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Abstract

Background: The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene
regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL
2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks
and their organization.

Methodology/Principal Findings: In view of the hierarchical structure of bacterial transcriptional regulation, we constructed
a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255
differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional
enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary
metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is
slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all
genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin
production by sharing common intermediate metabolites. Non-concomitant correlation between production and
expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network
based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those
two erythromycin production-correlated modules was included as expected.

Conclusions: This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules
into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation
corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic
microorganisms.
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Introduction

Saccharopolyspora erythraea, formerly known as Streptomyces ery-

thraeus, is a gram-positive, spore-forming bacterium. It is used for

industrial-scale production of erythromycin A, a broad-spectrum

antibiotic against Gram-positive bacteria [1]. Due to the

commercial importance of erythromycin and its derivatives,

intensive efforts have been devoted to its biosynthesis mechanism,

aiming to increase strain productivity [2,3]. The complete genome

sequences of S. erythraea strain NRRL2338 was released in 2007

[1], and indicated considerable divergence of S. erythraea from the

streptomycetes in gene organization and function.

In prokaryotic genomes, a set of genes and their associated

regulatory elements are grouped into an operon, and co-

transcribed as a single unit, or transcript unit (TU); a group of

genes and operons subject to the regulation by the same

transcription factors are defined as a regulon; at a much higher

level, the genes, operons and regulons controlled by a set of

transcriptional factors (TFs) at certain times under certain

conditions within the cell are termed as a stimulon or modulon

[4,5]. The hierarchical transcriptional regulatory networks have

been shown to meet the inherent property of cell regulation

mechanisms [6]. Analysis of microarray transcriptome data allows

for identification of TU sets that share a similar expression profile

across multiple temporal, environmental and genetic conditions,

and these TUs are candidates for regulons and stimulons [7].

Transcriptome data are expected to give fresh impetus to the study

of the hierarchical regulatory organization of microorganisms.
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Recently, Peano and his colleagues designed a time series

microarray experiment at ten different time points according to

erythromycin production and cell growth curve [8]. The DNA

microarray was constructed on the S. erythraea strain NRRL2338

genome sequence at whole transcriptome level, and the expression

profiles of 6494 ORFs were monitored. The authors identified 404

most differentially expressed genes during time course character-

izing three distinct phases: a rapid growth until 32 h (Phase A); a

growth slowdown until 52 h (Phase B); and another rapid growth

phase from 56 h to 72 h (Phase C). The erythromycin-biosynthetic

(ery) gene cluster was confirmed to be up-regulated during Phase A

[8]. These findings extend our understanding of how S. erythraea

genes are transcriptionally regulated at a global level.

In the present work, we re-analyzed the transcriptome data

from the angle of the hierarchical modular structure of bacterial

transcriptional regulation. We constructed a multi-layer coexpres-

sion network by organizing genes into TUs, modules and groups

step by step based on expression correlation. A total of 27 modules

were identified from 1255 differentially expressed TUs across time

course, which were further merged into 4 groups showing some

specificity to cell growth phases. Functional enrichment analysis

indicated the biological significance of our hierarchical network.

Among the 27 modules, two are highly correlated to erythromycin

production with non-concomitant checking showing more signif-

icant correlation. These two modules were found to have direct

association by a following calculation aiming to reveal the hidden

associations after removing the effects of the other modules. The

landscape of the hierarchical coexpression network of S. erythraea

shows the power of this approach investigating the regulatory

mechanisms of S.erythraea and could be extended to the study of

other microorganisms.

Results

Identification of operon structures and differentially
expressed transcript units

In a typical bacterial genome, about half of genes are located in

operons [9]. Since the operon structure affects the regulation of

gene expression, operon prediction becomes the first step towards

regulatory network reconstruction at the whole genome level. The

predicted operons of S. erythraea strain NRRL2338 were obtained

from DOOR [10]. Although the prediction program used by

DOOR was ranked as the most accurate among 14 currently

popular operon prediction programs [11,12], it still generated false

operon structures. We therefore screened the operons according to

the expression correlation of within-operon gene pairs. When the

average expression correlation of all possible within-operon pairs is

below 0.6, or the correlation of any adjacent within-operon pair is

below 0.4, this operon was filtered out. The expression correlations

of all possible gene pairs, all adjacent gene pairs, all possible gene

pairs within predicted operons and all possible gene pairs within

filtered predicted operons were respectively plotted as density

curves in Figure 1. With the curve of all pairs following an

approximately normal distribution, the overall correlation of all

pairs, all adjacent pairs and all pairs within predicted operon pairs

is gradually increasing (Figure 1); and gene pairs within filtered

operons present a distinctly higher correlation than the other three

groups of gene pairs (Figure 1).

According to the common definition, both operons and genes

not assigned to any operons, were regarded as transcript units, and

the average expression value of within-operon genes was adopted

to characterize the expression profile of the operon. We first

identified the top 2000 differentially expressed TUs using EDGE

and Timecourse separately, and the overlapped 1255 TUs,

corresponding to 1668 genes (approximate 25% of 6494 ORFs),

were identified as differentially expressed ones for further analysis.

The overlapped differentially expressed TUs accounted for 60% of

those generated by EDGE or Timecourse at almost every time

points (Figure S1).

Hierarchical clustering of transcript units into
coexpression modules and groups

After constructing weighted coexpression network based on

differentially expressed TUs, the 1255 TUs were clustered into a

total of 27 coexpression modules (Figure 2) ranging from 10 to 238

TUs in size. For each module, the eigengene was calculated to

represent its expression profile along the time course, and the 27

modules were further clustered by computing the correlation

between eigengenes (see methods for details). The height cut was

set as 0.6 so that the resulting four groups of coexpressed modules

accorded with the growth phases of S. erythraea [8] (Figure S3). In

summary, group 1 are up-regulated in growth phase A (rapid

growth); group 2 are dominantly up-regulated in phase B (growth

slowdown); groups 3 and 4 together correspond to phase C

(another rapid growth), with group 3 exclusively up-regulated in

phase C, and group 4 up-regulated in both phase B and C

(Figure 3).

The largest group, group 1, contains 672 TUs, involving 10

modules including two largest modules, module 1 and module 2.

Group 4 is the second largest module, consisting of 416 TUs.

Group 2 and group 3 contain 99 and 67 TUs respectively. It is

noticeable that quite a few of TUs belonging to the same gene

cluster for the biosynthesis of second metabolites were grouped

into the same module. For example, all TUs in ery cluster for

erythromycin biosynthesis were grouped to module 12, group 1;

tpc1 cluster, nrps1 cluster and nrps3 cluster were included by

module 19, group 2.

Functional enrichment analysis of coexpression modules
and groups

Functional enrichment analysis based on COG category

annotation provided by Oliynyk et al.[1] showed that two-thirds

of the 27 modules are associated with one or more functional

categories (Figure 4). For instance, module 1, the largest one, is

Figure 1. Density curves of pairs correlation. Density curves of the
correlations of all pairs (blue), all adjacent pairs (red), all pairs within
predicted operon pairs (green) and gene pairs within filtered operons
(black).
doi:10.1371/journal.pone.0012126.g001

Modules of Coexpressed TUs
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assigned to III.4 Coenzyme transport and metabolism, III.5

Energy production and conversion, III.8 Nucleotide transport and

metabolism. Module 12 which contains the ery gene cluster is

related to III.5 Energy production and conversion, III.10

Secondary metabolites biosynthesis, transport and catabolism,

while module 16 displays a strong association with II.12

Translation, ribosomal structure and biogenesis. Besides, several

modules are found to be enriched in IV.1 Function unknown as a

large number of genes in S. erythraea are designated as denovo.

The association relationship between coexpression modules and

COG categories became much clearer after clustering modules

into groups (Figure 4). The largest group, group 1, are enriched in

II.12 Translation, ribosomal structure and biogenesis, III.4

Coenzyme transport and metabolism, III.5 Energy production

and conversion, III.8 Nucleotide transport and metabolism.

Group 2 is exclusively involved in III.6 Inorganic ion transport

and metabolism, III.10 Secondary metabolites biosynthesis,

transport and catabolism, indicating that secondary metabolites

production is activated dominantly in phase B. Genes in group 3

are enriched in II.11 Transcription, III.1 Amino acid transport

and metabolism. The second largest group, group 4 is assigned to

IV.1 Function unknown, suggesting unknown complicated

mechanisms related to this group.

Estimation of the correlation between erythromycin
production and coexpression modules or TUs

To investigate the global regulation mechanism of erythromycin

production, we examined the correlation between erythromycin

productivity and expression levels of modules and TUs. We

applied a fifth-order polynomial fit to the time series data of

erythromycin production, and the first derivative of the fitted

polynomial curves was calculated to approximately represent the

erythromycin production rate. By computing the Pearson

correlation coefficients between the eigengenes of 27 modules

and erythromycin production rate respectively. we found that

module 17 enriched with genes of III.6 Inorganic ion transport

and metabolism category are most correlated to erythromycin

production (cor = 0.911), whereas only a moderate correlation

(cor = 0.672) were found between erythromycin production and

module 12 which contains ery cluster. We assumed that there

probably exists a delayed effect when genes are modulated to

function in a certain process. Thus, we re-investigated the

correlation by first shifting the production time series by an hour

from 4 hours ahead to 6 hours behind and calculating the

overlapping time point-to-time point correlations (Table S1). It

was found that ery-containing module 12 became obviously

correlated to erythromycin production when the time series of

production lagged by 3 hours to that of gene expression, whereas

module 17 partly lost its correlation to erythromycin production.

In comparison, the correlation between module 17 and antibiotic

production was strengthened when the time series was advanced.

We also calculated the correlation between expression profiles

of TUs and erythromycin production rate respectively. Several

glycolysis genes were found to be highly linked to erythromycin

output including the maltose operon and its regulator (MalR).

Organizational structure of coexpression modules
To reveal hidden direct correlations between modules, i.e

correlations masked by the effect of other modules, we adopted

partial correlation analysis and constructed a network based on

Gaussian graphical model where nodes correspond to modules and

edges indicate significant partial correlations between modules.

Figure 2. Hierarchical clustering results of the differentially expressed TUs. The upper section is the cluster dendrogram of TUs; the middle
and lower section indicate the modules of coexpressed TUs and groups of coexpressed modules respectively.
doi:10.1371/journal.pone.0012126.g002
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Interestingly, module 21 seems to play a hub role in group 1 as

it connects to the two largest modules, module 1, module 2, as well

as module 12 which contains the ery cluster. Additionally, module

12 also connects to module 17 in group 2, indicating an intrinsic

association between the two erythromycin production correlated

modules. The associations between groups 3 and 4, groups 1 and 2

imply the interaction of modules in adjacent phases.

Discussion

In this study, we built a hierarchical coexpression network from

time-course microarray gene expression data of S. erythraea by

organizing coexpressed genes into TUs, modules and groups.

Instead of clustering differentially expressed genes [8], we screened

TUs according to within-TU expression correlation, and then

identified 1255 differentially expressed TUs across time course,

which are the basic elements of the following clustering

procedures. The 1255 TUs correspond to 1668 genes, accounting

for around 25% of 6494 ORFs. The proportion of 25% accords

with the general criteria that top 25% genes are considered as

significantly differentially expressed [13].

A total of 27 modules and 4 groups were identified from 1255

differentially expressed TUs across time course. Functional

enrichment analysis indicated that almost all of these expression

modules and groups have their dominant functions. To sum up,

primary metabolism (dominant in group 1) is activated in phase A

(rapid growth), and secondary metabolism (dominant in group 2) is

induced in phase B (growth slowdown). When cells enter phase C,

another rapid growth phase, transcription, amino acid transport

and metabolism (dominant in group 3) are activated. It is

interesting that group 4, up-regulated in both phase B and phase

C (from 36h to 72 h), are enriched in the ‘function unknown’

category. We propose that this group may contain some S. erythraea

specific genes which play particular roles in phases B and C, while

have no orthologous gene in the public domain (non-redundant

protein sequence database) and therefore were designated as

‘function unknown’.

The functional enrichment analysis on groups, as well as that on

modules, implied the cooperation relationships among modules or

groups and confirmed the biological relevance of our hierarchical

network. This hierarchical coexpression network will provide

insight into complicated global mechanisms of transcriptional

regulations of S. erythraea, including regulation mechanism of

erythromycin synthesis. The methodology of this work can be used

in studies of other microorganisms.

We also tried several other clustering methods designed for time

course expression data when we clustered differentially coex-

pressed TUs into modules [14–17]. For example, those developed

by Madeira et al. (2009) and Kiddle et al. (2010). Meanwhile,

comparisons with other recent methods was not possible due to

Figure 3. Global expression profiling of modules of coexpressed TUs during the growth time course. Each column of the heatmap
corresponds to one module and each row corresponds to a sample. In the heatmap, green color represents down-regulation, while red represents
up-regulation. The dendrogram obtained by hierarchical clustering are shown along the top. Branches of the dendrogram are colored in tan, blue,
green, red, which correspond to group 1, 2, 3, 4 respectively.
doi:10.1371/journal.pone.0012126.g003
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different data basis [14] or unavailable resources [17]. It was found

that the TU clustering results of different methods were basically

consistent (Table S2).

As the capability of producing erythromycin is the most

significant commercial trait of S. erythraea, many efforts have been

devoted to the gene regulation during erythromycin synthesis.

Here, we made an attempt to clarify the factors related to

erythromycin production by estimating the correlation between

production and the expression profiles of coexpression modules.

Two modules, module 12 and module 17, were found to be

correlated to erythromycin production. Module 12 contains ery

gene cluster while module 17 dominantly involves ABC trans-

porter family. It is noticeable that by introducing time lag caused

by the delayed effect of transcriptome, we found that the

correlation between production and ery-containing module 12

achieved the highest value when the time series of production

lagged by 3 hours. This observation is basically consistent with the

common sense that the phenotype at the metabolome level lag

behind the regulation at the transciptome level, that is, it is

reasonable that erythromycin production profile lag behind the

transcriptional regulation of related genes. While, the correlation

between ABC transporter-containing module 17 and antibiotic

production was increased only when the time series was advanced.

Since ABC transporter family utilize the energy of ATP hydrolysis

to transport various small molecules across cellular membranes, it

seems that ABC transporters may mainly mediate the efflux of

Figure 4. Functional enrichment analysis of modules and groups. The functional categories of the genes of each module were tested for
enrichment by a hypergeometric test. The y-axis is the number of identified modules (upper matrix) and groups (lower matrix), the x-axis is the
classification of COGs. The background of each cell is according to the groups (group 1 in tan, group 2 in blue, group 3 in green, group 4 in red), The
p-value of each cell less than 0.01 is marked in colors according to the color legend.
doi:10.1371/journal.pone.0012126.g004
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erythromycin rather than import molecules associated with

erythromycin synthesis. The intrinsic association relationship

between modules 12 and 17 was suggested by their correlation

in the organizational structure of coexpression modules (Figure 5)

inferred by estimating the partial correlation coefficients of the 27

modules.

In addition, we found some glycolysis genes highly correlated to

erythromycin output, including genes related to maltose metab-

olism, such as maltose operon and its regulator (MalR), alpha-

glucosidase hydrolyzing maltose to alpha-D-Glucose, and 6-

phosphofructokinase catalyzing beta-D-Fructose 6-phosphate to

alpha-D-Glucose 6-phosphate. Both alpha-D-Glucose and alpha-

D-Glucose 6-phosphate could be transformed into alpha-D-

Glucose 1-phosphate, which participates in the synthesis of

erythromycin [18], suggesting that the assimilation and transfor-

mation of maltose may play an important role in erythromycin

production. Noticeably, MalR may act as an activator of maltose

in S. erythraea considering its high positive correlation with maltose

operon expression, which is contradictory to the original

annotation of MalR as a repressor [1].

We believe our correlation analyses provide clues for under-

standing the regulation mechanisms of erythromycin synthesis and

bioengineering of related process aiming to increase the produc-

tivity. More significantly, the ‘time lag’ strategy could be utilized in

integrating omics data when the delayed effect has to be

considered.

Materials and Methods

Preparation of dataset
Time-course microarray data of S. erythraea strain NRRL2338

designed by Peano et al [8] were obtained from the GEO (Gene

Expression Omnibus) repository (accession number: GSE9422)

[19]. Predicted operon structures of S. erythraea strain NRRL2338

were downloaded from DOOR (Database for prOkaryotic

OpeRons) [10], whose prediction program was recently ranked

by an independent assessment as the most accurate among 14

operon prediction programs across all three performance mea-

surements: sensitivity, specificity and overall accuracy [11,12].

Identification of differentially expressed transcript units
Operons, as well as single genes that were not assigned to any

operons, were regarded as transcript units (TUs). The average

expression value of genes located in one same operon was adopted

Figure 5. Network representation of modules of coexpressed TUs. modules of coexpressed TUs are represented by circles. The sizes of circles
are corresponding to module sizes, and the colors of circles are corresponding to groups of coexpressed modules (group 1 in tan, group 2 in blue,
group 3 in green, group 4 in red). Edges between modules in the same group are colored in blue, while edges between modules in different groups
are colored in brown.
doi:10.1371/journal.pone.0012126.g005

Modules of Coexpressed TUs
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to characterize the expression level of the operon. EDGE and

Timecourse, the most popular tools to analyze time-course

microarray data, were applied to identify differentially expressed

TUs [20–22]. Both methods rank TUs according to the

significance of differential expression across time course.

Classification of coexpressed TUs into modules
Coexpressed TUs in S. erythraea were detected by constructing

weighted gene coexpression networks [23,24]. First, a matrix of

correlations between all differentially expressed TU pairs was

built, and then transformed into an adjacency matrix using a

power function where the connection strength between two TUs

xi and xj was formulized as aij~Dcor(xi,xj)Db. The parameter b
was determined such that the resulting adjacency matrix was

approximately scale-free based on a model-fitting index [24]. This

index was defined as the coefficient of determination (R2) of the

linear model constructed by regressing log (p(k)) onto log (k),
with k representing the degree of a given node and p(k) indicating

the frequency distribution of the degree k in the coexpression

network. The model-fitting index of a perfect scale-free network

was 1. We chose the smallest value of b (b = 11) to make the

model-fitting index R2
§0:8 (Figure S2) [13,24].

The adjacency matrix was further transformed into a topolog-

ical overlap matrix to more readily identify modules of highly

coexpressed TUs. The topological overlap captured not only the

direct interaction between two TUs i and j but also their indirect

interactions through all the other TUs in the network. Thus, A

similarity measure was defined: TOMij~

P

u

aiuaujzaij

min (ki,kj)z1{aij

,

where ki~
P

u aiu was the node connectivity [24,25]. Subse-

quently, 1{TOMij was used as a distance matrix in the

hierarchical clustering of the transcript units for module detection

[25].

Classification of coexpressed modules into groups
The module eigengene, the first principal component of the

matrix of expression values of a given module, was adopted to

characterize the gene expression profile of the module [23]. The

modules were then clustered according to their eigengenes with

complete linkage method.

Detection of associations among modules
Similar to the previous procedure when clustering modules into

groups, module eigengene was still used to characterize the gene

expression profile of a module.

The association between module pairs were estimated with

partial correlation coefficient in order to reveal ‘direct’ correlations

between two variables after removing the effects of other variables,

and a network was then constructed based on Gaussian graphical

model [26–28]. Summarily, supposing a linear relationship among

variables can be described by a multivariate normal distribution,

the partial correlation matrix provided dependence relationships

among variables since a nonzero partial correlation between two

variables indicated conditional dependence given all other

variables; and a zero partial correlation indicated that the

variables were conditionally independent. To be exact, given

X1,X2,:::,Xnð Þ, the partial correlation between X1 and X2 was

defined as the correlation of X1r and X2r where Xir denoted the

residuals obtained after regressing Xi upon X3,:::,Xnð Þ i~1,2ð Þ.

Supporting Information

Figure S1 Detected differential expressed TUs overlap between

EDGE and Timecourse.

Found at: doi:10.1371/journal.pone.0012126.s001 (0.09 MB

PDF)

Figure S2 Analysis of network topology for various soft-thresh-

olding powers. The left panel shows the scale-free fit index (y-axis)

as a function of the soft-thresholding power (x-axis). The right

panel displays the mean connectivity (degree, y-axis) as a function

of the soft-thresholding power (x-axis).

Found at: doi:10.1371/journal.pone.0012126.s002 (0.06 MB

PDF)

Figure S3 Clustering of modules into groups.

Found at: doi:10.1371/journal.pone.0012126.s003 (0.07 MB

PDF)

Table S1 Analysis of module-trait (erythromycin production)

associations.

Found at: doi:10.1371/journal.pone.0012126.s004 (0.03 MB

XLS)

Table S2 Comparison with the methods of Madeira (2009) and

Kiddle (2010).

Found at: doi:10.1371/journal.pone.0012126.s005 (0.05 MB

XLS)
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