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Developmental dyslexia (DD) is a specific learning disorder char-
acterized by reading difficulties that are not due to intellectual
disabilities, sensory impairments (such as vision or hearing
issues), neurological or motor disorders, limited educational
access, insufficient language proficiency, or psychosocial chal-
lenges (WHO, 2018). Galaburda et al. (1985) proposed the complex
interplay of genetic, environmental, sex-related, and brain factors
in the development of DD. In the recent decade, white matter
connectivity has emerged as a promising avenue for uncovering
the neural mechanism of DD. This paper aims to provide a com-
prehensive overview of white matter connectivity disruptions, its
compensatory mechanisms, and its associated cognitive deficits
in children with dyslexia, particularly based on our team’s work
over the past decade using the French dyslexia brain dataset
(DysBrain). The DysBrain dataset contains high-resolution dif-
fusion tensor imaging (DTI) data from 64 French children aged
9-14 years, including 32 with dyslexia and 32 typically developing
children.

White matter connectivity anomalies in DD

White matter pathway anomalies in DD

White matter pathway deficits have been widely studied in DD.
The arcuate fasciculus (AF), inferior fronto-occipital fasciculus
(IFOF), and inferior longitudinal fasciculus (ILF) have been found
as key white matter association pathways in relation to dyslexia.
Multiple DTI studies have shown significantly lower left AF con-
nectivity, as measured by fractional anisotropy (FA), in dyslexic
readers compared to controls (see review by Vandermosten et al.,
2012). Our initial study using the DysBrain dataset verified lower
FA in the left AF (combing three segments of AF: long, anterior,
and posterior segments) in French dyslexic children compared to
their age-matched controls (Zhao et al., 2016; as shown in Fig. 1,
left panel). We also found that the left AF (long segment) showed
significantly lower FA in Chinese children with dyslexia compared
to controls (Suetal,, 2018; as shown in Fig. 1, middle panel). Beyond
the AF, other white matter tracts, such as the ventral IFOF and ILF,
have also been shown with lower connectivity in dyslexia com-

pared to their typically developing peers (Steinbrink et al., 2008;
Vandermosten et al., 2015). Our study on Chinese dyslexic chil-
dren found lower FA in the left ILF compared to controls (Su et al.,
2018; as shown in Fig. 1, middle panel). Other than the extensively
studied white matter pathways associated with dyslexia, the un-
cinate fasciculus (UF) has only received attention recently in our
team. Our study using the DysBrain dataset found disrupted UF
connectivity in DD, with a more pronounced effect in boys (Zhao
et al., 2022; as shown in Fig. 1, right panel).

White matter lateralization anomalies in DD

Beyond white matter pathway disruptions, anomalies in white
matter lateralization was found to be another important feature
of dyslexia. Studies have shown that most typically developing in-
dividuals exhibited leftward asymmetry in the AF, both in chil-
dren (Dubois et al., 2009; Lebel et al., 2012) and in adults (Lebel &
Beaulieu, 2009). However, the leftward dominance of the AF may
not be as evident in individuals with dyslexia (Banfi et al., 2019;
Vandermosten et al., 2013). Longitudinal studies have shown that,
in the pre-reading stage, the AF of the at-risk group was right-
lateralized, while that of the control group was left-lateralized
(Wang et al., 2017). Our study, using the DysBrain dataset, for the
first time reported a significant rightward deviation in the second
segment of the superior longitudinal fasciculus (SLF II) in children
with dyslexia (Zhao et al., 2016; see Fig. 2, left panel). Furthermore,
reduced leftward lateralization of the IFOF in dyslexic children
compared to the control group has also been observed (Zhao et
al., 2016; see Fig. 2, right panel).

White matter network anomalies in DD

Imaging studies based on graph theory have emerged as an effec-
tive and unique approach for investigating structural and func-
tional connectivity patterns in developing brains (Behrens et al.,
2007; Mori et al.,, 1999; Mori & van Zijl, 2002). To date, only few
studies applied graph theory to analyze the white matter connec-
tome in DD, primarily from our team using the DysBrain dataset.
Our team using network based statistics found that children with
dyslexia showed a reduction in white matter fiber connections
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Figure 1: White matter pathway anomalies in DD (adapted from Zhao et al.,, 2016; Su et al., 2018, 2022). AF: arcuate fasciculus, AFLS: long segment of
arcuate fasciculus, AFAS: anterior segment of arcuate fasciculus, AFPS: posterior segment of arcuate fasciculus, ILF: inferior longitudinal fasciculus,

UF: uncinate fasciculus.
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Figure 2: White matter lateralization anomalies in DD (adapted from Zhao et al., 2016). HMOA: hindrance-modulated oriented anisotropy,
lateralization index: (right - left)/(right + left) of HMOA, SLF: superior longitudinal fasciculus, IFOF: inferior fronto-occipital fasciculus.

within a left occipito-temporo-parietal network mainly including
brain regions of the superior temporal pole, the middle tempo-
ral gyrus (MTG), the middle occipital gyrus, the superior tempo-
ral gyrus, Heschl’s gyrus, the insula, the Rolandic operculum, and
the supramarginal gyrus (Lou et al., 2019; see Fig. 3, upper panel).
The network showing disruptions in dyslexic children incorpo-
rated the left AF and ILF (Lou et al., 2019; see Fig. 3, lower panel),
consistent with our previous white matter pathways anomalies
findings.

The associations between white matter
connectivity and cognitive deficits in DD

To examine the associations between white matter connectivity
and cognitive deficits in DD, our team mainly applied a data-
driven, hub-based white matter network approach. We identi-
fied specific subnetworks with distinct cognitive deficits relevant
to DD. Finding from the first study using this approach suggests
that a white matter network centered on the right fusiform gyrus
(FFG) is associated with the severity of reading impairments in DD,
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Figure 3: White matter network anomalies in developmental dyslexia. Reprinted from a previous study (with permission of Wiley from Lou et al.,
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specifically for pseudoword reading/phonological decoding ability
(Liu et al., 2021, Fig. 4, upper left panel).

In a follow-up study, we directly tested white matter subnet-
works associated with phonological processing skills and visual
attention span (VAS) in children with DD (Liu et al., 2022). We
identified two networks associated with phonological process-
ing accuracy in dyslexic children, centered at the left MTG and
medial orbital superior frontal gyrus, respectively (Fig. 4, lower
panel). We found a network, centered in the left superior occipital
gyrus (SOG) and linked to the visual parietal-occipital lobe net-
work, accounting for individual differences in VAS in children with
dyslexia (Fig. 4, upper right panel). As we also found a significant
positive correlation between the VAS and the UF in dyslexic chil-
dren (Zhao et al., 2022), further regression analysis was employed
to test the independence of the SOG network and UF in explaining
VAS in dyslexic children. Results suggest that the anterior ventral
UF and the posterior dorsal SOG network are independent, repre-
senting two distinct white matter abnormalities associated with
VAS in dyslexia.

White matter compensation in DD

The brain’s complex, dynamic nature underscores how interac-
tions between an individual and their environment can affect
white matter development, suggesting that dyslexia may lead to
varied and intricate compensation strategies throughout devel-
opment. Compensation may involve both adaptive compensation
or maladaptive compensation. Adaptive compensation refers to
the enhanced neural activation that is positively correlated with
improved cognitive performance, which is considered beneficial
as it contributes to better task performance. Maladaptive com-
pensation refers to the enhanced neural activation that is either
uncorrelated or negatively correlated with cognitive performance,

which is considered detrimental as it may reflect inefficient or in-
effective attempts by the brain to compensate for deficits.

The most effective method to measure neural compensation
may involve a longitudinal design beginning before reading onset
and extending to the attainment of mature reading abilities (e.g.
Yu et al., 2018). This approach allows for examination of neural
protective effects that are independent of compensatory mecha-
nisms related to reading difficulties. However, due to the time and
cost demands of longitudinal studies, many researchers opt for
a correlational approach by testing dyslexic readers with existing
severe reading impairments. In this way, mature dyslexic read-
ers can be assessed for neural compensation in response to read-
ing difficulties. Due to the cross-sectional design of our DysBrain
dataset, we conducted correlational studies to examine compen-
sation effects in our dyslexic children. Our previous DysBrain find-
ings consistently indicate increased rightward lateralization of
white matter pathways in dyslexia. Therefore, we focused on test-
ing the rightward lateralization of white matter pathways (e.g.
IFOF and AF) or networks as a potential compensatory mech-
anism. Specifically, a positive correlation between reading skills
and white matter rightward lateralization is generally interpreted
as evidence of adaptive compensation. Conversely, a negative cor-
relation is often interpreted as an indication of potential maladap-
tive compensation.

Adaptive compensation

Using the DysBrain dataset, our group identified adaptive com-
pensatory mechanisms in dyslexia involving the AF, particularly
within its long segment (AFLS) and anterior segment (AFAS) (Zhao
et al., 2023). Specifically, rightward lateralization of the AFLS was
linked to improved word reading accuracy in dyslexic children,
whereas rightward lateralization of the AFAS was associated with
higher accuracy in pseudoword reading and improved reading of
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Figure 4: White matter subnetworks associated with cognitive deficits of DD (adapted from Liu et al., 2021, 2022). FFG: fusiform gyrus, SOG: superior
occipital gyrus, MTG: middle temporal gyrus, ORBsupmed: medial orbital superior frontal gyrus, VAS: visual attention span, PHONO: phonological
accuracy.



Word reading

White matter connectivity in dyslexia | 5

Text reading

° 6 ° °
e
5 4 . . " 20 . .
: e L eg = . % * o A
> -: I e / o] == .'.“.'..l -'/-
¢ 0 = , :
© ° °.e " * S
© . - % e Control
3 )
o " / ’ “ L ; Dyslexia
Q 2 20
L -5 °
= ! )
: —a0
-10 R2=0.276* -6 R2=0.324
0.277
=8 -60

-0.10 -0.05 0.00 0.05 0.10
AFLS_LI

-0.10 -0.05 0.00 005 0.10 0.15
AFAS LI

-0.10 -0.05 0.00 0.05 0.10 0.5
AFAS LI

Figure 5: White matter adaptive compensation in DD. Adapted from previous study (with permission of Elsevier Masson from Zhao et al., 2023). LI:
lateralization index = (right - left)/(right + left) of hindrance-modulated oriented anisotropy, AFLS: long segment of arcuate fasciculus, AFAS: anterior

segment of arcuate fasciculus.

meaningless text (see Fig. 5). These findings suggest that right
AF may support adaptive reading compensation in individuals
with reading disabilities. However, our results could not determine
whether the neural effects observed in the rightward lateraliza-
tion of the AF reflect neural compensation, which is believed to
develop in response to reading difficulties during reading acqui-
sition, or protective neural responses, which may be more devel-
oped prior to reading onset (Yu et al., 2018). Future longitudinal
studies tracking children before reading onset may help further
distinguish between neural compensation and protective effects.

Maladaptive compensation

In contrast to the adaptive compensation observed in the dor-
sal pathways, maladaptive compensation appears in the ventral
white matter pathways and networks. We observed that rightward
lateralization of the IFOF was negatively correlated with reading
accuracy in dyslexic children (Zhao et al., 2016; see Fig. 6, left
panel). Specifically, greater rightward lateralization was associ-
ated with poorer reading ability in dyslexic children, suggesting
maladaptive compensation. Our recent study further identified
maladaptive compensation at the ventral subnetwork centered at
the right FFG (Liu et al., 2021; see Fig. 6, right panel). Regression
analyses further revealed that the maladaptive compensation
strategies of the subnetwork of FFG and rightward lateralization
of IFOF are independent (Liu et al., 2021). Rightward lateralization
of the IFOF specifically contributed to maladaptive compensation
of word reading accuracy, while the right FFG network contributed
to maladaptive compensation of pseudoword reading accuracy.

Factors influencing white matter
connectivity in DD

Family socioeconomic status

Family socioeconomic status (SES) includes three elements:
parental education, family income, and parental occupation. In
our recent meta-analysis, we have shown that SES significantly
impacts children’s reading abilities, both directly and through me-
diations of reading-related cognitive abilities, such as phonolog-
ical ability and vocabulary knowledge (Li et al, 2023). We also
found a significant positive correlation between SES and white
matter connectivity of the left IFOF in Chinese children (Su et
al., 2020). Using our French DysBrain dataset, we further observed
that parental education, one of the key factor of family SES, mod-
ulated dyslexic children’s lateralization anomalies in the IFOF. We
re-analyzed the lateralization results of the IFOF and SLF II in
Zhao et al. (2016) and included parental education as a new inde-
pendent variable in the analysis. The results revealed a three-way
interaction between parental education, group, and hemisphere
in the rightward lateralization index (LI) of the IFOF [F(Z, 51) =
4.369, P = .042, npartialz = 0.079, see Fig. 7]. Post-hoc analysis sug-
gested a significant interaction between group and hemisphere
in the low parental education group [F(1, 22) = 11.551, P = 0.003,
Npartial” = 0.344], but not in the high parental education group [F(1,
22) = 0.344, P = 0.576, npartia> = 0.012]. In the low parental educa-
tion group, the control group’s IFOF exhibited left lateralization,
while the dyslexic group’s IFOF showed no lateralization. However,
in the high parental education group, both the dyslexic and con-
trol groups showed left lateralization. These findings suggest that
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family SES may ameliorate the lateralization defect of the IFOF in
children born into high SES families.

Sex

Sex is a potential factor contributing to the heterogeneity of imag-
ing research results in dyslexia (Ramus et al., 2017, 2018). Our re-
search group was the first to report sex differences in white mat-
ter connectivity in dyslexia. In the DysBrain dataset, we observed
group differences in UF connectivity between dyslexic children
and controls, particularly in boys with dyslexia (Zhao et al., 2022;
Fig. 1, right panel). Our study provides further white matter ev-
idence for Galaburda and Geschwind’s testosterone hypothesis
(Galaburda et al., 1985), which suggests that the higher incidence
of dyslexia in males may be due to hormonal influences on brain
development. More studies are needed to examine white matter
connectivity disruptions related to sex differences in dyslexia.

Family risk of dyslexia

Children with familial risk of dyslexia provides a suitable window
to study causal relationship between dyslexia and brain struc-
tural abnormalities. Longitudinal studies of children with family
risk of dyslexia provided strong evidence that white matter con-
nectivity abnormalities characterizing DD are present before sig-
nificant reading experience, suggesting their involvement in the
emergence of dyslexia rather than being consequences of dyslexia
(Vanderauwera et al., 2017; Van Der Auwera et al., 2021). However,

these dyslexia family risk studies could not disentangle whether
these abnormalities in white matter connectivity represent neural
deficits or neural protective effects. Future studies may be valu-
able for investigating this issue.

Age

As we discussed earlier, a dynamic process of white matter con-
nectivity has been examined in children with family risk of
dyslexia. However, the compensation mechanisms of white mat-
ter connectivity in these children as they develop dyslexia remain
unclear. How compensation strategies develop in dyslexic chil-
dren across ages remains unclear either. Future studies should
comprehensively explore white matter compensation during the
development of dyslexia, especially from pre-reading to post-
reading. This may shed light on understanding the adaptive com-
pensation mechanism versus the protective neural mechanism in
children with dyslexia. Adaptive compensation and maladaptive
compensation in dyslexia may emerge at different ages, which is
also valuable to examine further.

Genes

Previous studies have examined the relationships between genetic
polymorphisms and reading ability (Doust et al., 2022; Wang et
al., 2023; Zhao et al., 2023), but few have fully integrated genes,
brain, cognitive, and behavioral factors altogether (Darki et al,
2012; Eicher & Gruen, 2013; Skeide et al., 2015; Thomas et al., 2021).
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Using neuroimaging as a mediator between genetic variants and
behavioral phenotypes to study the influence of white matter con-
nectivity in dyslexia could help unravel the potential biological
mechanisms underlying the disorder. Therefore, a more compre-
hensive approach that fully integrates genetic, neural, and cogni-
tive factors in DD holds promise for future research.

Conclusion

Drawing on a decade of research from our team (Fig. 8), we sum-
marize the dyslexia-related disruptions in white matter path-
ways, lateralization, and brain networks. We also present our find-
ings on the associations between white matter connectivity and
various cognitive deficits in DD, such as phonological processing
and visual attention span. We particularly present our new white
matter connectivity findings on how individuals with DD develop
compensatory strategies. We identified two compensatory strate-
gies: an adaptive compensation in ventral white matter path-
ways/networks, and a maladaptive compensation in dorsal white
matter pathways. Finally, we discuss possible factors influenc-
ing white matter connectivity development in dyslexia, including
family SES, sex, family risk, age, and genetics.

Our findings suggest that white matter development in
dyslexia may differ dynamically from typically developing indi-
viduals, potentially linked to compensatory mechanisms specific
to dyslexia and influenced by environmental factors and individ-
ual characteristics. We propose the following critical directions for
future research. First, longitudinal studies are essential to explore
the dynamic compensatory mechanisms of white matter connec-
tivity in dyslexia’s developmental trajectory. Second, an integra-
tive approach combining genetics and imaging research is crucial
for a comprehensive understanding of white matter development
in DD. Finally, investigating the interaction between genetics and
environmental factors on white matter connectivity in DD should
be a key focus of future research.
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