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Intracellular signalling systems are highly complex. This complexity makes handling, analysis and
visualisation of available knowledge a major challenge in current signalling research. Here, we
present a novel framework for mapping signal-transduction networks that avoids the combinatorial
explosion by breaking down the network in reaction and contingency information. It provides two
new visualisation methods and automatic export to mathematical models. We use this framework to
compile the presently most comprehensive map of the yeast MAP kinase network. Our method
improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II)
individual referencing for each piece of information, (III) visualisation without simplifications or
added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to
mathematical models and (VI) compatibility with established formats. The framework is supported
by an open source software tool that facilitates integration of the three levels of network analysis:
definition, visualisation and mathematical modelling. The framework is species independent and
we expect that it will have wider impact in signalling research on any system.
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Introduction

All living cells interact with and respond to their environment
via the cellular signal-transduction network. This network
encompasses all cellular components and processes that are
required to receive, transmit and interpret information. Due to
its key role in cellular physiology, the signalling network, and
several of its subnetworks, have been intensely studied in a
range of organisms. However, such networks are highly
complex and difficult to analyse due to the so-called
combinatorial explosion (Hlavacek et al, 2003). This explosion
refers to the fact that the specific state of each component is
determined by multiple covalent modifications or interaction
partners, and that these possibilities rapidly combine to a very
large number of possible specific states. Experimental data do
not generally distinguish between all these specific states, but
instead focus mostly on reactions between pairs of compo-
nents, usually giving no or limited information on other
modifications or interaction partners of the reactants. Hence,

there is a discrepancy between the granularity of the empirical
data and the highly defined specific states used in most
mathematical models. This makes the interpretation and use
of empirical data in the context of such model states
ambiguous and often arbitrary. These problems pose major
challenges for systems biology, as they prevent us from (i)
unambiguously describing a network, (ii) visualising it with-
out simplifications or unsupported assumptions and (iii)
automatically generating mathematical models from knowl-
edge in data repositories.

Large efforts have been invested in addressing these issues.
Signalling systems are commonly visualised through the
informal ‘biologist’s graph’ that is simple and intuitive, but
lacks the stringent formalism and precision required to meet
the three criteria above (exemplified by Thorner et al, 2005).
The lack of standardised glyphs (defining e.g., mechanism of
information transfer and how edges combines to regulate
target nodes) makes the information in the ‘biologist’s graph’
ambiguous and difficult to reuse. To address this, the
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community has developed the Systems Biology Graphical
Notation, SBGN (Le Novere et al, 2009). This includes three
visual formats; the activity flow diagram, the entity relation-
ship diagram and the process description (or process
diagram). The activity flow diagram shares many properties
with the ‘biologist’s graph’, but the entity relationship diagram
and process description allow precise representations. The
process description corresponds to the state transition reaction
format used in most models developed by the systems biology
community, and which have been standardised in the Systems
Biology Markup Language (SBML; Hucka et al, 2003). The
process description could meet each of the three criteria above
but its utility is severely affected by the combinatorial
explosion. It is based on a specific state description, which
means that, for each component, each possible combination of
modifications and interaction partners must be accounted for
explicitly. Hence, only very simple systems can be described
completely and only very few models include the entire state
space (Kiselyov et al, 2009) while the vast majority include
simplifying omissions. While simplifications are often neces-
sary, the lack of discrimination between arbitrary omissions
and exclusions based on experimental evidence is a significant
shortcoming. These issues are partially addressed in the entity
relationship diagram, or molecular interaction map, which
comes in two flavours; explicit and implicit (called heuristic
and combinatorial by the author (Kohn et al, 2006)). The
explicit version requires all specific states to be displayed and
hence share the limitations of the process description. In
contrast, the implicit version displays only the possible
reaction types (or elemental reactions, as we will call them
below) and hence largely avoids the combinatorial explosion.
The entity relationship diagram represents each component as
a single node and reactions in a condensed format. While not
as intuitive as the other SBGN formats, it has the advantage of
concentrating all information on a given protein and works
especially well for simple regulatory circuits, as the concen-
trated information makes it difficult to trace the order of events
in more complex networks. The three SBGN format has
complementary strengths, but there is currently no software
available for conversion between the three different visualisa-
tion formats. However, the SBGN standards are under
continuous development and these issues will likely be
addressed in the future through the SBGN markup language,
SBGN-ML.

Similar efforts on the modelling side have resulted in rule-
based modelling and associated visualisation formats (Faeder
et al, 2005). Briefly, rules are defined as reactions that are valid
under a particular set of contingencies, and each reaction is
specified for each such contingency set. This means that when
a reaction’s rate is increased by phosphorylation of one
component it will be defined by two rules; one where that
component is phosphorylated and one where it is not. While
these rules define the entire state space and the system stays
subject to the full combinatorial explosion, the rule description
has alleviated the combinatorial problem in two respects: (1)
the system has been described more compactly and (2) the
actualised state space might be significantly reduced by
introducing only those states that are actually populated
(Lok and Brent, 2005), or by using agent-based stochastic
modelling (Sneddon et al, 2011). The rule definition format is

also a significant step towards the granularity of empirical
data, as compared with the abstract-specific states. These
advantages are mirrored on the visualisation side by graphical
reaction rules, which use the process description format to
display individual rules (Blinov et al, 2006). Network level
visualisation has used either topological contact maps (Danos,
2007) or entity relationship diagrams (Le Novere et al, 2009),
and these complementary visualisation formats have recently
been combined in the extended contact map (Chylek et al,
2011). Contact maps have software support, but neither entity
relationship diagrams nor extended contact maps can be
generated automatically from the rule-based models. Hence,
the rule-based format partially addresses the automatic
creation of models from data repositories (iii), as it provides
the tools to generate mathematical models automatically once
the knowledge has been reformulated as rules. However, the
rule-based system provides a cumbersome format for (i)
unambiguous network description and is not developed for (ii)
comprehensive visualisations. Taken together, this raises the
question whether graphical- and model-based formats are the
most appropriate for stringent network definition, or whether
there are more suitable network definition formats that allow
both visualisation and automatic model generation.

Here, we present a new framework to describe cellular
signal-transduction networks. Our network definition has the
same granularity as experimental data, avoids the combina-
torial complexity, can be automatically visualised in comple-
mentary graphical formats including all three SBGN formats
and unambiguously defines mathematical models. The rxncon
software tool complements the framework by automating
visualisation and model creation. The key feature of our
framework is the strict separation of elemental reactions (and
their corresponding states); which defines the possible
signalling events in the network, from contingencies; which
describes the contextual constrains on these reactions.
Importantly, each elemental reaction corresponds directly to
a single empirical observation, such as a protein–protein
interaction or a specific phosphorylation. The contingencies
define the constraints on these elemental reactions in terms of
one or more elemental states, for example, by defining the
active state of a protein kinase or the composition of a
functional protein complex. Hence, the format directly link
model states to empirical observations at the same level of
granularity, which pre-empts the need for additional assump-
tions or extrapolations. Moreover, the separation between
reactions and contingencies largely avoids the combinatorial
explosion as only combinatorial states with known functional
influence are considered. The rxncon tool provides automatic
export to established visual formats and to two new visualisa-
tion methods, which allow compact comprehensive represen-
tation. Finally, the framework is stringent and unambiguously
defines a mathematical model, and the rxncon tool support
export to SBML and rule- or agent-based models. This allows
coding of models in a format that mirrors empirical data,
which can be automatically visualised and which is highly
suitable for iterative model building. We illustrate our new
approach by conducting the most comprehensive literature
survey to date of the complete MAP kinase signalling network
of Saccharomyces cerevisiae. Taken together, we provide a
framework that integrates the three levels of network analysis;
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definition, visualisation and mathematical modelling and a
supporting software tool for automatic visualisation and
export to mathematical models. We expect this to be highly
useful for the community and envision a common framework
to bridge different standards as well as experimental and
theoretical systems biology efforts.

Results

This section describes the architecture of the framework,
including its data structure, the different methods of visualisa-
tion and how it relates to a mathematical model (Figure 1A). In
the first part, we present the results of the methods
development and describe the system in detail. In the second
part, we present our results using the MAP kinase network.
The framework has been implemented in the rxncon software
tool that is distributed freely under the open source LGPL
licence and can be downloaded from www.rxncon.org.

The data structure

The events in a signal-transduction network can be categorised
in four types: (1) catalytic modifications, (2) bindings and
interactions, (3) degradation and synthesis and (4) changes in
localisation. Due to the limited information on spatial
(re)distribution of components, we have focused on types
1–3 here (Table I). However, the framework is fully capable to
include localisation reactions and the rxncon tool will be
upgraded to encompass these in the future. The first step of the
network definition is to distil the available knowledge into two
distinct categories of information: what can happen, and when
it can happen. The what-aspect (referred to as C1, or elemental
reactions) specifies the possible events, including the event
type (1–3 above), and which components and sites that are
involved. The when-aspect (referred to as C2, or contingencies)
specifies how the reaction rate is affected by the state of the
involved components. For instance, the MAP kinase Hog1
phosphorylate its target Hot1 (C1—‘what’; Figure 1B), and this
reaction only occurs when Hog1 is phosphorylated on both
Thr174 and Tyr176 (C2—‘when’). This second category of
knowledge therefore represents the causal relationships, or
contingencies, between the reactions characterised in the first
class of knowledge. The separation of C1 from C2 allows us to
define even large complex networks stringently in a concise
format, as exemplified with the yeast MAP kinase network
below.

The what-aspects of the knowledge are represented in the
reaction list (Figure 1C; simplified example). Importantly, we
have broken down the reaction network in elemental
reactions, which change elemental states. An elemental state
is similar to an empirical observation, such as an interaction
between two proteins or a specific modification at a specific
site on a specific protein. If a protein has been phosphorylated
on two sites, this corresponds to two different elemental states.
In other words, the elemental states correspond to overlapping
(non-disjoint) sets. This is different from the specific states in
ordinary state transition models, but analogous to the
macroscopic states used in the works by Conzelmann et al
(2008) (Borisov et al, 2008). An elemental reaction is similarly

defined as a two-component reaction that modifies a single
elemental state. Note that this precludes lumped reactions and
that, for example, a kinase–substrate interaction and phos-
phorylation must be described by two different elemental
reactions. Hence, the reaction list has the same granularity as
typical empirical data, which pre-empts the need for assump-
tions in the mapping process. It also allows us to use the
established format for high-throughput data (Stark et al, 2006),
including specific referencing of each reaction with PubMed
identifiers and complemented with additional details such as
active domains, subdomains and residues (Supplementary
Tables S1 and S2).

The when-aspect of the knowledge is described in the
contingency list (Figure 1D; simplified example). This list
defines the contextual constraints on all elemental reactions.
Most contingencies will correspond to the direct effect of single
elemental states of the components involved in the particular
elemental reaction, but Boolean states allow for combinatorial
effects and indirect effects in, for example, scaffolds that
cannot be directly attributed to a single elemental state in one
of the reactants. There are six distinct reaction contingencies;
the Effector can be absolutely required (!), positive (Kþ ),
completely neutral (0), negative (K� ), absolutely inhibitory
(x) or of unknown effect (?). These overlap partially with the
influences of entity relationship diagrams (Le Novere et al,
2011), but distinguish between no effect (0) and no known
effect (?). The Boolean states provide a middle layer between
reaction contingencies and a combination of elemental states
and/or inputs, using either ‘AND’ or ‘OR’ to define, for
example, large complexes or alternative mechanisms. In
addition, inputs and outputs function as elemental states and
reactions, respectively, at the interface between the network
and the external environment. Each row in the contingency list
contains a Target (elemental reaction, output or Boolean
state), an Effector (elemental state, input or Boolean state) and
a symbol describing how the Effector influences the Target
(Contingency) that is a contingency symbol (!, Kþ , 0, K� , x,
?) when the Target is an elemental reaction or an output and a
Boolean operator (AND, OR) when the Target is a Boolean
state. The data structure is illustrated with a simplified version
of the Sho branch of the HOG pathway (Figure 1B). The
reaction list state that, for example, Hog1 phosphorylates
(‘Pþ ’) Hot1 (Figure 1C; eighth reaction; on the last row), and
the contingency list state that this reaction requires (‘!’) that
Hog1 is phosphorylated on both Thr174 and Tyr176
(Figure 1D, last two rows). These states in turn correspond
to the reactions six and seven, respectively (Figure 1C). Hence,
the reaction and contingency information suffice to describe
the network and their separation keeps the description concise
and at the granularity of empirical data. Consequently, the data
structure addresses the first issue; unambiguous network
definition.

Visualising the signal-transduction network

We address the second issue; comprehensive visualisation,
with two novel forms of visualisation; the contingency matrix
and the regulatory graph. These also keep reactions and
contingencies separate and hence avoid the combinatorial
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explosion and implicit assumptions. Both include the com-
plete information about reactions (C1) and contingencies (C2).
This data structure is also well suited for visualisation in entity
relationship diagrams or extended contact maps, and the
rxncon software tool supports export to the entity relationship
format (Chylek et al, 2011; Le Novere et al, 2011). We also
provide export to the reaction graph/activity flow diagram and
the process description, though neither of these can fully and
accurately represent the network as discussed below. Never-
theless, they all provide their unique advantages and can be
automatically generated with the rxncon tool and the
information in the reaction and contingency lists.

The contingency matrix integrates the information in the
reaction and contingency lists (Figure 1E). The matrix is
spanned by the reactions and their corresponding states (C1)
and populated by the contingencies of reactions on states (C2).
Each row corresponds to one elemental reaction and each
column corresponds to one elemental state. The symbol in
each reaction–state intersection specifies how that specific
reaction depends on that specific state. Together, one row

contains the complete set of rules a reaction follows, and
hence describes how it works in every specific state. This is
related to a dependency matrix (Yang et al, 2010), although
the entries in the contingency matrix are more detailed
and unambiguous. In the example (Figure 1E), the first row
shows that (a) the binding of Sho1 to Ste11 cannot occur if
either of the components is already part of such a dimer
(column 1), (b) that we do not know whether the prior binding
of Sho1 to Pbs2 (column 2) or phosphorylation of Ste11
(column 3) effects the Sho1–Ste11 binding and (c) that the
other states appearing in the row are irrelevant for this specific
binding reaction—as they do not describe properties of Sho1 or
Ste11. The primary advantages of the contingency matrix are
that it (1) allows a comprehensive documentation/visualisa-
tion of all reactions and dependencies within the network, (2)
that it does so without requiring assumptions, (3) that it
explicitly defines unknowns and hence gaps in our knowledge
and (4) that the matrix constitutes a template from which
mathematical models can be derived automatically (see
below).

Figure 1 Schematic representation of the data structure. (A) The input data are the reaction and contingency lists, which contains the ‘what-aspects’ and ‘when-
aspects’ of the reaction network, respectively. The rxncon software uses these lists to create a range of visualisations as well as computational models. These
conversions require no additional information and are fully automated. (B) A simplified version of the Sho1 branch of the Hog pathway in S. cerevisiae will be used to
illustrate the data structure. This ‘biologist’s graph’ shows the activating phosphorylation cascade (arrows) from Ste20 to Hot1. Scaffolding and membrane recruitment by
Sho1 facilitates the first two phosphorylation events (grey lines). (C) The (simplified) reaction list defines the elemental reactions between pairs of components. It includes
the two components (columns I and III), reaction type (column II; ‘ppi’¼ protein–protein interaction, ‘Pþ ’¼ phosphorylation; see Table I for complete list of reactions),
reaction (column IV, a concatenation of the components and the reaction type) and resultant state (column V; protein dimers or phosphorylated states). Note that each
elemental state only defines a single aspect of each component’s specific state. (D) The (simplified) contingency list defines the relationship between states and
reactions. It contains the affected reaction (Target, column I), the influencing state (Effector, column III), and the effect this particular state has on that reaction
(contingency, column II). (E) The reaction and contingency information is summarised in the contingency matrix. The matrix is defined by elemental reactions (rows) and
states (columns). The cells define how (if) each reaction (row) is affected by each state (column); that is, the reactions’ contingencies on different states. Note that only
direct contingencies are considered; reaction/state intersections which do not share components are blacked out. The grey fields (‘x’) are automatic as states are binary
and hence a reaction cannot occur if the state is already true. The green fields (‘!’/‘Kþ ’) are imported from the contingency list, and all other open fields are defined as
unknown effect (‘?’). This information can also be visualised in a number of graphical forms: The reaction graph (F) displays network topology with either components or
their domains as functional units. The regulatory graph (G) combines the reaction and contingency information to display the causal relationship between the reactions in
the network and provides a complete graphical representation of the knowledge compiled in the contingency matrix. The limited process description (H) displays the
catalytic modifications in the signal-transduction network as state transitions with catalysts but without complex formation (compare Supplementary Figure S1). The
interaction and distance matrices (I) provide a compact description of network topology and allow calculation of distances between nodes. Finally, the reaction and
contingency data can be visualised as an entity relationship diagram (J). These visualisations and the equation system for this system, subsystem or your own favourite
network defined in the same format can be automatically generated using the rxncon software.

Table I Thirteen reaction types were used to map the MAP kinase network

Reaction Category
type

Category Subclass
ID

Subclass
Modifier
or
boundary

Reaction
type ID

Reaction name

Pþ 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.1 Phosphorylation
P� 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.2 Dephosphorylation
AP 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.3 Autophosphorylation
PT 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.4 Phosphotransfer
GEF 1 Covalent modificationa 1.2 GTP/GDP hydrolysis/

exchange
P 1.2.1 Guanine Nucleotide

Exchange
GAP 1 Covalent modificationa 1.2 GTP/GDP hydrolysis/

exchange
P 1.2.2 GTPase Activation

Ubþ 1 Covalent modification 1.3 (De)Ubiquitination Ub 1.3.1 Ubiquitination
CUT 1 Covalent modification 1.4 Proteolytic processing Truncated 1.4 Proteolytic cleaveage
ppi 2 Association 2.1 ppi N/A 2.1.1 Protein–protein interaction
ipi 2 Association 2.1 ipi 2.1.2 Intra-protein interaction
i 2 Association 2.2 i N/A 2.2 Interaction (non-proteins)
BIND 2 Association 2.3 BIND N/A 2.3 Binding to DNA
DEG 3 Synthesis/degradation 3.3 DEG N/A 3.3 Degradation

The table indicates reaction type and classification. Additional details are provided in the ‘Reaction Definition’ sheet of Supplementary Tables S1 and S2.
aFor convenience, the G-protein cycle is approximated as a covalent modification by addition/removal of phosphate to/from a basic, GDP-bound form.
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The reaction graph displays a topological, directed reaction
network (Figure 1F). It represents each entity as a single node
and each relationship between a pair of entities as a single
edge. Edges can be non-directional (e.g., protein� protein
interaction), unidirectional (e.g., phosphorylation) or bidirec-
tional (e.g., phosphotransfer). The full reaction graph displays
the domains and residues involved in each reaction. The
protein parts are independent nodes and defined as neigh-
bours (proteins can have domains or residues, domains can
have subdomains or residues, subdomains can have residues).
The inclusion of domain information makes the reaction graph
similar to the (extended) contact maps (Danos, 2007; Chylek
et al, 2011). The reaction graph and contact maps are both
purely topological and do not include any contextual
information, in contrast to the extended contact map which,
for example, may show that binding only occurs to phos-
phorylated residues. We also use a condensed variant that
displays only the central node for each component and
collapses multiple reactions of the same kind between a pair
of components to a single edge, and hence corresponds closely
to the activity flow diagram of SBGN (Supplementary Figure
S1B; Le Novere et al, 2009). The advantages of the reaction
graph are (1) the relative simplicity that makes it useful for
visualisation of even large networks and (2) that it is suited for
visualisation of large-scale data sets within the context of that
network (see below).

The regulatory graph shows how information is conveyed
through the network (Figure 1G). It improves on the reaction
graph by including information on causality between the
reactions in the network (C2 data). The regulatory graph
shows the network’s regulatory structure; that is, which
reactions (via states) actually influence the rate of other
reactions. It is a bipartite graph with the elemental reactions
(red) and elemental states (blue) as nodes. Reaction-to-state
edges simply show which reactions produce or consume
which states. The state-to-reaction edges show which states
(products of upstream reactions) affect the dynamics of which
(downstream) reactions. These state-to-reaction edges corre-
spond to the symbols in the contingency list, i.e., ‘!’, ‘Kþ ’,
‘K� ’ or ‘x’. The regulatory graph can easily be translated into
an influence graph, which can be used for structural analysis
of the network (Kaltenbach et al, 2011). In contrast to the
influence graph or ‘story’ (Danos, 2007), the regulatory graph
strictly separates the effects of reactions (production or
destruction of states) and the modifiers (increase or decrease
in reaction rates) via distinct edge types. Furthermore, only the
(modified) elemental states are displayed and the (the
unmodified) complementary source/target state is implicit.
Hence, like in the ‘stories’, cyclic motifs only appear when
there is a true feedback in the system. This visualises both the
(possible) sequence of events and the feedbacks clearly.
However, in contrast to the ‘story’, the regulatory graph is
comprehensive and simultaneously visualises all possible
paths or ‘stories’. In this example (Figure 1G), the uppermost
node pair corresponds to the reaction where Sho1 binds
Ste11 (Sho_ppi_Ste11) and the resulting state Sho1–Ste11.
The reaction-to-state edge linking these two nodes identifies
Sho1–Ste11 as the product of this binding reaction. Note
that the source states for this reaction are omitted (i.e.,
Sho1 not bound to Ste11 and Ste11 not bound to Sho1). The

state-to-reaction edge from Sho1–Ste11 to Ste20_Pþ _Ste11
shows that the phosphorylation of Ste11 by Ste20 is enhanced
in the Sho1–Ste11 complex. This reaction in turn produces the
state Ste11-{P}, which is required for phosphorylation
of Pbs2 on both Ser514 and Thr518. Hence, the information
flow can be followed throughout the network as all edges
are unidirectional. The main advantages of the regulatory
graph are that it (1) allows a comprehensive documentation/
visualisation of all reactions and contingencies within the
network, (2) that it does so in a very compact format (3)
without forcing non-supported assumptions, (4) that it
can be used for structural analysis of the network and (5)
that it clearly shows the information flow through the
network.

Process descriptions are well established and allow visuali-
sation of the information flow and mechanistic detail
simultaneously (Kitano et al, 2005). They are excellent for
representation of small networks which are completely
known, but lack of data (of the right granularity) invariably
lead to unsupported assumptions. In addition, these diagrams
rapidly become very complex, generally forcing ad hoc
reduction and additional implicit and unsupported assump-
tions. Therefore, process descriptions do not allow a complete
description of the network with the stringency we require.
However, the process description can be clear and easy to read,
and we generate a limited version which excludes complex
formation and hence avoids most of the combinatorial
complexity. The difference is highlighted by the upper three
nodes in the example (Figure 1H), where Ste20 phosphorylates
Ste11. In contrast to full process description, the binding of
Ste11 to Sho1, and how this binding would affect the
phosphorylation, is not included (compare Supplementary
Figure S1). The (limited) process description has several
advantages: It (1) is intuitive to read and (2) defines in which
internal state(s) an enzyme is active, its substrate and the exact
target residue, which (3) conveys the information flow through
the pathway, the enzyme–substrate relationships as well as the
gaps in our understanding of these aspects.

The information can also be used to generate interaction
matrices that specify which components react with which
components. These can be rendered at several levels of detail
ranging from a complete interaction matrix including protein
domains and target residues that defines each interaction type,
via condensed interaction matrices with only one row and
column per protein that still contains reaction type informa-
tion (Figure 1I, upper matrix), to numerical matrices that only
include information on connection and directionality. We used
the latter to calculate the distances within the network to
generate a distance matrix (Figure 1I, lower matrix).

Finally, the rxncon tool provides export to entity relationship
diagrams (Figure 1J). Like the regulatory graph, the entity
relationship diagram displays reactions and contingencies
separately and hence largely avoids the combinatorial com-
plexity. The entity relationship diagram has the advantage of
concentrating all information on a given protein around a
central node, which works especially well for simple regula-
tory circuits. This emphasises the role of each component
within the network, in contrast to the regulatory graph which
emphasises the information flow through the network. The
entity relationship diagram is generated automatically by the
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rxncon software and visualised via Biographer (Biographer).
In the same way, the rxncon software can be used to generate
the contingency matrix, the reaction graphs, the regulatory
graph, and, via BioNetGen (Blinov et al, 2004), the SBML file
that constitute the basis for the process description. These
generations are fully automated and hence the framework
addresses the issue of (ii) automatic network visualisation
without further assumptions and—in the case of the con-
tingency matrix and regulatory graph—without any
simplifications.

Generation of mathematical models

The contingency matrix is a template for automatic generation
of mathematical models. Each elemental reaction corresponds
to a basic (context-free) rule in a rule- or agent-based model
(Table II), or, in other words, a set of rules that share a reaction
centre (Chylek et al, 2011). All contextual constrains on an
elemental reaction is defined in a single row in the contingency
matrix, and this row defines the elemental reaction’s
implementation in the rule-based format. The basic rule
suffices if there are no known modifiers of a particular
elemental reaction (i.e., only ‘0’ and ‘?’ apart from the
intersection with its own state(s) (which is always ‘x’ for a
product state and ‘!’ for a source state)). Every other
contingency splits the expression in two rules; one when that
elemental state is true and one when it is false. The number of
rules needed only increases with the number of quantitative
modifiers (‘Kþ ’ and ‘K� ’) as the qualitative modifiers sets
the rate constant to zero in either the ‘true’ (for ‘x’) or false
(for ‘!’) case (see Supplementary information for details). The
expansion to rules is fully defined in our data format and the
rxncon software tool automatically generates the input file for
the computational tool BioNetGen (Blinov et al, 2004). This
file can be used for rule-based modelling, network-free
simulation and creation of SBML files. The translation to and
from the rule-based format is unambiguous in both directions,
and we illustrate this with translation of a rule-based model of
the pheromone response pathway (yeastpheromonemodel.
org). This model contains lumped reactions which we
translate to combinations of elemental reactions, resulting in
a different equation structure but the same functionality given
appropriate choice of rate constants (Supplementary Table
S3). Furthermore, we cannot distinguish different identical

proteins in, for example, homodimers, and can therefore not
define strict trans-reactions within such dimers. Apart from
these issues, we can reproduce the same model with only
cosmetic/nomenclature differences (see Supplementary
information for details). Hence, the framework addresses the
issue of (iii) automatic model generation from the database of
biological information.

Mapping the MAP kinase network

As a benchmark, we have used the presented framework and
an extensive literature search to create a comprehensive map
for the yeast MAP kinase network (Supplementary Table S1).
Reactions have been defined with specific residues and
domains whenever experimental support was sufficient. The
degree of experimental evidence has been evaluated manually
and individually for each entry, and references to primary
research papers supporting each interaction have been
included in the reaction and contingency lists (column
‘PubMedIdentifier(s)’). We have used mechanistic data on
reactions (C1) and a combination of mechanistic and genetic
data on contingencies (C2) between reactions and reactants’
states from primary research literature. The mapping is based
solely on primary research papers and de facto shown data to
ensure a high-quality network reconstruction. We chose to
exclude almost all genetic data as indirect effects cannot be
ruled out even in well-performed genetic screens. Finally, we
decided not to include spatial data, as we found information
especially on regulation of (re)localisation too sparse. To the
best of our knowledge, we have eliminated all questionable
information from the compiled data set, and convincing
reactions lacking solid mechanistic evidence have been
included but clearly and distinctly labelled.

The MAP kinase network contains 84 components, 181
elementary states and 222 elementary reactions, correspond-
ing to many hundreds of thousands of specific states. This
network is large enough to be a severe challenge to the
established visualisation and analysis methods. We did in fact
fail to generate the complete state space and terminated the
BioNetGen expansion after the first three iterations which
generated 207, 1524 and 372 097 specific states, respectively.
We use a range of graphical formats to visualise different
aspects of this highly complex network. First, we display the
network topology in the reaction graphs (Figure 2). These

Table II Implementation of elemental reactions in the rule-based format

Elemental reaction BioNetGen rule implementation

Interactions (‘‘ppi’’, ‘‘i’’ or ‘‘bind’’) A(B)þB(A)o�4A(B!1).B(A!1) kf, kr
Intra-protein interactions (ipi) A(A1,A2)o�4A(A1!1,A2!1) kf
Phosphorylations (Pþ ) AþB(PsiteBU)�4 AþB(PsiteBP) kf
Autophosphorylations (AP) A(PsiteBU)�4A(PsiteBP) kf
Phosphotransfers (PT) A(PsiteBP)þB(PsiteBU)o�4A(PsiteBU)þB(PsiteBP) kf, kr
Dephosphorylations (P� ) AþB(PsiteBP)�4AþB(PsiteBU) kf
Nucleotide exchanges (GEF) AþB(GnPBU)�4AþB(GnPBP) kf
Nuclease activations (GAP) AþB(GnPBP)�4AþB(GnPBU) kf
Ubiquitination (Ubþ ) AþB(UBsiteBU)�4AþB(UBsiteBUB) kf
Proteolytic cleavages (CUT) AþB(DomainBU)�4AþB(DomainBtruncated) kf
Degradations (DEG) AþB�4A kf

The table displays how the different elemental reactions in Table I are translated to the rule-based format. See Supplementary information for additional details.
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figures show that the number of characterised phosphoryla-
tion reactions vastly outnumbers that of characterised
dephosphorylation reactions (68 to 16; Figure 2A), and that
several well-established processes are only supported by
genetic data (including the entire MAP kinase cascade below

Pkc1; Figure 2B, dashed lines). The reaction graph also
allows comparison between the established pathway archi-
tecture and the unbiased global protein� protein interaction
studies and synthetic lethal networks (Figure 3A and B,
respectively).
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In the contingency matrix (Figure 4), we visualise the
combined knowledge we have about the MAP kinase system
(C1 and C2). The core matrix (red block of rows and blue block
of columns) describe all the elemental reactions, elemental
states and the (possible) contingencies of reaction on states.
The black fields here show when there is no overlap between
the components in the reactions and those defined in the
states. Therefore, the matrix will always be sparsely popu-
lated. However, we also see that most of the remaining fields
are grey; that is, effect not known (‘?’). This means that our
knowledge of reactions (C1; which defines rows and columns)
is much stronger than our knowledge of the causality between
these reactions (C2; the cells). We only have data on a minority
of all possible contingencies, and these gaps are explicitly
shown in the contingency matrix. It should also be noted that
not all effects can be ascribed to single elemental states. We
have added an outer layer of Boolean states (purple rows and
columns) to account for these cases. The Boolean states
describe complex mechanisms such as scaffolding and can in
principle correspond to the specific states of, for example,
process descriptions. However, they are only added when
needed to describe empirical results. Note that only a small
fraction of the states are Boolean, which reflects the low
abundance of empirical data on the combinatorial effect of
elemental states (i.e., specific states). Therefore, we believe it
to be better to use mapping strategies which do not require
such data. Finally, the matrix contains a layer of inputs and
outputs (grey; columns and rows, respectively). These
constitute the system’s interface with the outside.

The regulatory graph (Figure 5) displays the information in
the contingency matrix graphically, by showing how reactions
produce or consume states, and how states influence
reactions. This graph contains the full C1 and C2 information,
and would fall apart without either. In fact, the isolated
reaction–state pairs that fall outside the graph do so because
they have no known incoming or outgoing contingencies. The
graph shows that the MAP kinase network is rather well
connected, as most reactions are indeed linked in a single
graph by contingencies. However, there are relatively few
input and output points; many reactions do not have known
regulators and many states do not have defined regulatory
effects. Only reaction–state pairs that appear between the
system’s input and output would be able to transmit
information. This means either that all other pairs are
irrelevant for the dynamics of the signal-transduction process,
or that we are lacking information about their role in this
process. In fact, such lose ends might be excellent candidates
for targeted empirical analysis. One example would be Msb2’s
binding to Cdc42, which is reported to be important for the

pseudohyphal differentiation pathway; raising the question of
whether this binding is regulated in response to the stimuli that
activate this part of the MAP kinase network. Another point
that stands out is the almost complete lack of (documented)
information exchange between pathways. The exception is the
Sho branch of the Hog pathway, which is closely intertwined
with the mating pathway, as both are activated by the shared
MAP kinase kinase kinase Ste11 and parts of the cell polarity
machinery.

We have also generated a network map in the established
process description format, but without complex formations
(Figure 6). This decision eliminated most of the combinatorial
explosion and the need for implicit assumptions. However,
there is still uncertainty in the specific phosphorylation state of
the active state of certain catalysts, such as Ssk2, Ste11 and
Ste7. Likewise, we do not know if phosphorylation order is an
issue for proteins with multiple phosphorylation sites. In
contrast to the regulatory graph (Figure 5), the process
description becomes more complicated the more unknowns
we have and Figure 6 is simplified (compare Supplementary
Figure S2). However, the limited process description in Figure 6
clearly shows the catalyst–target relationships, and reinforces
the impression that very few of the known phosphorylation
reactions are balanced by known dephosphorylation
reactions.

Finally, we automatically generated a mathematical descrip-
tion of the entire network as a proof of principle. The rxncon
software used the contingency matrix to generate the input file
for BioNetGen (Blinov et al, 2004). The corresponding
network is too large to create but could be simulated with
the network-free simulator NFSim (Sneddon et al, 2011).
Further analysis of this system falls outside the scope of this
paper, but the input file to BioNetGen and/or NFSim with
trivial parameters is included as a supplement. Hence, a
complete mathematical model can be automatically generated
from the reaction and contingency data, and to our knowledge
this is the first framework that integrates network definition at
the granularity of empirical data with automatic visualisation
and automatic model creation.

Discussion

It is clear that the complexity of signal-transduction networks
is one of the major challenges in systems biology, impeding
our ability to visualise, simulate and ultimately understand
these networks. This issue has been widely recognised and
substantial efforts have been committed to improve and
standardise our tools for visualisation and modelling of

Figure 2 The reaction graph compactly displays the topology of the S. cerevisiae MAP kinase network. (A) The reaction graph of the MAPK network displays the
components as nodes and the reactions as edges. Each component is defined by a central major node and peripheral minor nodes indicating domains, subdomains and
specific residues (blue). When interacting domains and target residues are known, reactions are displayed as edges between these minor nodes. In contrast, the
condensed reaction graph (B) displays each component as a single node, and each type of reaction between two nodes as a single edge. Nodes are either proteins
(circles), small molecules (diamonds) or DNA (square). Edge colours indicate reaction type (co-substrates and co-products): Grey; protein–protein interaction (N/A), red;
phosphorylation (� ATP, þ ADP), orange; guanine nucleotide exchange (�GTP, þGDP), blue; dephosphorylation or GTPase activation (þ Pi), gold; ubiquitination
(� ubiquitin, � ATP, þ ADP, þ Pi), black; phosphotransfer or proteolytic cleavage (N/A). The domain layout in (A) prioritises readability and domain organisation does
not reflect linear sequence or protein structure. Arrowheads indicate directionality for unidirectional or reciprocal catalytic modifications. Reactions for which we found no
direct evidence but which are supported by convincing genetic data has been included as dashed lines. Note the much higher frequency of reported phosphorylation
reactions as compared with dephosphorylation reactions; in total the network includes 68 phosphorylation reactions but only 16 dephosphorylation reactions (A).
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cellular networks (Hucka et al, 2003; Le Novere et al, 2009).
These standardisation efforts are essential for data exchange
and reusability, but many of the existing tools are unsuitable

for definition, visualisation and mathematical modelling of
large networks. The arguably most important problems are the
combinatorial complexity, the granularity difference between
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empirical and theoretical data, and the lack of exchange
formats between different theoretical descriptions. Here, we
have introduced a new framework for network definition at the
same granularity as most empirical data. This format was
already available for C1 (reaction) information, as our list of
elemental reactions uses the same format as high-throughput
data (PSICQUIC). We describe contextual information at the
same granularity in our contingency list (C2), which not only
allows an intuitive and accurate translation of empirical data
but also largely avoids the combinatorial complexity. Contrary
to state transition based descriptions but like the related rule-
based format, the reaction and contingency based description
becomes smaller the less knowledge we have as only known
reactions and contingencies are considered. This format also
provides for highly detailed referencing as each elemental
reaction and contingency can and should be tied to empirical
evidence (i.e., research paper(s)). Furthermore, we show that
this format is stringent and unambiguously define both rule-
based models and graphical formats, such as the activity flow
diagram (condensed reaction graph), entity relationship
diagram and process description formats of SBGN. Our
framework also supports two new visualisation formats that
we introduce here and that can display our complete knowl-
edge database (the complete reaction and contingency lists).
Finally, our framework provides a very high reusability and
extendibility, as the underlying network definition—in list
format—is very easy to extend, merge and reuse in other
context, which is not the case for most graphically or
mathematically defined systems. Of course, this level of
definition still leaves the issues of parameter estimation and
graphical layout, but these would typically need to be repeated
even when merging graphical and mathematical network
definitions. Hence, we advocate a more fundamental level of
network definition than graphical or mathematical formalism.
We envisage this or a similar framework as a standard to
greatly facilitate model/network construction, exchange and
reusability.

We have applied this method to map out the MAP kinase
network of S. cerevisiae. This network was chosen as a
benchmark since it is both well characterised and representa-
tive for signal transduction in general. It consists of three clear
subgraphs, which have traditionally been considered more or
less insulated pathways; the High Osmolarity Glycerol (Hog)
pathway, the Protein Kinase C (PKC) pathway and the MATing
(MAT) pathway, which almost completely overlaps with the
PseudoHyphal Differentiation (PHD) pathway. These path-
ways have also been mapped or documented in several other
efforts. KEGG presents a combined map of the traditional MAP
kinase pathways in a format similar to its metabolic pathways
(Kanehisa et al, 2006, 2010). However, the stringent edge
definitions used for the metabolic networks have been
abandoned and this is a ‘biologist’s graph’. The picture is

similar with the maps of yeast MAP kinase pathways at
Science STKE (e.g., Thorner et al, 2005). For example, these
maps display Ste11 with four upstream regulators, but it is
unclear how they regulate Ste11 and how their contributions
combine (e.g., AND or OR?). Therefore, these network maps
may provide an excellent introduction to the networks
by providing a components list and a rough idea of the
components’ roles in the network, but they neither define
reactions (C1) nor contingencies (C2) unambiguously. On
the opposite end, we have the recently published process
description of the cell cycle and its surrounding signalling
network (Kaizu et al, 2010). This contains explicit definition
of both C1 and C2 information. However, the tremendous
number of specific states in such a network forces
simplifications, which not only leads to a loss of knowledge,
but also mixes up known contingencies (C2) with arbitrary
assumptions made to simplify the network. One example in
this particular case would be the separation of the upstream
activation of Ste11 and its downstream effect on the Hog and
Mating pathways. The output of this module is defined by the
context of its activation, and this information is lost due to
these arguably necessary simplifications. In addition, the
granularity difference between the highly specific map states
and the underlying biological data makes the mapping
ambiguous, leading to further unsupported assumptions.
Despite these shortcomings, the process description is useful
for visualisation of certain network properties due to the
explicit representation of highly detailed knowledge such as
target residues. However, we stress that neither of these
established and widely used methods are sufficient to
accurately capture the entire signal-transduction network.
Instead, we introduce the contingency matrix and the bipartite
regulatory graph as alternative methods, which are able to
fully capture the entire knowledge database without simplifi-
cations or assumptions. Together with the established meth-
ods, these visualisations provide an unprecedented view on
the chosen benchmark system, and we trust that this
completely referenced and comprehensive map of the MAP
kinase signalling network in S. cerevisiae will be a useful
reference material for the research community.

These results have direct bearing on the many efforts to
create large data repositories. Pure reaction (C1) data, such as
protein� protein interaction networks, can be retrieved using
the standardised Molecular Interaction Query Language
(MIQL; which our reaction list is designed to be compatible
with) and PSICQUIC (PSICQUIC). PSICQUIC accesses, for
example, ChEMBL (Overington, 2009), BioGrid (Breitkreutz
et al, 2010), IntAct (Aranda et al, 2010), DIP (Xenarios et al,
2002), MatrixDB (Chautard et al, 2009) and Reactome (Croft
et al, 2010). Several of these databases have additional
information including contingency (C2) information and a
standardised (non-graphical) format for definition and

Figure 3 The condensed reaction graph is an excellent tool for visualisation of high-throughput data. (A) Physical interactions within the MAPK network. The global
protein–protein interaction network was retrieved from Biogrid (Stark et al, 2006), filtered for physical interactions excluding two hybrid, and visualised on the condensed
reaction graph (Figure 2A). Purple edges indicate protein–protein interactions and their thickness indicates the number of times they were picked up, ranging from a
single time (dashed line) to 19 times. Nodes that appear faded have no interactions with any other component in the MAPK network reported in this data set. Note that
the nodes that do not correspond to single ORFs would be excluded automatically (e.g., the SCF complex, DNA, lipids). The smaller, boxed network display the
corresponding two-hybrid interaction network. (B) Genetic interactions within the MAPK network. Synthetic lethal interactions were retrieved from Biogrid and visualised
as per (A). Also quantitative data, such as mutant phenotypes and gene expression levels, can be directly visualised on the network.
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retrieval would further improve the usefulness of these
resources and facilitate further analysis of the stored informa-
tion. The framework we propose here provides such a format
with the key advantage of including export to mathematical

models. Since mathematical modelling is the most central and
natural step to bring the knowledge in these databases into a
useful form, where quantitative systems properties can most
exhaustively be analysed, the introduction of such an export is
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Figure 4 The contingency matrix provides a complete description of the network or network module. The core contingency matrix is spanned by the elemental
reactions (rows, in red) and the elemental states (columns, in blue). The additional blocks are derived from the contingency list and contain the formation rules (rows) and
effects (columns) of Boolean states (both purple) as well as the output of (rows) and input to (columns) the network (both grey). The cells in the matrix define how each
reaction (row) depends on each state (column). The effects range from being absolutely required (‘!’), via positive effector (‘Kþ ’), no effect (‘0’) and negative effector
(‘K–’) to absolutely inhibitory (‘x’), or it can be unknown or undefined (‘?’). Each Boolean state is defined by a single operator (‘AND’ or ‘OR’) for the elemental states, other
Booleans and/or inputs that defines it. The contingency matrix displayed here contains the complete MAPK network. Note that the contingency matrix is sparsely
populated. This is both because most combinations of reactions and states lack overlap in components (black squares) and because we have very limited knowledge of
the possible contingencies (grey squares). Overall, the information on what reactions can occur is much more abundant than on how they are regulated.
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an important step forward. This framework is still not as
flexible as direct model definition but it provides distinct
advantages. Formulating models directly using classical state
transition reactions is either subjective or very cumbersome in
practice due to the combinatorial explosion, and state
transition based models for the networks of the size we
consider here are too large to be simulated. The closest related
modelling framework is rule-based modelling, in which
models can be formulated without these combinatorial
explosion problems, and it is also to a rule-based format that
we export our models. However, the classical rule-based
modelling frameworks lack all the database properties of our
framework, such as the contingency matrix and its export to
various novel visualisation formats. In short, one could
therefore say that our framework combines the best of existing
knowledge databases with new visualisation tools and rule-
based modelling.

In conclusion, we present a method to document and
visualise signal-transduction networks that improves on
previous strategies in the following respects; (I) it allows

concise mapping at the same granularity as biological data,
hence pre-empting the need for implicit, unsupported assump-
tions, (II) it allows referencing of each elemental reaction and
contingency separately and handles unknowns explicitly, (III)
the network can be visualised without any simplifications or
assumptions that increase the uncertainty, (IV) the visualisa-
tions can be automatically generated from the data files, (V)
the network definition is a template from which a mathema-
tical model can be automatically generated (VI) and exported
to SBML and (VII) the supplied template and rxncon tool
makes the method immediately useful for anyone with an
interest in signal transduction. Hence, our framework bridge
three critical levels of signal-transduction network analysis;
definition, visualisation and mathematical modelling, as well
as empirical data and theoretical analysis.

Materials and methods
The MAP kinase network map is based on the papers listed below. The
specific reference(s) are listed for each reaction and contingency

Figure 5 The regulatory graph visualise the causality between reactions and reveals the regulatory structure of the network. This bipartite graph illustrates the
relationships between the reactions (red nodes) and states (blue nodes) within the network. Edges from reactions to states define how states are produced (blue) or
consumed (purple), and each such edge corresponds to a single elemental reaction. Edges from states to reactions define how states regulate other reactions, and each
such edge correspond to a single contingency (Green; absolute requirement (‘!’) or positive effector (‘Kþ ’), red; negative effector (‘K–’) or absolutely inhibitory (‘x’)).
Booleans are used when the effect on a reaction cannot be attributed to single elemental states (white diamonds (OR) or triangles (AND) connected to the states/
Booleans/inputs that define them with black lines). Inputs are displayed in grey and connected to the elemental reaction(s) they influence. Likewise, outputs are displayed
in grey and connected to the states they are influenced by. Signals can be followed through the network from external cues (grey; top) to transcriptional response (grey;
bottom) as all edges are directional. Reactions without input are not (known to be) regulated and would therefore be expected to have constant rates; likewise states
without output have no (defined) impact on the system. We have also included likely but undocumented requirements for enzyme–substrate bindings before catalysis as
dashed lines. The regulatory graph is the only graphical representation using the complete information in the contingency matrix, and hence the only complete and
completely graphical visualisation of the network. It is also the most potent visualisation to evaluate the degree of knowledge about the network. For example,
visualisation of high-throughput data would result in disconnected reaction–state pairs only, due to the lack of regulatory information (no C2 data).
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individually in the reaction and contingency lists in the ‘PubMedI-
dentifier(s)’ column with their PMID number.

(Ai et al, 2002; Alepuz et al, 2003; Alepuz et al, 2001; Andrews and
Herskowitz, 1989; Andrews and Moore, 1992; Apanovitch et al, 1998;
Baetz and Andrews, 1999; Baetz et al, 2001; Ballon et al, 2006; Bao
et al, 2004; Bao et al, 2010; Bar et al, 2003; Bardwell et al, 1996;
Bardwell et al, 1998a; Bardwell et al, 1998b; Bender and Sprague, 1986;
Bilsland-Marchesan et al, 2000; Blumer et al, 1988; Breitkreutz et al,
2001; Bruckner et al, 2004; Butty et al, 1998; Chou et al, 2004; Chou
et al, 2006; Cismowski et al, 2001; Clark et al, 1993; Collister et al, 2002;
Cook et al, 1996; Crosby et al, 2000; Cullen et al, 2004; Davenport et al,
1999; de Nadal et al, 2003; Dodou and Treisman, 1997; Doi et al, 1994;
Dolan et al, 1989; Dowell et al, 1998; Drogen et al, 2000; Elion et al,
1993; Errede et al, 1993; Escote et al, 2004; Feng et al, 1998; Fitch et al,
2004; Flandez et al, 2004; Flotho et al, 2004; Friant et al, 2001; Garcia-
Gimeno and Struhl, 2000; Garrison et al, 1999; Gartner et al, 1998;
Gartner et al, 1992; Good et al, 2009; Green et al, 2003; Guo et al, 2009;
Hagen et al, 1986; Hagen et al, 1991; Hahn and Thiele, 2002; Heenan
et al, 2009; Heise et al, 2010; Ho et al, 2002; Horie et al, 2008; Inagaki
et al, 1999; Inouye et al, 1997a; Inouye et al, 1997b; Irie et al, 1993;
Jacoby et al, 1997; Jung et al, 2002; Kamada et al, 1995; Kamada et al,
1996; Ketela et al, 1999; Kim et al, 2010; Kim et al, 2008; Kranz et al,
1994; Kusari et al, 2004; Lamson et al, 2002; Lee and Levin, 1992;
Leeuw et al, 1995; Leeuw et al, 1998; Li et al, 1998; Liu et al, 2005;
MacKay et al, 1991; MacKay et al, 1988; Madden et al, 1997; Madhani
and Fink, 1997; Madhani et al, 1997; Maeda et al, 1995; Maeda et al,
1994; Maleri et al, 2004; Mapes and Ota, 2004; Martin et al, 2000;

Mattison and Ota, 2000; Mattison et al, 1999; Medici et al, 1997;
Melcher and Thorner, 1996; Metodiev et al, 2002; Miyajima et al, 1987;
Murakami et al, 2008; Nasmyth and Dirick, 1991; Nehlin et al, 1992;
Neiman and Herskowitz, 1994; Nern and Arkowitz, 1998; Nern and
Arkowitz, 1999; Nonaka et al, 1995; Olson et al, 2000; Ostrander and
Gorman, 1999; Ozaki et al, 1996; Paravicini and Friedli, 1996; Parnell
et al, 2005; Pascual-Ahuir et al, 2001; Peter et al, 1996; Peterson et al,
1994; Philip and Levin, 2001; Posas and Saito, 1997; Posas and Saito,
1998; Posas et al, 1998; Posas et al, 1996; Proft et al, 2005; Proft et al,
2001; Proft and Serrano, 1999; Proft and Struhl, 2002; Raicu et al, 2005;
Raitt et al, 2000; Rajavel et al, 1999; Reiser et al, 2000; Remenyi et al,
2005; Rep et al, 2000; Rep et al, 1999; Roberts and Fink, 1994;
Schmelzle et al, 2002; Schmidt et al, 1997; Schmidt et al, 2002; Schmitz
et al, 2002; Shi et al, 2005; Shimada et al, 2004; Sidorova and Breeden,
1993; Siegmund and Nasmyth, 1996; Siekhaus and Drubin, 2003;
Simon et al, 1995; Skowyra et al, 1997; Smith et al, 2002; Soler et al,
1995; Song et al, 1996; Taba et al, 1991; Takahashi and Pryciak, 2007;
Tao et al, 2002; Tarassov et al, 2008; Tatebayashi et al, 2003;
Tatebayashi et al, 2007; Tatebayashi et al, 2006; Tedford et al, 1997;
Truckses et al, 2006; Truman et al, 2009; Vadaie et al, 2008; Valtz et al,
1995; Varanasi et al, 1996; Verna et al, 1997; Vilella et al, 2005; Wang
and Konopka, 2009; Wang et al, 2005; Warmka et al, 2001; Wassmann
and Ammerer, 1997; Watanabe et al, 1994; Watanabe et al, 1995;
Watanabe et al, 1997; Winters and Pryciak, 2005; Wu et al, 2006; Wu
et al, 1999; Wu et al, 1995; Wu et al, 2004; Wurgler-Murphy et al, 1997;
Yablonski et al, 1996; Yamamoto et al, 2010; Yesilaltay and Jenness,
2000; Young et al, 2002; Yuan and Fields, 1991; Zarrinpar et al, 2004;

Figure 6 The limited process description displays all posttranslational modifications and their catalysts, but excludes complex formation. Each specific internal state is
represented as a distinct node, although some intermediate phosphorylation states have been excluded. Phosphorylations are indicated with red arrows (ATP as co-
substrate and ADP as co-product), GEF reactions as orange arrows (�GTP, þGDP), and dephosphorylation or GAP reactions as blue arrows (þ Pi). Only a fraction
of the catalytic modifications have a known catalyst for both forward and reverse reactions, and the required state of the catalyst known is in even fewer cases. Therefore,
even this highly simplified process description includes uncertainty in the required states of both catalysts and substrates. In this visualisation, this uncertainty has been
shown by using a single catalysis arrow from a box including all potentially active state of the catalyst to the basic state of the substrate (completely unphosphorylated for
kinase reactions, or completely phosphorylated for phosphatase reactions). While these simplifications are unsupported, including additional catalytic arrows would be
equally arbitrary with the added drawback of making the figure more complex (see Supplementary Figure S2). Despite the need for implicit assumptions, the process
description is useful as it is very explicit and intuitive to read.
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Zarrinpar et al, 2003; Zarzov et al, 1996; Zeitlinger et al, 2003; Zhan
et al, 1997; Zhan and Guan, 1999; Zhao et al, 1995; Zheng and Guan,
1994; Zheng et al, 1994; Zhou et al, 1993).

The methods used are an integral part of the results and are outlined
in that section. For additional details, please see Supplementary
information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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