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Abstract

In regression settings, parameter estimates will be biased when the explanatory variables

are measured with error. This bias can significantly affect modeling goals. In particular,

accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount

of bias in parameter estimates may result in a significant increase in the bias of the extrapo-

lated predictions. Additionally, bias may arise when the stochastic component of a log

regression model is assumed to be multiplicative when the actual underlying stochastic

component is additive. To account for these possible sources of bias, a log regression

model with measurement error and additive error is approximated by a weighted regression

model which can be estimated using Iteratively Re-weighted Least Squares. Using the

reduced Eyring equation in an accelerated testing setting, the model is compared to previ-

ously accepted approaches to modeling accelerated testing data with both simulations and

real data.

Introduction

Standard regression estimates of covariate parameters become biased when the explanatory

variables are measured with error [1, 2]. A number of methods have been proposed to address

the issue of measurement error in a variety of settings [3–6]. Among the most popular in labo-

ratory settings is the York method [7, 8], which relies on the physics of the model and requires

specification of the observational variance.

The log regression model defines a class of problems that occur frequently in the laboratory

sciences. These models can be written in the form

EðYiÞ ¼ expðf ðXijθÞÞ; ð1Þ

where Y1, . . ., Yn are observed responses, Xi = (X1,i, . . ., Xp,i)
0 for i = 1, . . ., n are explanatory

variables and θ is a vector of parameters. One example of this is the log-linear model [9]. The
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stochastic component is often assumed to be multiplicative, resulting in log(Yi) = f(Xi|θ) + εi
where εi is random error and is typically modeled as a normal distribution with mean 0 and

variance σ2. While making the assumption of multiplicative error is appropriate in many set-

tings, this approach also provides bias on the original scale of the data as E(Yi) = exp(f(Xi|θ) +

.5σ2). One advantage of the multiplicative model is that it simplifies mathematically. An alter-

native assumption for the stochastic component is additive error, where Yi = exp(f(Xi|θ)) + εi.
These two approaches will yield differing parameter estimates.

The International Standard for the estimation of the archival lifetime of optical media, [10],

outlines the procedure and assumptions for estimating lifetime of optical media by accelerated

testing. This standard has been widely applied in deriving the lifetime estimates (LEs) for opti-

cal discs [11–13]. The procedure involves applying extreme values of Temperature (T) and Rel-

ative Humidity (RH) to optical media and fitting the data with the reduced Eyring equation,

which fits into the log regression model framework. The estimated model is then extrapolated

to determine the lifetime expectancy under normal conditions. Because this extrapolation

extends significantly past the range where the treatments are applied, a small amount of bias

will significantly alter the results, so making assumptions that may produce bias should be con-

sidered carefully. This bias may be present by failing to account for measurement error or by

making poor assumptions about how the random error is included in the model, be it additive

or multiplicative.

The purpose of this paper is to address the log regression model from Eq (1) in the case

where the error is additive and the explanatory variables are observed with error and to specif-

cially show how it can be applied to reduce bias in parameter estimation in accelerating testing

models. The proposed methodology will convert a log regression model with measurement

error into a weighted regression model using a Taylor series expansion around the error

terms, which can then be estimated using iterative re-weighting methods. The advantage of

this approach is that it reduces bias in parameter estimates by accounting for correct sources

of error while remaining relatively simple compared to other techniques of fitting non-linear

models in the presence of measurement error.

Section 2 describes the proposed approach to fitting the log regression model in the pres-

ence of measurement error. Section 3 describes accelerated lifetime testing and the reduced

Eyring equation and compares the proposed methodology with generally accepted methods of

fitting the reduced Eyring equation in a simulation. Section 4 applies the methodology to both

the example data set provided with the International Standard on fitting accelerated lifetime

testing, the ISO/IEC 10995, as well as a Millenniata data set of accelerated lifetime testing of

over 100 M-Disc DVDs.

Methods

The log regression model with additive observational error and measurement error can be

written as

Yi ¼ expðf ðXi þ δijθÞÞ þ εi ð2Þ

where δi = (δ1,i, . . ., δp,i)
0 is introduced as a normal measurement error vector with mean 0

and variance V. For this work it is assumed that V is a diagonal matrix with diagonal

n2 ¼ ðn2
1
; . . . ; n2

pÞ
0
.

Measurement error in log regression models
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Theorem 1. The model in Eq (2) can be approximated as a weighted regression model of the
form

logðYiÞ � f ðXijθÞ þ
d
dδi

f ðXi þ δijθÞjδi¼0

� �0

δi þ expð� f ðXijθÞÞε:

The proof of Theorem 1 is included in Appendix A.

This result can be used to convert a measurement error log regression model into a

weighted regression model. The expected value of log(Yi) is f(Xi|θ) and the variance is

VarðlogðYiÞÞ ¼
Xp

j¼1

d
dδj;i

f ðXi þ δijθÞjδi¼0

 !

n2

j þ expð� f ðXijθÞÞ
2
s2: ð3Þ

Define w1, . . ., wn be the inverse of these variance terms,

wi ¼
1

VarðlogðYiÞÞ
: ð4Þ

The parameter set θ can be estimated as the values that minimize

Xn

i¼1

wiðlogðYiÞ � f ðXijθÞÞ
2
: ð5Þ

Details of building weighted regression models and using least squares to estimate the parame-

ters can be found for linear models in [14] and for general non-linear problems in [15].

Iteratively Re-weighted Least Squares (IRLS) will be used to estimate the parameters [16].

This approach accounts for the fact that the parameters are used to calculate the weights, but

the weights are needed to estimate the parameters. The general approach is described as

follows:

1. Choose starting parameter estimate θ(0) and calculate the weights wð0Þ1 ; . . . ;wð0Þn using

Eqs (3) and (4) and set a counter, b = 1.

2. Set s2 ¼ 1

n� 1

Pn
i¼1
ðYi � expðf ðXijθ

ðb� 1Þ
ÞÞÞ

2

3. Set θ(b) equal to the minimizer of Eq (5) using weights wðb� 1Þ

1 ; . . . ;wðb� 1Þ
n .

4. Calculate updated weights wðbÞ1 ; . . . ;wðbÞn using the updated parameter set θ(b).

5. Iterate steps 2 through 4 by incrementing b until some convergence criteria is met. A simple

convergence criteria that could be used is kθ(b) − θ(b−1)k< .001.

Accelerated testing

The ISO/IEC 10995 data analysis deals with the time to failure, measured in hours, for 20 sam-

ples of media at each of three stress treatments: (85˚C, 85%RH), (85˚C, 70%RH), (65˚C, 85%

RH), and the time to failure for 30 samples of media at the stress treatment (70˚C, 75%RH).

Ambient operating conditions are assumed to be (25˚C, 50%RH), and interpolation proce-

dures are outlined to adjust to other ambient conditions. The ISO/IEC 10995 procedure takes

these 90 time to failure data points and reduces each of the four treatments to only the median

time to failure values for analysis. Since the extrapolation is so far beyond the test conditions,

we have studied how using just the treatment medians relates to results from analyzing the full

data sets. We have also considered the fitting procedures from Section 2 to take into account

Measurement error in log regression models
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measurement errors as well as correct specification of the nature of the observational errors in

the time to failure.

The reduced Eyring equation used in modeling accelerating testing data is

Yi ¼ AexpðC=Ti þ BHiÞÞ; ð6Þ

where Yi are the observed data i.e. time to failure measured in hours, Ti andHi are temperature

in Kelvins and relative humidity measurements, and A, B, and C are unknown parameters.

Proper estimation of these unknown parameters is crucial to appropriately extrapolate the

reduced Eyring equation from the conditions in the accelerated lifetime testing to standard

conditions. Eq (6) is used to model time to failure as a function of temperature and relative

humidity using laboratory data.

Modeling approaches

Four different approaches will be used to compare analysis of accelerated testing data. This

includes the ISO standard, a log-linear model, an additive error model, and finally an additive

error model with measurement error in the predictors.

ISO standard. The standard method of modeling accelerated testing is according to ISO/

IEC 10995. This method tests the product at 4 specific combinations of temperature and rela-

tive humidity, then fits a model to the logarithm of the medians of each of these 4 treatments.

Let Yi,j represent the j-th data point from the i-th temperature and relative humidity combina-

tion. Set Zi to be equal to the median of Yi,1, Yi,2, . . ., Yi,ni where ni is the number of observa-

tions in treatment i. The model fitted for the ISO/IEC 10995 is

logðZiÞ ¼ logðAÞ þ C=Ti þ BHi þ εi:

The parameters are then estimated using regression of 1/Ti andHi on log(Zi). This model

assumes that the medians of the data satisfy all the assumptions for standard regression: the

relationship between log(Z) and the predictors is linear, and that the errors are independent,

normally distributed, with constant variance. This approach assumes that the stochastic error

term for the observed median is multiplicative.

Log-linear model. A more standard statistical approach to estimating data using the

reduced Eyring equation is to perform a regression directly on the logarithm of the individual

measurements [9]. In this case, Yi,j will be the j-th observation from treatment i and the model

to fit is

logðYi;jÞ ¼ logðAÞ þ C=Ti þ BHi þ εi;j: ð7Þ

This model now assumes that the data satisfy all the requirements for linear regression, which

are again that the log(Yi) has a linear relationship with the predictors, and the errors in the

model are independent, normally distributed, and have constant variance. Like the medians

model, this log-linear model assumes that the error is multiplicative.

One feature of this model and the ISO standard is that the distribution of the time to failure

data conditional on temperature and relative humidity is log-normal. A result of this is that

the expected of value of the data is E(Yi) = A exp(C/Ti + BHi + .5σ2). In other words the

expected value of the data is the reduced Eyring equation from Eq (6) scaled by exp(.5σ2). For

large variances of the errors, this may introduce a significant bias on the original scale of the

data.

Additive error model. The ISO standard and log-linear model are the models most often

used to fit the reduced Eyring equation. Based on the methodology from Section 2, we propose

two additional approaches. The first allows the error term to be additive in the reduced Eyring

Measurement error in log regression models
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equation, but still assumes the variables are measured without error. Theorem 1 can be applied

with δi = 0 for all i. IRLS will be used to estimate the parameters with weights according to

Eqs (3) and (4) with νj = 0 for all j.
The approximate weighted regression model is

logðYi;jÞ ¼ logðAÞ þ C=Ti þ BHi þ
εi;j

AexpðC=Ti þ BHiÞ
:

The weight for every observation in the i-th treatment group is then proportional to [A exp(C/

Ti + BHi)]2. The previous two methods discussed assume that the variances of the log of the

data are equal for all observations. This method assumes the variances are equal at the original

scale of the data but different at the log scale. It also provides an unbiased estimate of the data,

as E(Yi) = A exp(C/Ti+BHi), which may be an improvement over the log-linear model in some

cases.

Additive error model with measurement error. Another assumption made by all three

of the models so far is that the values for temperature and humidity are measured with no

experimental error. In reality, the best that researchers can hope for in measuring these values

is small enough error to be considered “negligible”. In fact, if measurement errors are merely

moderate or even large, the variation we see in the observations may be due as much to mea-

surement error in the predictor variables as to random error. This is particularly problematic

for accelerated testing since, by design, the failure model is to be extrapolated beyond the data.

Failure to account for this measurement error can also affect the parameter estimates and can

therefore affect the prediction of new observations.

Assume that δT,i,j and δH,i,j are the measurement errors in temperature and relative humid-

ity respectively with means of zero and variances n2
T and n2

H . Using Theorem 1, the approximate

weighted linear model would be

logðYi;jÞ ¼ logðAÞ þ C=Ti þ BHi þ dT;i;jC=T2
i þ dH;i;jBþ

εi;j
AexpðC=Ti þ BHiÞ

:

Using this model we see that the expected value of the log of the data is E(log(Yi,j)) = log(A) +

C/Ti+BHi, and using Eq (3), the variance is

VarðlogðYi;jÞÞ ¼ C2n2
T=T

4
i þ B

2n2
H þ

s2

ðAexpðC=Ti þ BHiÞÞ
2
: ð8Þ

Weights can then be assigned according to Eq (4) and the IRLS procedure outlined in Sec-

tion 2 would be used to estimate the parameters.

Simulations

We simulate data using the reduced Eyring equation. When the error is additive, the form is

Yi;j ¼ AexpðC=ðTi þ dT;i;jÞ þ BðHi þ dH;i;jÞÞ þ εi;j; ð9Þ

and when the error is multiplicative, the model form is

logðYi;jÞ ¼ logðAÞ þ C=ðTi þ dT;i;jÞ þ BðHi þ dT;i;jÞ þ εi;j; ð10Þ

where, for both models, εi,j * N(0, σ2), dT;i;j � Nð0; n2
TÞ, and dH;i;j � Nð0; n2

HÞ

Whether using Eqs (9) or (10), the simulated data is generated using the values log(A) = exp

(−13.68), B = −.0422, and C = 8,485. These values have been chosen to reflect a possible model

that could drive real-world results. Four data treatment groups were simulated with

Measurement error in log regression models
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temperature values in ˚C of 65, 70, 85, and 85 respectively for each treatment group and rela-

tive humidity values in % RH of 85, 75, 85, and 70 respectively per treatment group with 20

observations in each group. 5 different settings are determined for simulation. These settings

vary by whether the data are simulated using Eqs (9) or (10), whether or not there is measure-

ment error, and by the ratio between observational error and measurement error. The simula-

tion settings are summarized in the list below.

1. Simulated from Eq (9) with additive error, with σ2 = 10,000, n2
T ¼ 0, and n2

H ¼ 0.

2. Simulated from Eq (10) with multiplicative error, with σ2 = .0225, n2
T ¼ 0, and n2

H ¼ 0.

3. Simulated from Eq (9) with additive error, with σ2 = 10,000, n2
T ¼ :5, and n2

H ¼ :1.

4. Simulated from Eq (9) with additive error, with σ2 = 2,500, n2
T ¼ :1, and n2

H ¼ :1.

5. Simulated from Eq (9) with additive error, with σ2 = 40,000, n2
T ¼ :1, and n2

H ¼ :1.

We fit the resulting simulated data using the 4 methods described in Section 3.1: the ISO/

IEC 10995 procedure of calculating the median for each treatment and fitting a linear model

to the log medians (MED), taking the log of the data and fitting a linear model (LL), using The-

orem 1 to weight the treatment groups and account for additive error εi,j (IRLS), and using the

IRLS method while accounting for measurement error (IRLS-ME). Each of the different mod-

els makes different assumptions about the data and measurement variances. These assump-

tions are given in Table 1 where the untransformed observed data are denoted as Yi,j.
The goal of learning the parameters of the model is to extrapolate from the experimental

conditions to ambient operating conditions, which are assumed to be a temperate 25˚C and

relative humidity of 50%. For each of the settings, 10,000 data sets are simulated and the pre-

diction bias is calculated as the absolute difference between the prediction made from the

model’s estimated values of A, B, and C and the prediction found when using the values of A,

B, and C that were used to generate the data. Table 2 reports the average absolute prediction

bias, measured in hours, of the 10,000 simulated data sets for all 4 models. Lower values mean

less bias and a more accurate prediction.

Table 1. Model assumptions. The assumptions implicit for each model.

Model Assumption

MED log(Yi,j) has equal variance for all i
LL log(Yi,j) has equal variance for all i

IRLS Yi,j has equal variance for all i
IRLS-ME No assumptions of equal variance

https://doi.org/10.1371/journal.pone.0197222.t001

Table 2. Simulation study prediction bias comparison. Average absolute prediction bias for the 10,000 data sets from each simulation setting and for each model.

Simulation Setting MED LL IRLS IRLS-ME

1 52,700 50,000 47,900 49,000

2 63,800 52,000 52,500 52,300

3 54,300 51,300 49,200 48,900

4 42,900 36,400 36,000 35,200

5 68,500 68,100 67,000 67,000

https://doi.org/10.1371/journal.pone.0197222.t002

Measurement error in log regression models
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According to the results in Table 2, the ISO standard is more biased than any of the other

models in all the settings. Also, note that accounting for measurement error in the model leads

to a lower bias when the data are simulated using measurement error. In the multiplicative

error data set (setting 2) the LL model matched the model that generated the data, but the

IRLS-ME method was not much more biased. When measurement error was larger with

respect to observational error, as in setting 4, the advantage of IRLS-ME over the IRLS model

was greater. In contrast, when measurement error was reduced and observational error

increased in setting 5, the advantage of IRLS-ME over IRLS was not as significant. This shows

that accounting for measurement error may be more or less important depending on how

much observational error there is.

The code used to create the simulated data sets is found in S1 File.

Data

ISO/IEC 10995 example data

ISO/IEC 10995 includes an example data set simulated to show how to fit the median model,

hereafter referred to as the example data set. These data are analyzed here using the four meth-

ods described in Section 3.1. The data are shown in Fig 1 and can be purchased with the inter-

national standard at http://www.iso.org/iso/catalogue_detail.htm?csnumber=56910. As with

the simulated data above, there are 4 combinations of temperature and relative humidity,

which we will refer to as treatments. The empirical variances for each treatment in the data set

are shown in Table 3 with some rounding.
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Fig 1. ISO example data. The data set shown is the ISO/IEC 10995 example data set. The left figure shows the data plotted by temperature and indexed by

humidity and the right plot shows the data plotted by humidity and indexed by temperature. In both cases, the 4 treatments can be distinguished.

https://doi.org/10.1371/journal.pone.0197222.g001
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While neither of the rows are very uniform in variance, the change in variance in the log

scale is much milder than the change in variance of the untransformed data. According to

Table 1, this may suggest that the log-linear or median model fitting procedures may be appro-

priate. We also don’t know what measurement error may be present, because we did not simu-

late the data. For now, the IRLS-ME model assumes only a small amount of measurement

error. Specifically, the IRLS-ME methods includes an error in temperature with a variance

of.01, and an error in relative humidity with a variance of.25, which are reasonable values of

measurement error variance on standard machines used for accelerated testing, perhaps even

conservative in some cases. We cannot calculate the bias without knowledge of the parameters

used to generate the data, but predictions of the lifetime of an object at 25˚ and 50% relative

humidity are in Table 4 for each model, along with the 95% confidence interval width of this

prediction. The 95% confidence intervals for the MED method are difficult to calculate using

traditional theoretical variances of the estimates. Therefore, to be consistent, bootstrapping is

used to calculate approximate confidence intervals for all 4 methods. Details on the bootstrap-

ping procedure can be found in [16]. We also include a metric called Akaike’s information cri-

terion (AIC). The metric is described in more detail in Appendix B, but it is a way of assessing

how well the fitted model matches the data. A lower value of AIC implies that the model is

better.

While the IRLS-ME model has the lowest AIC, it is not different from the log-linear method

and not very different from the median method. IRLS without measurement error is the worst

of all the models. There is no way to tell which prediction is correct, and none seem to stand

out as extreme or clearly wrong.

Lunt data

In 2013, Millenniata tested over 100 M-Disc1 DVDs, following the ISO 10995 standard. The

data gathered from this test were released to Barry Lunt, one of the authors. Herein this data

set is referred to as the “Lunt” data. The Lunt data are shown in Fig 2 and is available in S2

File. Since this is not simulated data based on a fixed scenario, we do not know a priori what

method to use. By looking at the variances, though, we can get an idea of which method may

work better. The Lunt data variances for each treatment are in Table 5.

Table 3. Example data variances. The variance for each treatment at the original scale and the log scale for the example

data set.

Trtmt 1 Trtmt 2 Trtmt 3 Trtmt 4

Variance of Yi,j 188,400 60,300 7,100 4,600

Variance of log(Yi,j) .0195 .0108 .0072 .0096

https://doi.org/10.1371/journal.pone.0197222.t003

Table 4. Example data lifetime predictions. The prediction of lifetime in hours of an object in standard conditions,

95% confidence interval width, and AIC for the example data set.

Model Prediction CI Width AIC

MED 331,700 190,300 −54.7

LL 340,800 132,000 −56.4

IRLS 322,600 159,200 −44.1

IRLS-ME 328,100 155,200 −56.4

https://doi.org/10.1371/journal.pone.0197222.t004
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Again, neither row is very uniform in variance, but as opposed to the example data set, the

variances on the log scale are drastically different. This may suggest that the IRLS method may

be the most appropriate model to fit. Again, we will assume that when the IRLS method is fit-

ted with measurement error, the error in temperature has a variance of.01, and the error in

humidity has a variance of.25.The predictions of the lifetime of an object at 25˚C and 50% rela-

tive humidity are in Table 6 for each model, along with the confidence interval width and AIC.

Based on AIC, the best model for this scenario is the IRLS method without any measure-

ment error. Also notable here is that the predicted values when using the IRLS or IRLS-ME

methods for the extrapolation are far from the other two methods. While the median method

and log-linear method had similar predictions and AICs, the confidence interval for the

median method is much larger.
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Fig 2. Lunt data set. Plotted is the Lunt data set. The left shows the data plotted by temperature and indexed by humidity and the right plot shows the data

plotted by humidity and indexed by temperature.

https://doi.org/10.1371/journal.pone.0197222.g002

Table 5. Lunt data variances. The variance for each treatment at the original scale and the log scale for the Lunt data

set.

Trtmt 1 Trtmt 2 Trtmt 3 Trtmt 4

Variance of Yi 7,800 40,900 8,700 8,300

Variance of log(Yi) .0026 .0083 .025 .049

https://doi.org/10.1371/journal.pone.0197222.t005
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Conclusion

Based on simulations, theory, and the analysis of real data, we have shown that there are some

important matters to consider when fitting the reduced Eyring equation to data. When the var-

iance is constant for the log data, then using a log-linear model may be appropriate. Even the

median model, while it gave wider confidence intervals in general, seemed to give an unbiased

estimate of the predictions when the log data had constant variance. However, when the log

data do not have constant variance but the untransformed observations do, accounting for

additive error using a Taylor series approximation and an IRLS fitting procedure may result in

a better fit. When the data are somewhat in-between these two cases, where neither scale has

variances that could be considered equal, the cause may be a small amount of measurement

error, which may impact the model in a significant way.

When faced with a problem, a researcher should examine the variances of the two scales.

Since none of these models are costly to fit, they all could be used and then the AIC’s could be

compared to find a better model. A range of measurement error values could also be tried if

the actual variances of the measurement error are not known, but often measurement error

can be evaluated on the instruments prior to collecting the data. One of the most significant

aspects of this study is that when real-world data are used, the variances were not equal in

either the observation groupings or the log observation groupings, and the model fit using the

IRLS model proved to be better. There may be a variety of other settings where this is the case.

The result in Theorem 1 may extend to other settings where the regression model variables

are measured with error. For example, the Arrhenius equation is commonly used in chemistry

and engineering to describe physical systems, or simple radioactive decay or growth models

when extra variables affect the rate of decay or growth. The weighting method may also pro-

vide insight as to where observations may be placed to decrease the variance and increase the

accuracy of prediction. Future work will explore these insights further.

A Proof of Theorem 1

Proof. Let g(δi, εi) be equal to the log of Eq (2),

gðdi; εiÞ ¼ logðYiÞ ¼ logðexpðf ðXi þ dijθÞÞ þ εiÞ

The first order Taylor series approximation of g(δi, εi) about δi = 0 and εi = 0 is

gðdi; εiÞ � gðdi; εiÞjdi¼0;εi¼0
þ

d
ddi

gðdi; εiÞjdi¼0;εi¼0

� �0

di þ
d
dεi
ðdi; εiÞjdi¼0;εi¼0

� �

εi

The derivative of g with respect to δi is

d
ddi

gðdi; εiÞ ¼
1

expðf ðXi þ dijθÞÞ þ εi
expðf ðXi þ dijθÞÞ

d
ddi
f ðXi þ dijθÞ

� �

Table 6. Lunt data lifetime predictions. The prediction of lifetime of an object in standard conditions, confidence

interval width, and AIC for the Lunt data set.

Model Prediction CI Width AIC

MED 363,200 610,200 −40.1

LL 367,900 266,800 −41.4

IRLS 421,500 306,400 −57.9

IRLS-ME 417,900 303,600 −48.6

https://doi.org/10.1371/journal.pone.0197222.t006
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When δi and εi are set to 0, the derivative is

d
ddi
gðdi; εiÞjdi¼0;εi¼0

¼
d
ddi
f ðXi þ dijθÞjdi¼0

The derivative of g with respect to εi is

d
dεi
gðdi; εiÞ ¼

1

expðf ðXi þ dijθÞÞ þ εi

When δi and εi are set to 0, the derivative is

d
dεi
gðdi; εiÞjdi¼0;εi¼0

¼ expð� f ðXijθÞÞ

Combining these results leaves us with the desired approximation.

B Assessing model fit

A metric for assessing quality of results from several different fitting models needs to respond

to the accuracy of the estimated parameters, the accuracy of predictions, and the uncertainties.

In addition, we expect the fitted model to have the ability to regenerate data with properties

close to those of the original data set. Then if a particular model is fitted and the estimated

parameters are used in a simulation to generate new data, we should see that the new simulated

data and the original data are clearly consistent with one another. If the fitted model is unable

to regenerate simulated data which is reasonably similar to the actual data, we can typically

conclude that the model fit is poor or inadequate.

One metric used to assess a model fit’s quality of results is Akaike’s Information Criterion

(AIC). The formula for the AIC is

AIC ¼ � 2lðx; θ̂Þ þ 2k;

where lðx; θ̂Þ is the log likelihood of the data for a particular choice of likelihood function and

estimated parameters θ̂, and k is the number of parameters. This value accounts both for the

likelihood of the data for given fitted parameters and for the decrease in discrimination among

models as the number of parameters increases. AIC as defined is generally negative, so the

more negative AIC the greater expectation of quality of fit. Furthermore, a model with a

smaller AIC (i.e. more negative) is more likely to be able to regenerate data similar to those

used to fit the model. AIC is used as a quality metric in this paper, and in all cases when multi-

ple procedures are used to fit the same data, the model with a smaller AIC will be considered

to be more reliable than the others.

For this paper, the AIC was calculated using the maximum likelihood estimates of the

parameters. For the MED and LL models, the likelihood function of the log data is a normal

distribution with a mean of log(A) + C/Ti+BHi and a variance of σ2. For the IRLS method, the

likelihood function is a normal with mean log(A) + C/Ti+BHi and a variance of

s

AexpðC=TiþBHiÞ

� �2

. The mean for the IRLS-ME method is the same as the others, but the variance

is C2n2
T=T

4
i þ B

2n2
H þ

s2

ðAexpðC=TiþBHiÞÞ
2. Using the likelihood for the log data instead of the raw

data will change AIC values, but it will not change the ordering, meaning that a lower AIC on

the log data will still have a lower AIC for the raw data.
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Supporting information

S1 File. Simulated data. R file containing information needed to reproduce simulated data

sets from an Arrhenius equation, both with additive and multiplicative observation error and

with or without measurement error.

(R)

S2 File. Lunt data. CSV file containing the actual data from an accelerated testing experiment

performed by co-author Barry M. Lunt.

(CSV)
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