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Gastrointestinal cancers are a group of cancers occurred in gastrointestinal

tissues with highmorbidity andmortality rate. Although numerous studies were

conducted on the investigation of gastrointestinal cancers, the real

mechanisms haven’t been discovered, and no effective methods of

prevention and treatment of gastrointestinal cancers have been developed.

Autophagy, a vital catabolic process in organisms, have been proven to

participate in various mechanisms and signaling pathways, thus producing a

regulatory effect on various diseases. The role of autophagy in gastrointestinal

cancers remains unclear due to its high complexity. In this review, firstly, the

biological features of autophagy will be introduced. Secondly, the role of

autophagy in three popular gastrointestinal cancers, namely esophageal

cancer, gastric cancer, and colorectal cancer will be described and discussed

by reviewing the related literature. We aimed to bring novel insights in exploring

the real mechanisms for gastrointestinal cancers and developing effective and

efficient therapeutic methods to treat gastrointestinal cancers.
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Introduction

Gastrointestinal cancers are generally referred to as a group of cancers occurred in the

gastrointestinal tissues, including the esophagus, stomach and colon/rectum (1).

According to recent studies, it has been reported that each year, 4 million cases of

gastrointestinal cancers are diagnosed in the world, and 2.7 million people die from

gastrointestinal cancers annually (1–3). In a broad sense, gastrointestinal cancers are

comprised of malignant tumors occurred in other digestive system tissues, including

liver, small intestine, gallbladder, bile duct and pancreas (4, 5). Based on that knowledge,

to keep it accurate and convincing, in our study, we focused on discussing the

mechanisms of the three commonly acknowledged kinds of gastrointestinal cancers,

including esophageal cancer, gastric cancer, and colorectal cancer. Although there are

many different biological features of gastrointestinal cancers, several common risk factors
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have been discovered, including pro-tumoral genetic mutations,

smoking, excessive alcohol intake, western diet, disturbance of

gastrointestinal microbiota homeostasis and radioactive

stimulation (6–9). In addition, the disturbance of normal

gastrointestinal microenvironment is revealed to potentially

cause gastrointestinal cancers, such as the pro-tumoral fibrosis

and overwhelmingly local or overall inflammatory and immune

responses (10–12). Besides those commonly acknowledged risk

factors, some disorders have been proven to be closely related to

the cause of gastrointestinal cancers. For instance, diabetes has

been revealed to be associated with gastrointestinal cancer.

Metformin, one of the most well-known anti-hyperglycemic

drugs, was shown to reduce the incidence rate of

gastrointestinal cancers in diabetic patients (4, 13). Based on

that knowledge, the restoration of metabolic homeostasis and

prevention of tumor-associated microenvironment formation

might serve as potentially effective methods to treat

gastrointestinal cancers.

Autophagy has been commonly recognized as a vital metabolic

mechanism in organisms (14, 15). It is proven to be effective in

degrading and recycling long-term and misfolded proteins, useless

organelles under certain stressful conditions such as hypoxia,

nutritional deficiency and inflammatory stimulation (16–18). So

far, autophagy has been indicated to participate in numerous

mechanisms and signaling pathways or cascades, thus regulating

various kinds of diseases in many systems (19–22). For example, in

digestive system, autophagy has been proven to contribute to the

regulation of gastrointestinal microbiota (23–26). Although

numerous studies reported and discussed the effect and

mechanisms of autophagy in gastrointestinal cancers (27–34), the

role of autophagy in gastrointestinal cancers is still not clear, and the

real mechanisms remain unclarified. This situation makes it hard to

use autophagy to prevent and treat gastrointestinal cancers.

In this paper, we will review related literature on the study of

autophagy in three commonly diagnosed gastrointestinal cancers,

including esophageal cancer, gastric cancer, and colorectal cancer.

We will focus on the introduction and discussion of the

controversial role of autophagy in such types of cancers, aiming

to provide novel insight in the recognition of autophagy in

gastrointestinal cancers, and seeking to develop an effective

method to use autophagy to treat gastrointestinal cancers.
Part I: Biological characteristics of
autophagy

The word “autophagy” was initially created in the 1960s by

Dr. Christian de Duve, who was awarded the Nobel Prize in 1974

for the discovery of the lysosome as a new specialized

membrane-bound organelle in animal cells (35). The word

“autophagy” was derived from the Greek roots “auto” (self)

and “phagy” (eat). It was referred to as the cellular metabolic
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processes in which cytoplasmic proteins and certain organelles

were “eaten” by itself (to eat it self) (36–38). Since its initial

discovery, the mechanisms of autophagy and its roles in cellular

catabolic processes and diseases have been widely studied and

recognized by researchers. In 2016, Dr. Yoshinori Ohsumi was

awarded the Nobel Prize in Medicine or Physiology for his work

of investigating the processes of cellular autophagy (39). So far,

three types of classic autophagy have been divided based on the

difference in mode of cargo delivery to the lysosomal lumen and

physiological functions, including microautphagy, chaperone-

mediated autophagy and macroautophagy (40–42).

Microautophagy is recognized as a non-selective lysosomal

process. Degrading proteins and organelles are engulfed via

the invagination of the lysosomal/vacuolar membranes

through microautphagy (43, 44). Chaperone-mediated

autophagy is a form of selective autophagy which relies on the

recognition of chaperons via targeted motif in the degrading

proteins and lysosomal chaperons (45, 46). Macroautophagy is

the most studied form of autophagy. Macroautophagy is referred

to as a metabolic process with the functional unit of double-

membraned autophagosomes, which are subsequently fused

with lysosomes for further degradation and recycling (47, 48).

Besides the classic classification of autophagy, some special

forms of selective autophagy have been discovered and

studied, including pexophagy, mitophagy, xenophagy and

reticulophagy, etc. Those special forms of selective autophagy

represent the special forms and functions of autophagy in certain

organelles and conditions (49–51).

Autophagy-lysosomal system is recognized as one of the two

classic protein degrading pathways along with ubiquitin-

proteasome system (52, 53). The process of autophagy has

been revealed to be mediated by more than 30 autophagy-

related genes (Atgs), most of which are proven to be

conserved in mammal cells (54, 55). According to our

previous study, the induction of autophagy mainly follows two

steps (56, 57) (illustrated in Figure 1). In the first step, under the

challenge of stressful conditions such as starvation and hypoxia,

cup-shaped phagophores with lipid bilayer membrane is formed

to wrap around substrate materials. The formation of

phagophores demands the formation of the Atg1 complex and

Class III phosphatidylinositol 3-kinase (PI3K) complex, with

Unc-51-like kinase (ULK1, aka Atg1 in yeast), FIP200, Atg13,

Atg101 assembly for Atg1 complex and Beclin-1, Atg14,

vacuolar protein sorting 15 (VPS15), and VSP34 for PI3K

complex (58, 59). After the initiation, the bilayer membrane

undergoes expansion, elongation and nucleation, which are

sequestrated into double-membrane sphere-shaped

autophagosomes. Such process is dependent on the formation

of Atg16L1 complex, assembled by Atg5, Atg12 and Atg16L1

(60, 61). In addition, two ubiquitin-like proteins including Atg12

and Atg8 [LC3 (light-chain 3)] also participate the process of

autophagosome formation. In the second step, autophagosomes

dispose of “coat proteins (LC3-II)” on the surface of the
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membrane and fuse with lysosomes assisted by Atg3 and Atg7 to

form the functional autolysosomes (62, 63). For the regulation of

autophagy process, the Class I PI3K-mammalian target

of rapamycin (mTOR) is shown as an inhibitory pathway of

autophagy through the stimulation of mTOR complex 1

(mTORC1) (64). The Class III PI3K pathway is illustrated as

an inductive pathway for autophagy with the formation of Class

III PI3K-Beclin-1 complex (65, 66). So far, several kinds of

autophagy inducers and inhibitors have been widely used in the

modulation of autophagy level in both experimental studies and

clinical practice. For instance, rapamycin is widely used to up-

regulate the level of autophagy through the inhibition of

mTORC1 activation (67, 68). For the inhibition of autophagy,

the mechanism of 3-methyladenine (3-MA) for the inhibition of

autophagy is through the inhibition of Class III PI3K complex

formation (69). In addition, chloroquine is via the influence of

the acidic environment of lysosomes and bafilomycin A1 is via

the disturbance of the formation of autolysosomes (70–72).

In the recent few decades, autophagy has been illustrated to

participate or regulate numerous diseases in many systems,

including atherosclerosis and hypertension (cardiovascular

system) (73, 74), diabetes and obesity (metabolic system) (75,

76), ischemic stroke and multiple sclerosis (central nervous
Frontiers in Oncology 03
system) (77, 78), inflammatory bowel disease and gastritis

(digestive system) (23, 79) as well as malignant tumors (80–

82). In the treatment of cancers, the interventions to both induce

and suppress autophagy have been shown as effective therapies,

which indicates the complication of autophagy in the

pathogenesis and progression of cancers (83). According to

research literature, in the onset of cancers, autophagy can

effectively prevent cancer cell formation via the correction of

pro-tumoral genetic mutations and clearance of mutated cells

(84, 85). Conversely, once cancer cells are formed, autophagy

may promote cancer cell survival and growth through the

autophagy-mediated cellular protection (80, 86). That

knowledge reveals the difference between basal autophagy and

stimulus-induced autophagy in cancers. The studies also indicate

the different roles and effects of autophagy in the different stages

of cancer progression.
Part II: The role of autophagy in
gastrointestinal cancers

As discussed above, the role of autophagy is controversial in

cancers. Such contradiction also exists in gastrointestinal
FIGURE 1

Illustration of biological process of autophagy. Under the challenge of autophagy-related stimulus, autophagy process is triggered through the
formation of cup-shaped phagophore participated by Atg1 complex and Class III PI3K complex. With the formation of Atg16L1 complex and
assistance of Atg12 and LC3, the bilayer membrane undergoes expansion, elongation and nucleation, which are sequestrated into double-
membrane sphere-shaped autophagosomes. With the participation of Atg3 and Atg7, autophagosomes fuse with lysosomes to form the
functional autolysosomes. Atg, autophagy-related gene. PI3K, phosphatidylinositol 3-kinase; LC3, light chain 3.
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cancers. In the following contents, the role of autophagy in

several popular gastrointestinal cancers, including esophageal

cancer, gastric cancer, and colorectal cancer, will be further

discussed by reviewing previous related studies (illustrated

in Figure 2).
Autophagy in esophageal cancer

Esophageal cancer is a type of malignant tumor that occurs

in the esophagus, which is a long and hollow tubular organ

ranging from throat to stomach (87, 88). According to recent

statistics, although the incidence rates vary from different

geographic locations, esophageal cancer is listed as one of the

most common causes of cancer deaths all over the world (89,

90). The risk factors of esophageal cancer include Barrett’s

esophagus, smoking, alcohol abuse, obesity, achalasia and

frequent hot liquid intake, etc. (91, 92). The typical symptoms

of esophageal cancer include dysphagia, chest pain, coughing

and weight loss (92, 93). However, in some cases, due to its

hidden onset, esophageal cancer is hard to be controlled and

managed in the early stage. As a result, the research study of

pathogenic mechanisms and specific screening markers for

esophageal cancer is urgent.

So far, autophagy has been demonstrated to be closely

associated with esophageal cancer. Four Atgs including

DNAJB1, BNIP1, VAMP7 and TBK1 were shown to act as
Frontiers in Oncology 04
prognostic signature for the recognition of high- and low-risk

groups among people (94). Another Atg signature including

(VIM, UFM1, TSC2, SRC, MEFV, CTTN, CFTR and

CDKN1A) were demonstrated to contribute to the

improvement of the prediction of clinical outcomes in

esophageal cancer patients (95). According to a research study,

22 autophagic long-chain noncoding ribonucleic acids were

revealed to be highly correlated with the overall survival of

esophageal adenocarcinoma patients, thus creating a novel

prognostic model for esophageal adenocarcinoma (96).

For the role of autophagy in esophageal cancer, Fang et al.

(97) reported that under the treatment of diketopyrrolopyrrole

(DPP), autophagy was induced as a self-protective mechanism of

esophageal cancer cells from DPP. Autophagy was also shown to

mediate microRNA-193b-related chemoresistance on 5-

fluorouracil (5-FU) treatment (98). Those findings indicated

that the suppression of autophagy-mediated chemoresistance

might be a potential strategy for adjuvant chemotherapy in

esophageal cancer. In addition, microRNA-498 was shown to

suppress esophageal cancer through the inhibition of autophagy

and M2-like polarization of macrophages via mouse double

minute 2 (MDM2)/activating transcription factor 3 (ATF3)

signaling pathway (99). Jia et al. (100) reported that Phlorizin,

an important member of the dihydrochalcone family derived

from sweet tea, could suppress the progress of esophageal cancer

through the promotion of cellular apoptosis and inhibit the level

of autophagy in esophageal cancer cells. Those effects might lead
FIGURE 2

Illustration of the role of autophagy in esophageal cancer, gastric cancer and colorectal cancer. Autophagy may promote esophageal cancer
through inducing chemoresistance and promoting cancer cell survival and growth. However, autophagy may also attenuate esophageal cancer
through triggering autophagy-dependent cell cycle arrest and autophagy-related cell death. In gastric cancer, autophagy may promote the
onset and development through influencing effects of immune therapy. However, autophagy may also attenuate it through fighting against
Helicobacter pylori infection. In colorectal cancer, autophagy may promote the pathogenesis and progression through the influence of certain
genetic variants in autophagy, while producing an attenuative effect through inflammatory and immune regulation.
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to antagonizing the Janus kinase-2 (JAK2)/signal transducer and

activator of transcription 3 (STAT3) signaling pathway.

Furthermore, up-regulation of Beclin-1, a vital member of

Atgs, can lead to a more aggressive esophageal squamous cell

phenotype and a worse survival prognosis, thus indicating

Beclin-1 to be a potential and promising prognostic biomarker

and therapeutic target for patients with esophageal squamous

cancer (101).

Conversely, some researches have reported the opposite

effective of autophagy on esophageal cancer. According to a

previous study, silencing autophagy via the inhibition of

ATP6V1C1 has been shown to serve to enhance radiotherapy

resistance in esophageal squamous cell carcinoma (102). In

addition, the induction of autophagy via certain agents have

been reported to trigger autophagy-dependent cell cycle arrest

and autophagy-related cell death in cancer cells. For instance,

dihydroartemisinin (DHA), the primary active derivative of

artemisinin, produced an anti-tumor effect on esophageal

cancer cells through the triggering of autophagy-dependent

cell cycle arrest at the G2/M phase (103, 104). Therefore,

further studies are demanded for the exploration of the role of

autophagy in esophageal cancer.
Autophagy in gastric cancer

Gastric cancer, or stomach cancer, is amongst the most

aggressive human malignant tumors all over the world,

representing a heavy health burden (105, 106). An estimation

of 90%-95% gastric cancers belong to adenocarcinomas. Besides,

other types of gastric cancer can start in the stomach, including

gastrointestinal stromal tumors (GISTs), neuroendocrine

tumors and lymphomas, etc. (107, 108). So far, several risk

factors have been commonly recognized, including western diet,

obesity, age, gender and bacterial infection (109–111). Notably,

Helicobacter pylori (H. pylori) infection is regarded as an

independent risk factor, especially cancers in the lower (distal)

part of the stomach (112). It is reported that gastric cancer

patients are at higher infectious rate of H. pylori than people

without gastric cancer (113). Like the situation of esophageal

cancer, the prevention and management of gastric cancer in the

early stage are difficult because of its latent symptoms in

many cases.

In recent studies, the role of autophagy in gastric cancer has

been widely investigated. According to many research studies,

suppression of the level of autophagy might serve as an effective

approach in the treatment of gastric cancer. For instance, the

level of autophagy was shown to be associated with programmed

cell death-1 (PD-1) with its ligand (PD-L1). Wang et al. (114)

reported that inhibition of autophagy could enhance the

expression of PD-L1, thus promoting the sensitivity to PD-L1-

related immune therapy. In addition, UPR-induced autophagy

activation was triggered by Sec62, a membrane protein of the
Frontiers in Oncology 05
endoplasmic reticulum that facilitated protein transport. Such

pathway of autophagy induction was shown to contribute

significantly to the metastasis of gastric cancer (115). In

another study, Xu et al. (116) demonstrated that c-Jun N-

terminal kinase (JNK)/extracellular signal-regulated kinase

(ERK)-dependent autophagy was connected to gastric cancer

cell survival, and the inhibition of JNK/ERK-dependent

autophagy enhanced the Jaspine B derivative-induced gastric

cancer cell death through the p62/Keap1/Nrf2 signaling

pathway. Furthermore, oncogenic autophagy in gastric cancer

cells were demonstrated to be controlled by mucolipin TRP

cation channel 1 (MCOLN1), a lysosomal cation channel, via the

mediation of zinc influx into the cytosol (117).

However, the situation of H. pylori infection has been shown

to be different. It has been demonstrated that autophagy could

protect against H. pylori infection (118). The H. pylori toxin

vacuolating cytotoxin (VacA) and genetic deficiency of

autophagy could promote H. pylori infection and thus

contributing to the incidence of gastric cancer (118, 119).

Sustained exposure to H. pylori was shown to inhibit

autophagy process in gastric epithelial cells at least partly via

the Nod1-nuclear factor (NF)-kB/mitogen-activated protein

kinase (MAPK)-ERK/fork head box O 4 (FOXO4) signaling

pathway (120). In addition, the induction of autophagy

degrading functions by vitamin D3 could prevent gastric

epithelial cells against H. pylori infection (121). Based on those

findings, to fully take advantage of autophagy in the treatment of

gastric cancer, the controversial roles of autophagy should be

taken into thorough consideration, especially the effect of

autophagy on H. pylori infection.
Autophagy in colorectal cancer

Colorectal cancer is a common malignant tumor of digestive

tract, usually occurring at the junction of rectum and left half

colon (122). It is considered to be the fourth most common

malignant tumor, ranking third at 11% of all malignant tumors

diagnosed all over the world (123, 124). The pathological types

of colorectal cancer include adenocarcinoma, mucinous

adenocarcinoma, squamous carcinoma and undifferentiated

carcinoma, etc. The etiology of colorectal cancer is

complicated and remains unclear. Currently, it is commonly

recognized that the incidence of colorectal cancer is related to

smoking, high-fat and low-cellulose diet, intestinal inflammation

and other factors (125, 126). As for the occurrence and

development mechanism of colorectal cancer, recent studies

indicate that the inflammatory immune microenvironment of

tumor cell growth plays an important role in such processes.

Patients with chronic inflammatory bowel diseases, such as

ulcerative colitis, have a significantly increased incidence of

colorectal cancer, with enteritis-related colorectal cancer

accounting for 6.7% of the total population during a 30-year
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follow-up period (127). The proportion of patients with

ulcerative colitis who developed poor prognosis types of

colorectal cancer such as signet ring cell carcinoma or myxoid

carcinoma has increased significantly (128–130). Therefore,

regulating the over-activation of inflammatory and immune

reaction thus controlling the formation of tumor-associated

inflammatory and immune microenvironment is vital for the

prevention and treatment of colorectal cancer.

As shown in previous research and studies from us and other

researchers, autophagy could function in the regulation of

inflammatory and immune responses in many inflammation-

and immune-related diseases, such as inflammatory bowel

disease (IBD) (79, 131–135). Such inflammatory and immune

regulating effects have also been revealed by numerous studies in

colorectal cancer. For instance, autophagy was shown to couple

the environmental signals and metabolic homeostasis to protect

lineage and survival integrity of Treg cells, thus preventing

tumor resistance and development of inflammatory disorders

(136). The induction of mitophagy, a form of selective

autophagy, could trigger the anti-tumor adaptive immunity

during tumorigenesis (137). In addition, autophagy in

intestinal epithelial cells was demonstrated to prevent

tumorigenesis via the restoration of DNA damage and

prevention of cell proliferation and inflammation, while

deficiency in autophagy promoted tumor progression of

colorectal cancer (138, 139). Induction of autophagy by certain

small molecular agents were reported to protect against colitis-

associated colorectal cancer via suppressing the NLR family

pyrin domain containing 3 (NLRP3) inflammasome activation

(140). Furthermore, as shown in our previous study, autophagy

could attenuate the growth and metastasis of colorectal cancer

through the modulation of neutrophil extracellular traps (NETs)

and inflammasomes (141). However, another study revealed that

the Thr300Ala variant in Atg16L1, one of the vital Atgs, was

associated with improved overall survival in human colorectal

cancer (142). Those findings indicated that certain mutation of

Atgs might produce a therapeutic effect on colorectal cancer.
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Conclusion

In this review, we have introduced and discussed the role of

autophagy in three popular gastrointestinal cancers, including

esophageal cancer, gastric cancer and colorectal cancer. As

discussed, the effects of autophagy on the gastrointestinal cancers

are controversial and complex. Although there have been many

research studies conducted on this topic, the real mechanisms of

autophagy in gastrointestinal cancers remain unclarified. To fully

take advantage of autophagy in the treatment of gastrointestinal

cancer, further studies are demanded on this topic.
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