
Breg regulatory B cell
BsAb bispecific antibody
CAR chimeric antigen receptor
CR complete response
CRAB hypercalcemia (C), renal failure (R), anemia (A), bone lesions (B)
CRS cytokine release syndrome
CTL cytotoxic T lymphocytes
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DC dendritic cell
EMD extra-medullary disease
FDA food and drug administration
FOXP3 forkhead box P3
GC germinal center
GvHD graft-versus-host-disease
HLA human leukocyte antigen
ICAM-1 intercellular Adhesion Molecule 1
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IDO indoleamine 2,3-dioxygenase
IFN Interferon
Ig immunoglobulin
IL interleukin
IMiDs immunomulatory drugs
LAG-3 lymphocyte-activation gene 3
mAb monoclonal antibody
MDSC myeloid-derived suppressor cells
MGUS monoclonal gammopathy of undetermined significance
MHC major histocompatibility complex
MM multiple myeloma
MMAF monomethyl auristatin F
mOS median overall survival
MRD minimal residual disease
MSC mesenchymal stromal cell
NDMM newly diagnosed multiple myeloma
NGS next-generation sequencing
NO nitric oxide
NR not reported
NTE not transplant eligible
ORR overall response rate
PD-1 programmed cell death protein 1
PD-L1/2 programmed cell death protein 1 ligand 1/2
PGE2 prostaglandin E2
PI proteasome inhibitor
ROS reactive oxygen species
RRMM relapsed/refractory multiple myeloma
sFLC serum free light chain
SMM smouldering multiple myeloma
STAT3 signal transducer and activator of transcription 3
TACI transmembrane activator, and calcium modulator and cyclophilin ligand interactor
TAM tumor-associated macrophage
TAM tumor-associated macrophage
TE transplant eligible
TGF-β transforming growth factor beta
Th T helper cell
TIGIT T cell immunoglobulin and ITIM domain
TIM-3 T cell immunoglobulin mucin-3
Treg regulatory T cell
TRL4 toll-like receptor 4
VCAM-1 vascular cell adhesion molecule 1
VEGF vascular endothelial growth factor
VGPR very good partial response
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