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Choice context influences decision processes and is one of the primary determinants of
what people choose. This insight has been used by academics and practitioners to study
decision biases and to design behavioral interventions to influence and improve choices.
We analyzed the effects of context-based behavioral interventions on the computational
mechanisms underlying decision-making. We collected data from two large laboratory
studies involving 19 prominent behavioral interventions, and we modeled the influence
of each intervention using a leading computational model of choice in psychology and
neuroscience. This allowed us to parametrize the biases induced by each intervention,
to interpret these biases in terms of underlying decision mechanisms and their proper-
ties, to quantify similarities between interventions, and to predict how different inter-
ventions alter key choice outcomes. In doing so, we offer researchers and practitioners a
theoretically principled approach to understanding and manipulating choice context in
decision-making.
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Choices depend on incidental contextual factors, such as defaults, social norms, and
time pressure, and understanding how these contextual factors influence choice has been a
major focus of research in the behavioral sciences (1–3). Context dependence also forms
the psychological rationale behind behavioral interventions, or “nudges” (4). Such inter-
ventions influence behavior by altering choice context and are important tools for policy
makers, as they can improve decisions without restricting people’s capacity to choose.
Although useful qualitative taxonomies of context effects and behavioral interven-

tions have been proposed, none offers a cognitively and neurobiologically inspired
model [such as in refs. (5, 6)] with which to parametrize and predict the effect of many
different contextual factors on behavior. There are two major challenges to accomplish-
ing this goal. The first is the lack of data: Large-scale experiments that collect data on
multiple behavioral interventions within a single decision task are necessary to build
unified models, but these experiments are very rare. The second involves the psycholog-
ical complexity of context, which can alter the choice predispositions that decision
makers have prior to evaluating the choice options, how desirable the options appear to
the decision makers during evaluation, as well as how hard decision makers are willing
to deliberate. It is not clear how theorists should incorporate these diverse effects into a
single computational model of choice.
In this article, we address these challenges using a comprehensive data set of choices

under the influence of 19 contextual factors. These contextual factors include a diverse
set of situational variables that have been shown to influence choice without altering
people’s capacity to choose (for simplicity, we do not examine the role of explicit
persuasion, financial incentivization, direct education, or coercion, which are also
important determinants of choice). In our experiments, we assigned more than 1,200
laboratory participants to different context-based behavioral interventions (adapted
from existing research) in two decision scenarios involving either consumer or financial
choice. Participants made 160 binary choices both with and without the interventions,
resulting in more than 300,000 total choices and response times (RTs; i.e., the time taken
to make decisions) for quantitative analysis. The interventions are summarized in Table 1,
and an example of the experimental stimuli in experiment (exp.) 1 is shown in Fig. 1A
(exp. 2 involved nearly identical stimuli presentation). Additional details are provided in
Methods and experimental instructions are provided in SI Appendix, Tables S1 and S2.
We modeled our choice data set with the diffusion decision model (DDM), which

proposes that decision makers dynamically accumulate the relative evidence favoring
each choice option. Choices are made when the relative evidence reaches one of two
decision boundaries, and the time to reach the decision boundary corresponds to the
RT. DDM is the dominant computational model of two-alternative forced choice in
psychology and neuroscience (7–9) and has been shown to successfully describe binary
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responses in perception, memory, categorization, language, and
value-based decision-making. We fit a hierarchical DDM to all
participants assigned to a given behavioral intervention condi-
tion (n ∼ 40 participants in each condition, with each partici-
pant completing 160 baseline trials and 160 intervention trials;
details are provided in Methods). For each fit, we quantified the
effect of the behavioral intervention in terms of how it shifted
three key DDM parameters: the starting point, the drift rate,
and the decision boundary. Changes in these three parameters
have systematic effects on choice probability and RT. All else
being equal, starting points favoring one option over the other
generate more frequent choices and quicker responses for the
favored option; higher drift rates favoring one option over the
other generate more frequent choices for the favored option,

with higher absolute drift rates causing quicker responses for
both options; and higher decision boundaries lead to slower
responses and more consistent choices. Fig. 1B summarizes the
DDM and illustrates these predictions in a hypothetical choice
between a high-quality and a low-price option. Although the
choice probability for the high-quality option increases in all
three panels, RT distributions vary based on the parameter that
is causing the shift. For this reason, changes to DDM parame-
ters can be identified based on choice and RT data.

The DDM allows us to model many different behavioral
interventions within a single computational framework. Impor-
tantly, it also allows us to interpret their effects in terms of
underlying cognitive and neurobiological mechanisms, as well
as their statistical properties (10–12). The starting-point

Table 1. Summary of behavioral interventions

Category Intervention Procedure and instruction

Prominence of Information 1. Attribute order Within-participant manipulation. The quality attribute was
positioned above or below the price attribute.

2. Option order Within-participant manipulation. The high-quality option was
positioned to the left or right of the low-price option.

3. Quality priming Implemented in exp. 1 only. Photos of appetizing and expensive
food were shown on each instruction page (before the task and

between blocks).
4. Price priming Implemented in exp. 1 only. Photos of US dollars were shown on

each instruction page (before the task and between blocks).
5. Quality information Implemented in exp. 2 only. Participants read a short passage

explaining health insurance deductibles, and they answered
multiple choice questions about why a low-deductible health

insurance plan could be beneficial.
6. Price information Implemented in exp. 2 only. Participants read a short passage

explaining health insurance premiums, and they answered
multiple choice questions about why a low-premium health

insurance plan could be beneficial.
7. Attribute salience One of the two attributes appeared with an orange frame, which

highly contrasted with the background.
8. Option salience One of the two options appeared with an orange frame, which

highly contrasted with the background.
Task framing 9. Default One of the options was preselected, and additional key pressing

was required to switch the option.
10. Reject (vs. accept) Participants indicated which option they preferred less instead of

indicating which option they preferred more.
Social information 11. Social norm The more popular option in each choice problem (based on a

pilot study) was indicated using an orange frame.
12. Recommendation The option recommended by the experimenters (based on the

same pilot study for condition 11) was indicated using an orange
frame.

Affect 13. Positive emotion Before the choice task, participants took 5–10 min to write a
report of a happy event from their life. They were also instructed

to reread the event during each break.
14. Negative emotion Before the choice task, participants took 5–10 min to write a

report of a sad event from their life. They were also instructed to
reread the event during each break.

Speed and accuracy 15. Time pressure Participants were instructed to make choices as quickly as
possible.

16. Accuracy instruction Participants were asked to indicate choices only after they were
completely certain about their choice.

17. Cognitive load Participants performed an additional memory task in which they
remembered a six-digit number before each block and reported

the number at the end of each block.
18. Accountability Participants wrote a one-paragraph justification of one of their

choices (randomly selected at the end of the choice task).
19. Font fluency The stimuli were shown in a hard-to-read font.

Note: All interventions that are not explicitly listed as “within-participant” are “between-participant.”
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parameter, for example, corresponds to an automatic predeci-
sional bias (or, equivalently, a baseline activation bias in neural
units) and can be interpreted as a statistical prior regarding the
relative desirability of the available options. The drift rate gov-
erns the formation of preferences (or, equivalently, the rate of
change of neural activation) during deliberation and reflects
evolving probabilistic beliefs as decision makers integrate evi-
dence favoring one option over the other. Last, the decision
boundary is a threshold level of preference (or activation)
strength necessary to initiate choice and can be seen as specify-
ing an acceptable error rate for the decision. By observing how
different contextual factors influence these three DDM mecha-
nisms, we are able to study the behavioral, cognitive, neural,
and statistical consequences of decision context on choice.

Results

Overall Trends. The decision scenarios in exp. 1 and exp. 2 were
taken from consumer and financial choice domains, respectively.
The former offered participants choices between pairs of restau-
rants (each with a user rating and a price); the latter offered partic-
ipants choices between pairs of health insurance plans (each with
a deductible and a premium). These two scenarios were tested in
two separate preregistered experiments (Open Science Framework,
https://osf.io/y59jk/). Each experiment involved 15 between-
participant interventions. Thirteen between-participant interven-
tions were implemented in both experiments. Money priming
and food-quality priming were implemented only in exp. 1, and
informational prompts emphasizing the importance of either low
deductibles or low premiums were implemented only in exp. 2.
Finally, in addition to the 17 between-participant interventions
across the two experiments, we also counterbalanced the presenta-
tion order of choice options and attributes within participants in
each experiment. This resulted in a total of 19 context-based inter-
ventions for our analysis. Note that for expositional simplicity, we
refer to high-rating/high-price restaurants in exp. 1 and low-
deductible/high-premium insurance plans in exp. 2 as “high-quality”
options. Low-rating/low-price restaurants and high-deductible/low-
premium insurance plans are referred to as “low-price” options.

Overall, choices in the experiments were fairly balanced,
with 53.5% and 56.8% of choices favoring the high-quality
options in exp. 1 and exp. 2, respectively. As expected, different
behavioral interventions had different choice probability and
RT effects (SI Appendix, Fig. S1). Our DDMs captured this
variability, with correlations greater than 0.94 in predicting
individual-level changes to choice probabilities and RTs, and
correlations greater than 0.97 in predicting aggregate changes
to choice probabilities and RTs, across interventions. These
patterns are shown in Fig. 2.

Our main goal was to quantify and compare the effects of
the interventions on the three DDM parameters. These param-
eter effects are summarized in Fig. 3, which displays the shift in
the starting point (Fig. 3A), the drift rate (Fig. 3B), and the
decision boundary (Fig. 3C) for each intervention and each
experiment. In the following paragraphs of Results, we analyze
the effects of social norms, recommendations, defaults, and
option and attribute salience separately for trials selectively tar-
geting the high-quality and low-price options in the two experi-
ments). SI Appendix, Fig. S2 provides means and 95% CIs of
DDM parameter shifts, SI Appendix, Fig. S3 shows that the
behavioral effects of interventions are correlated with the esti-
mated effects of interventions on DDM parameters, SI Appendix,
Figs. S4 and S5 provide results of cross-validation predictions
of choice probabilities and RT percentiles, SI Appendix, Fig. S6
shows that the DDM parameters are recoverable, and SI
Appendix, Fig. S9 shows that DDM parameters correlate strongly
with those estimated using an alternate evidence accumulation
model.

Starting Point Effects. In Fig. 3A, we see that the interventions
with the strongest effect on starting points in the two experi-
ments were the social norm (13, 14) and recommendation (15)
interventions. This indicates that participants developed an
automatic predecisional response bias (equivalently, a baseline
activation bias or statistical prior) in favor of the norm or rec-
ommendation, increasing its choice probability and reducing its
RT. These results are consistent with prior work in which
authors found that social cues can alter the automatic process-
ing of choice options (16).

Fig. 1. (A) Screenshots for exp.1, with an example of the baseline condition (Left) and an option salience intervention (Right). (B) Illustration of the DDM,
with hypothetical changes to the starting point, drift rate and decision boundary parameters.

PNAS 2022 Vol. 119 No. 15 e2114914119 https://doi.org/10.1073/pnas.2114914119 3 of 9

https://osf.io/y59jk/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental


Defaults (17, 18) also had positive effects on starting points
in both experiments, so that making an option a default typi-
cally generated a mild predecisional bias for that option. We
obtained similar but weaker results for option salience (19, 20).
These findings validate previous claims regarding the automatic
effects of defaults and salient options (21, 22). Additionally,
informational prompts about the importance of low premiums
(low price) biased starting points in favor of the corresponding
health insurance plans in exp. 2. We did not observe the analo-
gous effect for informational prompts about the importance of
low deductibles (high quality).
Overall, the starting point effects of the interventions were

largely consistent across the two experiments, with a Spearman
correlation of 0.46 for the interventions. That said, some inter-
ventions had stronger effects in one experiment than the other.
For example, participants were more likely to display a biased
starting point in favor of the low-price option when asked to
reject (instead of accepting) (23) one of the options in exp. 1.
We did not find a systematic starting point effect for reject
framing in exp. 2, in which both attributes were monetary.
This could reflect a tendency to prioritize monetary attributes
in rejection decisions. Conversely, negative emotion (24, 25)
generated a starting point bias in exp. 2 (favoring the high-
quality insurance plan) but did not influence starting points in
exp. 1. Positive emotions did not yield analogous effects, sug-
gesting that these effects could have involved negative emotions
like fear and sadness, which are known to bias choices in favor
of the safer choice (26). We also found a difference between
the two domains for font fluency (27): Disfluent fonts led to a
weak bias favoring the low-price insurance plan in exp. 2 but
had no such effect in exp. 1. We speculate that this could
reflect differences in the importance or difficulty of the two

decisions. Finally, we note that some starting point effects
could be a product of unique features of our experimental
design, such as repeated choices. Experience leads to priors
(and subsequently starting point effects) favoring preferred
options, and inexperienced individuals in the real-world mak-
ing one-off choices may not display such biases.

Drift Rate Effects. Unsurprisingly, we found that informational
prompts had an effect on the drift rates in exp. 2 (favoring the
option that was dominant on the prompted attribute; Fig. 3B).
Thus, informational prompts alter the evaluation of choice
options. Likewise, priming money or quality (28) led to corre-
sponding drift rate effects in exp. 1.

Drift rates were also very strongly influenced by social norm
and experimenter recommendation interventions in both
experiments. Thus, in addition to developing predecisional
biases favoring normative and recommended options, partici-
pants also developed explicit preferences for these options. This
finding is consistent with prior work reporting that social cues
shift people’s preferences in favor of conforming options (16).
By contrast, default and salient options did not have drift rate
effects. Decision makers did begin with predecisional biases for
these options but did not display biased preferences for these
options once they began deliberating. The null effects of
defaults are consistent with prior work suggesting that defaults
operate primarily through automatic and nonevaluative mecha-
nisms (4). The null effects of salience are consistent with
research suggesting the disproportionate effect of salience and
accessibility on automatic (vs. deliberative) processing (22).

Again, drift rate effects were consistent across the two experi-
ments, with a Spearman correlation of 0.39. However, we
found that cognitive load (29) and time pressure (30) biased

Fig. 2. Observed and simulated intervention effects on choice probabilities and RTs in exp.1 and exp. 2. Gray points correspond to changes for individual
participants. Colored labels correspond to aggregate changes for interventions, averaged over participants. Displayed correlations capture the relationship
between observed and simulated changes on the individual level. Note: Participants with behavioral shifts outside of the range of the x and y axes of this fig-
ure are shown in SI Appendix, Fig. S11.
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exp. 1 drift rates in favor of the high-quality option, but exp. 2
drift rates were biased in favor of the low-price option. It
seems, therefore, that such interventions do not only alter the
amount of time and effort participants are willing to put into
the decision but also how they evaluate the choice options, spe-
cifically, their preferences for price over quality, which may
vary across decision scenarios. This may reflect an adaptive
response to effort or accuracy tradeoffs in decision-making (31,
32). Finally, as with the starting point effects discussed previ-
ously, we found that negative emotion had a stronger effect on
drift rates in exp. 2 than in exp. 1 and that the effect of positive
emotion was almost completely absent in the two experiments.
This indicates that the emotion effects we documented persist
beyond predecisional bias and influence the evaluation of
options and the formation of preferences.

Decision Boundary Effects. The final mechanism we analyzed
was the decision boundary, whose effects are shown in Fig. 3C.
Here, we can see that increasing decision-maker accountability
(33) had a strong positive effect on the boundary for both
experiments. Intuitively, decision makers who were accountable
for their decisions deliberated longer and required a greater
degree of confidence (or equivalently, activation) before choos-
ing. This is equivalent to having a lower acceptable error proba-
bility for the decision. Our finding is consistent with that of
considerable prior work on accountability in decision-making
(33). We also found a positive effect of font-fluency interven-
tions on the decision boundary in both experiments: Making
the font disfluent has also been found to increase deliberative
processing (27).
Other interventions that had a strong effect on the decision

boundary were reject (vs. accept) framing and defaults, which
increased the boundaries in both experiments. Both interven-
tions implicitly involved rejection decision frames, which have
been shown to increase RTs when options are desirable (34).
Additionally, as expected, time pressure had a strong negative
effect on the decision boundary. When asked to make quicker

decisions, decision makers reduced their thresholds and
increased acceptable error levels.

Once again, the decision boundary effect was consistent
across the two conditions, with a Spearman correlation of 0.51.
However, interestingly, recommendations reduced decision
boundaries in exp. 2 but not in exp. 1, suggesting that partici-
pants needed less evidence before deciding when given social
information in more important or more difficult decisions. We
also found a positive effect of accuracy instructions on decision
boundary for exp. 1 but not for exp. 2, possibly because exp. 2
already had high boundaries.

Comparative Effects. Our analytical approach allows us to
describe distinct contextual effects within a unified representa-
tional framework. This can shed light on the similarities and
differences between different behavioral interventions. We illus-
trate this in Fig. 4. Fig. 4A plots each intervention in each of
our two experiments in a single three-dimensional space of
behavioral interventions. The coordinates for each intervention
capture its absolute, standardized effects on the starting point,
drift rate, and decision boundary parameters. Here, we can see
that the different behavioral interventions span a wide region of
the space, with some interventions having similar effects on all
three mechanisms and others having a stronger effect on one or
two of the mechanisms.

Fig. 4B displays the overall magnitude of the intervention
vectors. Vector magnitude captures the total cognitive effect
size of the interventions, that is, the cumulative absolute effect
of the intervention on the drift rates, starting points, and deci-
sion boundaries of our DDM models. This figure shows that
recommendations, social norms, accountability, time pressure,
and defaults had the strongest effects across decision scenarios,
whereas emotions, priming, and accuracy instructions had the
weakest effects across our decision scenarios.

Finally, interventions also had different degrees of similarity
to each other, as revealed by the relative positions of the vectors
in Fig. 4A. We show this more rigorously by clustering the
interventions in Fig. 4C. Here, we see that the social norm and

Fig. 3. Effects of behavioral interventions on (A) the start point, (B) the drift rate, and (C) the decision boundary. Positive (negative) starting point and drift
rate effects correspond to biases favoring the high-quality (low-price) option. HQ and LP denote interventions selectively targeting the high-quality or low-
price options in a trial. Results are based on group-level parameters in each condition.
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recommendation interventions cluster together. These typically
involve social cues that bias the decision maker in favor of one
option over the other. We also found that default and rejection
interventions (which involve the manipulation of task frames)

clustered together, as did salience manipulations (which involve
changes to information prominence). Finally, accountability
and time pressure manipulations shared a cluster, as they both
involved altering accuracy and speed tradeoffs.

A

B C

Fig. 4. (A) Three-dimensional space of behavioral interventions based on their absolute, standardized effects on the starting point, drift rate, and decision
boundary parameters. (B) Cognitive effect sizes of the interventions. These are based on the distance between an intervention and the origin of the space.
(C) Hierarchical clustering of intervention vectors (averaged across exp.1 and exp. 2). Results are based on group-level parameters in each condition.
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Discussion

Computational Modeling of Large-Scale Behavioral Data. The
successful use of context in various scientific and practical
applications requires an integrative framework for understand-
ing how diverse contextual factors and behavioral interventions
shape choice. We have taken steps toward the development of
such a framework by collecting a large experimental data set of
choice behavior under the influence of many distinct contextual
factors. Our data set is an order of magnitude larger than that
used in most existing research and offers unparalleled insight
into the computational mechanisms influenced by different
behavioral interventions. We fit the parameters of the DDM
(7, 8), a prominent model of choice process, on decisions under
the influence of each contextual factor in our data set. The
parameters of this model describe three core computational
mechanisms underlying decision-making: predecisional bias (or
equivalently baseline activation or statistical prior), drift rate
(change in activation or use of evidence during choice delibera-
tion) and decision boundary (activation threshold or acceptable
error) (11).
Our results show that different interventions have selective

influences on these three computational mechanisms. In doing
so, they reveal nuanced insights about how the interventions
alter choice probability and RT. For example, we found that
providing social norms increased the choice probability for the
normative option by altering both starting points and drift
rates, whereas making an option a default increased choice
probability by only altering starting points. These differences
imply that social norms have an effect on preferences, but
defaults do not. Prior work that measured intervention effects
using only changes to choice probability cannot disentangle
these selective influences. Such prior work also cannot measure
the effects of interventions such as accountability, which
increase the extent of deliberation but may not have a system-
atic effect on choice probability.
The power of our model relies on robust estimation of its

various parameters. In the SI Appendix, we demonstrate that
the parameters of our model can be accurately identified, and
through cross-validation analysis, we show that the model
makes good out-of-sample predictions of choice probabilities
and RT distributions. We also show that replacing the DDM
with an alternative evidence accumulation model did not alter
our interpretation of the intervention effects. Our model is not
too complex, but could it be too simple? Many additional cog-
nitive mechanisms can be added to the simple DDM, such as
between-trial variability in the parameters, collapsing bound-
aries, and nonlinear transformation of attribute values. We
doubt that these extensions will change our main results,
though they may reveal additional nuances in the effects of
behavioral interventions on cognitive processes.

Model-Based Intervention Design. Our results offer academics
and practitioners model-based methods for choosing between
contextual influences based on the goals of the intervention. If
the intervention aims to change people’s preferences, then drift
rate interventions like recommendations and social norms (as
well as informational prompts), are suitable nudges. By con-
trast, defaults, option salience manipulations, and other inter-
ventions that have a selective effect on the starting point are
better for altering choice probabilities without changing prefer-
ences. Starting point effects in the DDM diminish as decision
boundaries increase, implying that the effects of starting point
interventions are stronger for quick and error-prone decision

makers and weaker for decision makers who are willing to
deliberate extensively (4). Of course, some settings may require
interventions that merely encourage extensive deliberation with-
out systematically biasing choice in favor of either option. In
such settings, our analysis would recommend decision boundary
interventions, like accountability and rejection task framing.

The DDM model also offers a data-driven taxonomy of
behavioral interventions in terms of their core computational
mechanisms. The intervention space shown in Fig. 4 can, for
example, quantify the similarities between different interven-
tions, which, in turn, can be used to substitute one intervention
for another or to develop novel interventions composed of two
or more interventions. Consider, for example, combining an
intervention that shifts the drift rate to favor a target option
with an intervention that increases the decision boundary. The
former would increase the choice probability of the target to
above 50%. The latter would raise the threshold and thus
reduce the probability of choosing the less preferred option. If
we assume that intervention effects compose additively in the
parameter space, the boundary intervention would amplify the
effect of the drift rate intervention. More generally, choice
probability depends on nuanced interactions among the three
DDM parameters, and context effects that selectively influence
different parameters can be combined to target the specific
goals of the intervention. Although the effects of interventions
on parameters may not be additive, and future experiments are
necessary, our approach provides theory-driven quantitative
predictions that can be used to motivate and design these
experiments.

Many of the effects used to derive the recommendations in
our framework have an empirical precedent. For example, our
study replicates many prior findings regarding the effects of
social cues, frames, defaults, attention, and emotion on
decision-making. It also, however, provides a joint empirical
investigation and integrative theoretical framework with which
to compare and combine these contextual factors. Our frame-
work is quantitative, and the insights derived from this frame-
work come with precise predictions for choice probability and
RT, allowing for rigor in the development and design of behav-
ioral interventions.

Theory Integration across Disciplines. Our experiments
involved a laboratory paradigm with multiple choices made by
each individual. This methodology is popular in psychology
and neuroscience, as it offers precise experimental manipula-
tions, data on multiple decision variables like choice and RTs,
as well as controls for individual heterogeneity in model fitting.
Yet behavioral interventions typically target real-world choices,
which may differ from those observed in laboratory experi-
ments. For example, most everyday decisions are spread out
over time, such that people make fewer pairwise choices within
a day but encounter similar problems every so often. This could
lead to different intervention effects, especially for starting
point parameters, which are sensitive to experience. Therefore,
field experiments—ideally mega-studies that jointly test a num-
ber of different behavioral interventions in a representative pop-
ulation of real-world decision makers (35–37)—should be
conducted to test how our DDM-based conclusions generalize
from laboratory experiments to field data.

It is also important to note that our approach adopts a fairly
narrow conceptualization of the idea of a behavioral interven-
tion and choice context. Behavioral interventions are typically
understood to include not only features of the choice presenta-
tion (as with most of the interventions discussed in this article)
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but also crucial components of the behavior system, such as
people’s opportunities and physical capabilities (see refs. 38 and
39 for a review and discussion). Additionally, behavioral inter-
ventions can influence behavior not only through nudges (4) but
also through explicit incentives, training, persuasion, and even
coercion. We suspect that many of these types of interventions
will selectively influence the three DDM parameters. Testing this
and, by doing so, extending our approach to model and interpret
prominent behavioral change frameworks in implementation sci-
ence is an important avenue for future work.

Conclusion

Our approach can be used to analyze a large number of policy-
relevant behavioral interventions using a prominent cognitive and
neurocomputational theory of choice. The parameters that we
analyzed in this paper have direct interpretations in terms of neu-
ral variables and have been shown to respond to task and context
manipulations across numerous domains in the cognitive and
neural sciences, including perception, language, categorization,
and memory. By relating prominent empirical regularities in the
social and behavioral sciences to an established theoretical para-
digm in the natural sciences, we offer a cohesive transdisciplinary
approach to understanding human behavior.

Methods

Participants and Procedure. The study was approved by the ethics commit-
tee of the University of Pennsylvania. We recruited participants through various
university experimental participant pools, with a combination of paid and unpaid
participants to diversify our sample. All experiments took place on computers in
a university behavioral laboratory, and the experiment lasted approximately
1 hour. Exp. 1 tested consumer choice and involved 608 participants (64.7%
female, mean age 23.2 y, range 17–68 y) making choices between pairs of res-
taurants (each with a user rating and a price). Exp. 2 tested financial choice and
involved 627 participants (69.6% female, mean age 21.9 y, range 18–65 y) mak-
ing choices between pairs of health insurance plans (each with a deductible and
a premium). Although we were constrained by our experimental paradigm to
recruit participants who could take the experiment in the laboratory, our partici-
pant pools consisted of both college students and noncollege students, resulting
in a relatively diverse sample of participants. All participants provided informed
consent before the start of the experiment.

In exp. 1, we set the range of user ratings from 6 to 10 and the range of pri-
ces from 10 to 40. In exp. 2, we set the range of deductibles from 0 to 6,000
and the range of premiums from 30 to 380. We then randomly generated 80
unique choice problems within the predetermined range of attribute values.
Additionally, we ensured that only a small set of problems included a dominat-
ing option (10/80 in exp. 1 and 5/80 in exp. 2; we excluded these problems
when fitting the DDM). Before running the formal experiment in the laboratory,
we tested the problem sets on an online experimental sample and found that
choices in both experiments were fairly balanced.

Each experiment implemented 15 between-participant interventions. Partici-
pants in each experiment were randomly assigned to one of the between-
participant interventions and made multiple choices both with and without the
intervention. Thirteen between-participant interventions were implemented in
both experiments. The other interventions involved money priming and food-
quality priming in exp. 1 and informational prompts emphasizing the impor-
tance of either low deductibles or low premiums in exp. 2. This change was
necessary as money and quality priming would not have different effects on the
attributes in exp. 2 (both of which were monetary), and informational prompts
would be redundant in exp. 1 (as participants have considerable prior experience
with restaurant prices and user ratings). Finally, in addition to the 17 between-
participant interventions across the two experiments, we also counterbalanced
the presentation order of choice options and attributes in each experiment,
allowing us to measure the effects of attribute and option ordering on choice

within participants. This resulted in a total of 19 context-based interventions for
our analysis.

The between-participant intervention implemented for each participant was
randomly selected at the beginning of the session. The order of the baseline con-
dition and the intervention condition was also randomly determined for each
participant. To minimize the carry-over effect of the first-presented condition, we
asked participants to complete a 5-min filler task between the two conditions.
Thus, the experiment consisted of three total parts, with parts 1 and 3 corre-
sponding to the baseline and intervention conditions (in random order) and part
2 corresponding to the filler task. The instructions for the baseline conditions for
exp. 1 and exp. 2 can be found in SI Appendix, Table S1. The additional proce-
dures and instructions for the intervention conditions can be found in SI
Appendix, Table S2.

Each participant completed five practice trials in part 1 and part 3, 160 trials
in the baseline condition (80 unique choice problems with option order counter-
balanced), and 160 trials in the intervention condition (the same 80 unique
choice problems as in the baseline condition with option order counterbal-
anced). The 160 trials in the 2 conditions were divided into 8 blocks of 20 trials
each. There was a break after each block. Attribute order was held constant
within a block and counterbalanced across blocks. All experimental procedures
were preregistered with Open Science Framework (https://osf.io/y59jk/).

DDM. We grouped participants within each experiment based on which
between-participant intervention condition they were assigned to, which resulted
in 15 groups in each experiment. A hierarchical DDM was fit to each group using
participants’ choice and RTs recorded from the baseline condition, as well as the
intervention condition. This hierarchical modeling approach estimates group-
and individual-level parameters simultaneously, with group-level parameters
(mean and SDs) forming the distributions from which individual participant esti-
mates are sampled. We used a simple version of the DDM, with no between-
trial variabilities in any of the parameters.

To analyze the two within-participant manipulations, we randomly selected
40 participants (who were assigned to any between-participant conditions) from
both experiments and used their data recorded from the baseline condition to
test the order effects. The attribute order effect was studied using the parameter
difference between trials in which the quality attribute was presented above the
price attribute (which we, for simplicity, refer to as the intervention condition)
and trials in which the quality attribute was presented below the price attribute
(the baseline condition). The option order effect was studied using the parameter
difference between trials in which the high-quality option was presented to the
left of the low-price option (the intervention condition) and trials in which the
high-quality option was presented to the right of the low-price option (the base-
line condition).

In our models, the upper boundary was associated with the choice of a high-
quality option (i.e., the option with a higher score or a lower deductible in exp.
1 and exp. 2, respectively), and the lower boundary was associated with the
choice of a low-price option (i.e., the option with a lower price or a lower pre-
mium in exp. 1 and exp. 2, respectively). In the baseline condition, the drift rate
can be written as v ¼ ΔU¼ U1 � U2, where U1 and U2 denote subjective util-
ity for the high-quality option and the low-price option, respectively. We followed
the common practice of the field and modeled subjective utilities as weighted
sums of the attribute values (40). Therefore, the utility difference between a pair
of options is equal to the weighted sum of their attribute value differences. With-
out any context-based interventions, this is v ¼ ΔU¼ vintercept þ vqualityΔQþ
vpriceΔP. Here vquality and vprice denote multiplicative coefficients for the quality
and price attributes, respectively. The larger their absolute values, the more
important the attributes are to participants. The intercept, vintercept , captures an
overall stimuli-independent choice tendency. Positive vintercept captures a ten-
dency to choose the high-quality option.

We captured the effects of interventions by allowing them to influence the
starting point (z), the decision boundary (a), and the drift rate (v) of the DDM.
For the starting point, we included a dummy variable to capture an additive shift
between the intervention and the baseline condition. Moreover, for the attribute
salience, option salience, default options, social norm, and experimenter recom-
mendation conditions, we included another dummy variable to indicate which
option was selectively (or asymmetrically) targeted by the manipulation (i.e., the
option that dominated on the salient attribute, or the option that was salient,
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default, popular, or recommended). We also allowed these two types of variables
(additive shift between the intervention vs. baseline condition, and asymmetric
effect of one of the options) to have an effect on the drift rate. In addition to
these, we allowed the weights for the two attributes (quality and price) to be dif-
ferent under different conditions. Finally, we permitted an additive shift in the
decision boundary between the two conditions. To control for the task order
effect, we generated a dummy variable for each participant, indicating whether
the condition was implemented in part 1 or part 3 of the experiment, and we
allowed this variable to influence the decision boundary parameter (a). SI
Appendix, Table S4 presents a summary of model specifications.

In summary, we assumed that the interventions had linear effects on all
DDM components. We subsequently estimated these effects by fitting choice
and RTs with the HDDMRegression function in HDDM (41), a Python package for
hierarchical Bayesian estimation of DDMs. The Bayesian approach permits direct
inferences for parameter posterior distributions. To fit the models, three chains
of 20,000 samples were generated, where the first 5,000 were burn-ins, and a
thinning of 2 was applied. Gelman-Rubin convergence statistics for model
parameters were all close to 1, suggesting that the sample size was sufficient for
the chains to converge.

Additional Analysis. In many cases, we used multiple parameters to capture
the difference on a specific DDM component between the intervention condition
and the baseline condition, and thus had to integrate their effects to produce
Fig. 3. Here, we describe the procedure for generating the composite effect on
the starting point first. For interventions without any asymmetric effects, this
starting point effect is simply the group-level additive change of the starting
point between the intervention condition and the baseline condition. For those
interventions that selectively targeted (i.e., had an asymmetric influence) on one
of the options (i.e., attribute salience, option salience, default options, social
norm, experimenter recommendation conditions), the composite measure com-
bines the group-level additive shift and asymmetric effect in all posterior
samples. Because the asymmetric effect can either favor the high-quality option
or the low-price option, two starting point effects were computed separately for
these conditions. One of the starting point effects combined the additive shift
and the asymmetric effect as if it was favoring the high-quality option, and the

other combined the additive shift and the asymmetric effect as if it was favoring
the low-price option (these effects are shown separately in Fig. 3).

To derive the drift rate effect of an intervention, we first took the mean differ-
ences of both the quality and price attributes across all the choice problems and
used it to generate a typical choice problem. Based on the estimated group-level
additive change, attribute weight change, and asymmetric shift between the
intervention and the baseline conditions, we computed the overall drift rate
change for this typical trial in all posterior samples, and we used their mean to
measure the drift rate effect of an intervention. As the drift rate is a linear func-
tion of the attribute values, our procedure was equivalent to first computing the
drift rates for all questions and then taking the mean of all those drift rates. As
in the starting point, the asymmetric effect in the drift rate can favor either the
high-quality option or the low-price option, and thus two drift rate effects were
computed separately for the interventions with asymmetric effects. One of the
drift rate effects combined the additive shift, the weight change, and the asym-
metric effect favoring the high-quality option, and the other combined the addi-
tive shift, the weight change, and the asymmetric effect favoring the low-price
option. Finally, the decision boundary effect was measured as the group-level
additive shifts between intervention and baseline conditions.

To generate the three-dimensional space of behavioral interventions in Fig. 3A,
we first scaled the DDM effects. This was achieved by dividing the posterior mean
of the group-level composite effects by their associated SDs across the posterior
samples. We then took these scaled effects’ absolute values to reflect standardized
intervention effect sizes on the DDM components. To account for interventions
involving an asymmetric effect on the starting point or the drift rate, we averaged
the standardized starting point or drift rate effect obtained from trials in which the
highlighted option favored the high-quality or the low-price option. We used the
Euclidean distance to calculate vector magnitudes and used Ward's minimum vari-
ance method to generate the hierarchical clustering in Fig. 4C.

Data Availability. Behavioral experiment data have been deposited in the
Open Science Framework database (https://osf.io/y59jk/).

ACKNOWLEDGMENTS. Funding was received from NSF Grant SES-1847794.

1. A. Tversky, D. Kahneman, The framing of decisions and the psychology of choice. Science 211,
453–458 (1981).

2. S. DellaVigna, Psychology and economics: Evidence from the field. J. Econ. Lit. 47, 315–372
(2009).

3. E. U. Weber, E. J. Johnson, Mindful judgment and decision making. Annu. Rev. Psychol. 60,
53–85 (2009).

4. R. H. Thaler, C. R. Sunstein, Nudge: Improving Decisions About Health, Wealth, and Happiness
(Penguin, 2009).

5. P. W. Glimcher, E. Fehr, Eds., Neuroeconomics: Decision Making and the Brain (Academic Press,
2013).

6. J. R. Busemeyer, S. Gluth, J. Rieskamp, B. M. Turner, Cognitive and neural bases of multi-attribute,
multi-alternative, value-based decisions. Trends Cogn. Sci. 23, 251–263 (2019).

7. R. Ratcliff, P. L. Smith, A comparison of sequential sampling models for two-choice reaction time.
Psychol. Rev. 111, 333–367 (2004).

8. J. I. Gold, M. N. Shadlen, The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574
(2007).

9. I. Krajbich, C. Armel, A. Rangel, Visual fixations and the computation and comparison of value in
simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

10. R. Bogacz, E. Brown, J. Moehlis, P. Holmes, J. D. Cohen, The physics of optimal decision making: A
formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113,
700–765 (2006).

11. R. Bogacz, Optimal decision-making theories: Linking neurobiology with behaviour. Trends Cogn.
Sci. 11, 118–125 (2007).

12. H. R. Heekeren, S. Marrett, L. G. Ungerleider, The neural systems that mediate human perceptual
decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).

13. P. W. Schultz, J. M. Nolan, R. B. Cialdini, N. J. Goldstein, V. Griskevicius, The constructive,
destructive, and reconstructive power of social norms. Psychol. Sci. 18, 429–434 (2007).

14. R. B. Cialdini, N. J. Goldstein, Social influence: Compliance and conformity. Annu. Rev. Psychol.
55, 591–621 (2004).

15. N. Harvey, I. Fischer, Taking advice: Accepting help, improving judgment, and sharing
responsibility. Organ. Behav. Hum. Decis. Process. 70, 117–133 (1997).

16. G. Bohner, N. Dickel, Attitudes and attitude change. Annu. Rev. Psychol. 62, 391–417 (2011).
17. E. J. Johnson, D. Goldstein, Medicine. Do defaults save lives? Science 302, 1338–1339

(2003).
18. B. C. Madrian, D. F. Shea, The power of suggestion: Inertia in 401(k) participation and savings

behavior. Q. J. Econ. 116, 1149–1187 (2001).
19. T. Mann, A. Ward, Attention, self-control, and health behaviors. Curr. Dir. Psychol. Sci. 16, 280–283

(2007).
20. K. C. Armel, A. Beaumel, A. Rangel, Biasing simple choices by manipulating relative visual

attention. Judgm. Decis. Mak. 3, 396–403 (2008).

21. J. Baron, I. Ritov, Reference points and omission bias. Organ. Behav. Hum. Decis. Process. 59,
475–498 (1994)

22. D. Kahneman, A perspective on judgment and choice: Mapping bounded rationality. Am. Psychol.
58, 697–720 (2003).

23. E. Shafir, I. Simonson, A. Tversky, Reason-based choice. Cognition 49, 11–36 (1993).
24. E. J. Johnson, A. Tversky, Affect, generalization, and the perception of risk. J. Pers. Soc. Psychol. 45,

20 (1983).
25. N. Schwarz, G. L. Clore, Mood, misattribution, and judgments of well-being: Informative and

directive functions of affective states. J. Pers. Soc. Psychol. 45, 513 (1983).
26. M. L. Finucane, A. Alhakami, P. Slovic, S. M. Johnson, The affect heuristic in judgments of risks and

benefits. J. Behav. Decis. Making 13, 1–17 (2000).
27. A. L. Alter, D. M. Oppenheimer, Uniting the tribes of fluency to form a metacognitive nation. Pers.

Soc. Psychol. Rev. 13, 219–235 (2009).
28. N. Mandel, E. J. Johnson, When web pages influence choice: Effects of visual primes on experts

and novices. J. Consum. Res. 29, 235–245 (2002).
29. C. Deck, S. Jahedi, The effect of cognitive load on economic decision making: A survey and new

experiments. Eur. Econ. Rev. 78, 97–119 (2015).
30. L. Guo, J. S. Trueblood, A. Diederich, Thinking fast increases framing effects in risky decision

making. Psychol. Sci. 28, 530–543 (2017).
31. J. W. Payne, J. W. Payne, J. R. Bettman, E. J. Johnson, The Adaptive Decision Maker (Cambridge

University Press, 1993).
32. F. Lieder, T. L. Griffiths, Resource-rational analysis: Understanding human cognition as the optimal

use of limited computational resources. Behav. Brain Sci. 43, e1 (2020).
33. J. S. Lerner, P. E. Tetlock, Accounting for the effects of accountability. Psychol. Bull. 125, 255–275

(1999).
34. M. H. Birnbaum, J. W. Jou, A theory of comparative response times and “difference” judgments.

Cognit. Psychol. 22, 184–210 (1990).
35. K. L. Milkman et al., Megastudies improve the impact of applied behavioural science. Nature 600,

478–483 (2021).
36. K. Muralidharan, P. Niehaus, Experimentation at scale. J. Econ. Perspect. 31, 103–124 (2017).
37. S. DellaVigna, E. Linos, RCTs to scale: Comprehensive evidence from two nudge units. NBER

Working Paper (2020). http://doi.org/10.3386/w27594.
38. S. Michie, M. M. van Stralen, R. West, The behaviour change wheel: A new method for

characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).
39. P. Nilsen, “Making sense of implementation theories, models, and frameworks,” in Implementation

Science 3.0, B. Albers, A. Shlonsky, R. Mildon, Eds. (Springer, Cham, 2020), pp. 53–79.
40. R. L. Keeney, H. Raiffa, Decisions With Multiple Objectives: Preferences and Value Trade-Offs

(Cambridge University Press, 1993).
41. T. V. Wiecki, I. Sofer, M. J. Frank, HDDM: Hierarchical Bayesian estimation of the drift-diffusion

model in Python. Front. Neuroinform. 7, 14 (2013).

PNAS 2022 Vol. 119 No. 15 e2114914119 https://doi.org/10.1073/pnas.2114914119 9 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2114914119/-/DCSupplemental
https://osf.io/y59jk/

	TF1

