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Abstract: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation
and subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone
destruction without effective treatments. Anti-citrullinated cyclic peptide/protein antibody (ACPA)
and rheumatoid factor (RF) are two main characteristic autoantibodies found in RA patients
and are associated with unfavorable disease outcomes. Although etiologies and causes of the
disease have not been fully clarified yet, it is likely that interactive contributions of genetic and
environmental factors play a main role in RA pathology. Previous works have demonstrated several
genetic and environmental factors as risks of RA development and/or autoantibody productions.
Among these, cigarette smoking and HLA-DRB1 are the well-established environmental and genetic
risks, respectively. In this narrative review, we provide a recent update on genetic contributions to RA
and the environmental risks of RA with a special focus on cigarette smoking and its impacts on RA
pathology. We also describe gene–environmental interaction in RA pathogenesis with an emphasis
on cigarette smoking and HLA-DRB1.

Keywords: rheumatoid arthritis (RA); anti-citrullinated cyclic peptide/protein antibody (ACPA);
rheumatoid factor (RF); etiology; genetics; HLA-DRB1; shared epitope allele; environmental risk
factors; cigarette smoking; single nucleotide polymorphism (SNP)

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and
subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone destruction
without effective treatments [1]. The prevalence of RA is reported to be 0.5–1.0% according to most
epidemiologic studies [2].

Anti-citrullinated cyclic peptide/protein antibody (ACPA) and rheumatoid factor (RF) are two
main characteristic autoantibodies found in 70–80% of RA patients. It is now well known that not
only positivity for, but also high levels of, both of these autoantibodies have associations with joint
destruction [3–7] and systemic bone loss even in early phases of the disease course [8,9]. Moreover,
about 50–60% of patients have both ACPA and RF, and both of these autoantibodies show an additive
effect on the amount and extent of bone erosion and thus disease severity [6,10]. This is why these
autoantibody profiles of patients are considered to be one of the disease’s prognostic markers and
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are included in the 2010 ACR/European League Against Rheumatism (EULAR) classification criteria
for RA [11]. In contrast, subjects who meet the classification criteria but are negative for ACPA and
RF are considered to be seronegative RA patients. Several different etiopathological aspects have
been observed in these patients, and thus, it is reasonable to regard seropositive and seronegative RA
as distinctive subtypes. Although seronegative RA has been considered to be a milder form of the
seropositive disease [5,6,12], a recent study indicated that treatment response was somewhat slower
in seronegative patients, and radiographic progression was similar in seronegative and seropositive
patients, suggesting that seronegative RA is not a mild form of the disease and requires intensive
therapy similar to seropositive RA [13].

A growing body of evidence has accumulated, and there has been remarkable progress in
understanding RA pathogenesis in the last few decades, but a lot of aspects of its precise mechanisms
are still unexplained. It is now widely accepted that both environmental and genetic factors contribute
to the pathogenesis of RA, and numerous previous works have found that interactive contributions of
genetic and environmental factors play a main role in the development of RA [14,15]. However, again,
their exact roles in the course of RA development have not been fully clarified yet.

In the following sections, we provide an overview of the genetic risks of RA, followed by the
impact of cigarette smoking (CS) on RA pathology and other environmental factors whose effects
can be influenced by CS. Subsequently, we describe the effects of these risks on RA pathogenesis
more precisely with a special focus on gene-environmental interaction. We used MEDLINE for our
literature search of the following terms: rheumatoid arthritis/RA, cigarette smoking, anti-citrullinated
cyclic peptide/protein antibody/ACPA, rheumatoid factor/RF, HLA-DRB1, shared epitope allele,
environmental risks, genetic risks, and single nucleotide polymorphisms/SNPs. We selected studies
where the number of subjects involved was more than 100 in both the case and control for case–control
studies and there were more than 100 incidences or RA subjects for cohort studies. For environmental
risks other than CS, only those influenced by CS were selected. For genetic risks, only those associated
with environmental risks were selected. We also selected meta-analyses, all of which were conducted
using enough studies with sufficient numbers of subjects, as described above.

2. Genetic Risk Factor of RA

According to the twin study conducted by MacGregor et al., the heritability of RA was estimated
to be ~60%, and there was no difference in the overall genetic contribution to RA among variables of sex,
age, age at onset, and disease severity [16]. In contrast, genetic variations, mostly represented by single
nucleotide polymorphisms (SNPs), also contribute to RA pathogenesis. Genome-wide association
studies (GWAS) and GWAS meta-analyses with the use of in silico imputation of SNPs have reported
106 RA risk loci to date [17–24], among which, only ~20% are coding variants while the rest of the ~80%
variants in non-coding regions probably regulate gene expression [20].

Of note, recent advances in a genetic analysis of juvenile idiopathic arthritis (JIA) revealed that
several genetic risks in adult RA patients, such as HLA-DRB1*04 or PTPN22, also confer a risk or a
protection on JIA, especially RF-positive polyarthritis, suggesting shared genetic backgrounds between
adult seropositive RA and RF-positive JIA [25,26].

2.1. HLA

The major histocompatibility (MHC) region is located at chromosome 6 and contains the human
leukocyte antigen (HLA) locus. The development of an HLA imputation method led to fine mapping
of genetic risks of RA within the MHC region. The HLA indicates the strongest genetic risk of RA,
explaining 30–50% of total genetic risk [27]. Among HLA genes, HLA-DRB1, one of the class II HLA
genes, was the first identified RA risk locus [28] and confers the majority of genetic risk of RA [2].
The specific amino acid (AA) sequence at positions 70–74 of HLA-DRβ1 chains is called shared
epitope (SE), and SE was reported to explain the association of HLA-DRB1 with RA susceptibility
(SE hypothesis) [28]. As a result of recent advances of imputation for HLA sequences, large-scale
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association studies have revealed that AA positions 11 or 13, 71, and 74 of HLA-DRβ1 are strongly
associated with RA in European populations [29,30]. A recent study also revealed a very similar genetic
architecture in Asian populations to that in European populations, whereas AA position 57 is unique
to Asian populations. The current consensus is that most risk HLA variants are shared among different
populations at AA levels.

HLA-DRB1 is also associated with positivity for RF and ACPA [31] and levels of ACPA [32,33]
but not for RF [34]. Non-SE alleles, such as HLA-DRB1*09:01 in Asian populations [32,33], have also
been reported to be associated with RA [35] or ACPA levels, and the associations of HLA-DRB1 with
ACPA levels are mainly explained by the 74th AA, alanine [32,33]. Intriguingly, differences in genetic
backgrounds between ACPA-positive and ACPA-negative RA were highlighted by a clear difference in
signals at the HLA region [36], and such differences can also be explained by the same HLA-DRβ1 AA
positions but different risk-associated residues [30]. These findings can explain the heterogeneity in
clinical manifestations between these RA subtypes and may also imply that other autoimmune-related
factors contribute to ACPA-negative RA development [2].

Recent studies have also revealed that AA polymorphisms in other classical HLA genes, HLA-DPB1,
HLA-B, and HLA-A [29,30,37], and a coding variant in a non-classical HLA gene, HLA-DOA, which
alters the expression levels of several genes, also indicate the risk of ACPA-positive RA [38].

2.2. PTPN22

PTPN22 encodes a protein tyrosine phosphatase that is exclusively expressed in immune cells [39].
The SNP R620W, and the resultant risk allele, lymphoid tyrosine phosphatase (LYP) allele, is the most
well-characterized risk variant of RA, as well as multiple autoimmune diseases, including type I
diabetes, systemic lupus erythematosus, Hashimoto thyroiditis, Graves’ disease, Addison’s disease,
myasthenia gravis, vitiligo, systemic sclerosis, juvenile idiopathic arthritis, and psoriatic arthritis [40].
Intriguingly, the association of the risk variant with RA susceptibility is only found in Caucasians,
but not in Asian populations according to the meta-analysis conducted by Nabi et al. [41]. The
LYP allele is a gain-of-function variant leading to decreased TCR and BCR signaling, followed by a
breakdown of both central and peripheral tolerance [42,43]. Impaired regulatory T cell function [44] and
frequency [45] reduced Toll-like receptor 7-induced type I interferon signal [46], and hypercitrullination
of peripheral blood mononuclear cells via physical interaction with peptidylarginine deaminase type
4 (PADI4) [47] was also reported in relation to this variant. Each of these effects probably work in a
cell-specific manner with respect to the pathogenesis of RA.

2.3. PADI4

PADI4 was identified as the first non-MHC RA risk locus in the Japanese population [48] and
was later confirmed in European populations [19]. PADI4 was expressed in myeloid lineage cells and
rheumatoid arthritis synovial tissues [48], as well as in Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans in gingival tissue [49], and it post-translationally converts peptide-bound
arginine residues into citrulline, leading to citrullinated epitope generation, which is recognized by
ACPAs [50].

2.4. Important Considerations for a Genetic Study

Because allelic variants presenting in more than 1–5% of a given population are identified in
GWAS, a number of unusual or rare variants are missed (missing heritability). Missing heritability is
hard to analyze with the same statistical methods used in GWAS, and thus, specific statistics for analysis
are needed. Moreover, GWAS usually investigate SNPs that are in strong linkage disequilibrium (LD)
with other SNPs and serve as proxies for them, and thus, the identified SNPs by GWAS are regarded
merely as tags for the yet-to-be-identified causal allele. Next-generation sequencing (NGS) is one
of the promising tools for future fine-mapping studies. With the use of NGS, several HLA-related
genes, including non-classical HLA genes, HLA-like genes, and pseudo-HLA genes, as well as key
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immune-related genes, can be incorporated into current reference panels, which will enable us to
identify disease-related variants with higher resolution.

3. Cigarette Smoking as the Most Robust Environmental Risk of RA

Previous studies have shown the contribution of various environmental factors to RA pathogenesis.
Inhaled pollutants, especially CS, have been the most extensively studied and a topic of this article
(Table 1).

Regardless of the autoantibody status, CS increases the risk of RA development by 26% in those
who smoked 1–10 pack-years (a lifelong CS exposure defined by the following formula; pack-years
= [number of cigarettes smoked per day/20] × [number of years smoked]) and by 94% in those with
more than 20 pack-years according to the meta-analysis conducted by Di Giuseppe et al. [51]. It has
been reported that males are more susceptible to CS than females with respect to RA development [52].
CS can even affect treatment response to disease-modifying anti-rheumatic drugs (DMARDs) [53] and
thus can be a risk of future joint destruction [54–56].

3.1. Effects of Intensity and Duration of Cigarette Smoking and Smoking Cessation

Importantly, both CS intensity and duration are directly related to the risk of RA development with
prolonged increased risk even after CS cessation [51]. Di Giuseppe et al. conducted a meta-analysis of
the association between pack-years and the risk of RA development. Three prospective and seven
case–control studies were included in the analyses, and they found that smokers had a higher risk of
RA development than never-smokers in a dose-dependent manner up to 20 pack-years, after which
the risk did not increase further. Among smokers, RF-positive cases had higher a risk than RF-negative
cases [51]. In contrast, Hedström et al. conducted a case–control study with 3655 cases and 5883
controls from a Swedish population [52], in which they found a dose-dependent increase of RA risk in
both ACPA-positive and -negative cases, with greater effects in ACPA-positive cases. Interestingly,
CS duration had a higher influence on the association of CS and RA than did CS intensity. They also
found different effects of CS cessation on ACPA-positive and -negative cases; the association of CS
with RA no longer persisted after 20 years of cessation in ACPA-negative cases, while the association
persisted with cumulative dose dependency in ACPA-positive cases.

3.2. Effects of Passive Smoking

While direct smoking has become an established risk of RA and its disease course, Seror et al.
reported that passive smoking during childhood affected susceptibility to RA in the French E3N cohort
(98,995 women born between 1925 and 1950) [57,58]. Disease activity was also affected by passive
smoking in Korean (191 cases) [59] and Egyptian (100 cases) [60] female RA patients, implicating
the importance of avoiding any CS-exposing environment. In contrast, Hedström et al. found that
there was no association between passive smoking and RA risk in the EIRA cohort (589 cases and
1764 controls aged 18–70 years) from Sweden, which might be explained by a threshold of smoking
intensity below which an association between smoking exposure and RA does not occur [61]. A recent
study conducted by Kronzer et al. (1198 cases and 3061 controls) also did not show a clear association
between passive smoking and RA risk [62]. However, because those two studies did not measure
the effect of childhood exposure to passive smoking and there seemed to be a linear trend between
pack-years and ORs in the latter study [62], it may be of interest to know not only whether there is a true
association between childhood exposure to passive smoking and RA risk, but also if the association is
just a consequence of intensity of smoking exposure or a specific effect of childhood exposure.
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Table 1. The risks of cigarette smoking for rheumatoid arthritis (RA) development, RA-related pathologies, and comorbidities.

First Authors Study Type Outcomes Effects and Effect Sizes
Interaction between

CS and Genetic
Components

Stratifications Population, Country,
Study Period

Di Giuseppe Meta-analysis RF (+) or (−) RA
development

Dose-dependent increase of RR
(1.26–2.07) up to 40 pack-years;
RR 2.47 and 1.58 for RF (+) and

(−) RA, respectively

NA Pack-years; RF
Three cohorts and seven

case-control studies; a
total of 4552 RA cases

Hedström Case-control ACPA (+) or (−)
RA development

OR 1.9 and 1.3 for ACPA (+)
and (−) RA, respectively; a

dose-response association (p
for trend < 0.0001); cessation >
20 years diminishes the risk of

ACPA (−) RA

NA

Never-, ever-, past,
current smokers;

duration; intensity;
pack-years; ACPA

3655 cases and 5883
matched controls in

Sweden

Hedström Case-control ACPA (+) or (−)
RA development

No association between passive
smoking and RA risk (OR ~ 1.0
for both ACPA (+) and (−) RA)

NA Duration of exposure;
ACPA

589 cases and 1764
controls without smoking

history

Seror cohort RA development Only a suggestive risk of
passive smoking (HR1.4–1.7) NA

Never- or
ever-smokers w/or

w/o passive CS
during childhood

71,248 French female
volunteers prospectively
followed since 1990; 371

RA cases

Kim intra-case Clinical response
Better clinical response in

never-smokers than in passive
smokers

NA Never, current, ex-,
and passive smokers

191 female RA cases in
South Korea

Torrente-Segarra intra-case Clinical response

Better clinical response in
never- than in passive smokers,
which does not result in better

drug survival

NA Smoking status,
ACPA

1349 RA cases from
METEOR database

between 2006 and 2016

Rydell intra-case Radiographic
progression

OR 3.17 for RRP in
ever-smokers NA Never-, current, ever-,

and previous smokers
233 early RA cases during

1995–2005 in Sweden

Sivas intra-case
Disease activity,

radiographic
score

Higher erosion and joint space
narrowing scores in smokers;

no correlation of smoking with
disease activity

NA Never-, long-term,
and new smokers

165 Turkish RA cases (129
females) followed

between January 2015
and February 2016
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Table 1. Cont.

First Authors Study Type Outcomes Effects and Effect Sizes
Interaction between

CS and Genetic
Components

Stratifications Population, Country,
Study Period

van Wesemael Case-control
RF, ACPA, and
anti-CarP Ab

presence

Smoking was associated with
multiple autoantibody

positivity both in non-RA and
RA cases (OR 1.32–2.95)

NA
Never- and

ever-smokers; ACPA,
RF, anit-CarP Ab

9575 Japanese non-RA
subjects; early RA cases
from the Netherlands (n
= 678), UK (n = 761), and

Sweden (n = 795)

Ishikawa intra-case
RF or ACPA

positivities and
levels

OR of CS 2.06 and 1.29 for high
levels of RF and ACPA,

respectively

Interactive effect of
CS and SE on ACPA

levels but not those of
RF

Never-smokers, ex- or
active smokers at the
onset; SE; ACPA; RF

6239 Japanese RA cases

Klareskog Case-control ACPA (+) or (−)
RA development

Dose-dependent effect of CS on
ACPA (+) RA development

Interactive effect
between CS and SE

on ACPA (+) RA

Never and
ever-smokers;

pack-years; numbers
of SE; RF; ACPA

913 early RA cases and
1357 controls, Sweden

Too Case-control ACPA (+) or (−)
RA development

OR of CS 4.1 and OR of SE 4.7
for ACPA (+) RA development

Interactive effect
between CS and SE

on ACPA (+) RA

Never- and
ever-smokers; SE;

ACPA; RF

1076 early RA cases and
1612 matched controls,

Malaysia, 2005–2009

Lee intra-case ACPA (+) or (−)
RA development

Correlation between CS and
ACPA (+) RA was observed in

2 out 3 cohorts.

Weak interaction
between CS and SE

for ACPA only in one
cohort

Never- and
ever-smokers; SE;

ACPA; RF

A total of 2476 white
patients with RA from
three different cohorts,

North America

Bang Case-control
ACPA or RF (+) or

(−) RA
development

OR of ever-smoking 2.22 for
ACPA (+) and 2.80 for ACPA

(−) RA

Interactive effect of
CS and SE both on

ACPA (+) and ACPA
(−) subsets

Never- and
ever-smokers; SE;

DRB1*09:01; ACPA;
RF

1482 RA cases and 1119
control subjects, Korea

Murphy intra-case
ACPA or RF (+) or

(−) RA
development

Strong association between
ACPA and RF but not ACPA
and CS; no association of CS

and ACPA in RF (−) cases

No interaction
between CS and SE

Never- and
ever-smokers;

Pack-years; SE; ACPA;
RF

Two different UK RA
cohorts (n = 658 and 409)
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Table 1. Cont.

First Authors Study Type Outcomes Effects and Effect Sizes
Interaction between

CS and Genetic
Components

Stratifications Population, Country,
Study Period

van der
Helm-van Mil cohort ACPA (+) or (−)

RA development

HLA–DRB1*0401, *0404, *0405,
or *0408 SE alleles conferred

the highest risk of ACPA
development

Strongest interaction
between CS and

*01:01 or *01:02 and
*10:01 alleles

Current and past
smokers; SE and
subsets; ACPA

977 undifferentiated
arthritis cases,

Netherland

Pedersen Case-control ACPA (+) or (−)
RA development

No significant effect of CS on
SE (−) subjects

Strong interaction
between CS and SE

for ACPA (+) but not
ACPA (−) RA

SE; ACPA; never- and
ever-smokers;

pack-years; coffee or
alcohol consumption;
oral contraceptive use

445 RA cases and 533 age-
and sex-matched controls,

Denmark, 2002–2004

Padyukov Case-control RF (+) or (−) RA
development

Neither CS nor SE genes nor
the combination increased the
risk of RF (−) RA development

Significant interaction
between CS and any
SE genes on RF (+)

RA

Gender, smoking
status, and
HLA-DRB1

genotypes, RF

RA 858 cases and 1048
controls recruited during

1996 to 2001, Sweden

Mattey intra-case RF (+) or (−) RA
development

OR of ever-smoker for RF (+)
RA development 2.2 in

ever-smokers

independent effects of
CS and SE,

HLA-DRB1*04:01, on
RF (+) RA

Never-, ever-, current
smokers; SE and

subsets; RF
371 RA cases, UK

Hedström Case-control
ACPA or RF (+) or

(−) RA
development

An independent effect of CS on
RF (+) but not on RF (−) RA
regardless of ACPA status

Significant interaction
between CS and SE

on ACPA (+) RA

Never-, ever-, current
smokers; SE; ACPA,

RF

3645 cases, 5883 matched
controls, Sweden;

follow-up on Ref. 17

Lundström Case-control ACPA (+) or (−)
RA development

Lack of an independent effect
of CS on ACPA (+) RA

Significant interaction
of CS with all SE

genes tested on ACPA
(+) RA

Never- or
ever-smokers; SE

(DRB1*04, *01, and
*10); ACPA

RA 1319 cases and 943
controls recruited during

1996 to 2005, Sweden;
partially overlapped with

Ref. 119

Bang Case-control ACPA (+) or (−)
RA; ACPA levels

Smokers had a trend of higher
ACPA levels than

never-smokers without
significant difference

Significant interaction
of CS with SE but not
with *09:01 on ACPA

(+) RA

Never- or
ever-smokers; SE;

DRB1*09:01; ACPA

1924 RA cases and 1119
control subjects, Korea;

partially overlapped with
Ref. 115
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Table 1. Cont.

First Authors Study Type Outcomes Effects and Effect Sizes
Interaction between

CS and Genetic
Components

Stratifications Population, Country,
Study Period

Mahdi Intra case and
case–control

Anti-CEP-1 Ab
response

43–63% of ACPA (+) cases
were anti-CEP-1 Ab (+), and
this subset was preferentially

linked to HLA-DRB1*04.

Combined effect of
CS, PTPN22, and SE

on anti-CEP (+)
response

Never- or
ever-smokers; SE;
PTPN22; ACPA;

anti-CEP

1497 cases, Sweden and
UK; 1000 cases and 872
controls, Sweden (cases

were overlapped)

Lundberg Case-control Specific ACPA
responses

The strongest association of SE, PTPN22, and CS for the
RA subset anti-CEP-1 (+) or anti-cVim Ab (+) subsets of

RA

Never-, past, and
current smokers; SE;

PTPN22; ACPA
subsets

1985 cases and 2252
matched controls,

Sweden overlapped with
Refs. 17, 121

Willemze intra-case Specific ACPA
responses

A significant interaction between CS and SE for the
presence of ACPA, not restricted to specific citrullinated

antigens

Never- and
ever-smokers; SE;
ACPA subsets; RF;

ANA

661 cases with recent
onset (< 2 years),

Netherland

Fisher Case-control Specific ACPA
responses, erosion

CS-SE interaction was associated with all the ACPA (+)
subgroups; highest OR in an anti-CCP (+) cVim (+)

subset

Never- and
ever-smokers; SE and

DRB1*09:01; ACPA
subsets

513 cases and 1101
controls, Korea

overlapped with Ref. 115

Kochi Case-control RA development

PADI4 SNP (rs1748033)
conferred a higher risk in men
(OR 1.39) and in ever-smokers

(OR 1.25)

The highest risk in
male ever-smokers

(OR 1.46)

Never- and
ever-smokers; PADI4

SNP genotypes;
gender; ACPA

1019 cases/907 controls
and 999 cases/1128
controls, Japan; 635
cases/391 controls,

Netherland

RA, rheumatoid arthritis; CS, cigarette smoking; RF, rheumatoid factor; RR, relative risk; NA, not assessed; ACPA, anti-citrullinated cyclic peptide/protein antibody; OR, odds ratio; HR,
hazard ratio; RRP, rapid radiographic progression: anti-CarP Ab, anti-carbamylated protein antibody; SE, shared epitope; anti-CEP-1, anti-citrullinated α-enolase protein 1; anti-cVim,
anti-citrullinated vimentin; SNP, single nucleotide polymorphism.
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3.3. Effects of Cigarette Smoking on RA-Related Autoantibody Production

As has been implicated in the studies above and others, the association between CS and RA risk
is stronger in seropositive cases than in seronegative cases. It has also been suggested that CS may
affect RA-associated autoantibody formation. A study conducted by van Wasemael et al. showed
that CS was associated with multiple autoantibody positivity (RF, ACPA, anti-carbamylated protein
(CarP) antibody) not only in RA patients of European descent but also in Japanese non-RA subjects [63].
Furthermore, the study also indicated that CS might have a stronger association with RF than with
ACPA or anti-CarP antibody. CS may break tolerance to autoantigens in RA, which might be one
of the triggers of RA onset in subsets of patients. We also recently reported that CS affected both
positivity and levels of ACPA and RF with greater effects on RF using 6239 Asian RA cases, the largest
Asian study ever [64]. The study also implicated the dose-dependent effects of CS and the effects of
CS cessation on autoantibody levels, the latter of which lasted for up to 20 years both in ACPA and
RF cases.

3.4. Other Environmetal Risks Augmented by Cigarette Smoking

Several environmental risks have been reported to be influenced by CS. Among them, occupational
silica exposure seems to be convincing, while the rest need to be investigated further with well-powered
studies for confirmation of the associations.

3.4.1. Occupational Silica Exposure

Occupational exposure to crystalline silica (SiO2), especially in male workers, is a well-known
example of environmental risk. Two Swedish studies, a population-based case–control study comprising
577 incident RA cases and 659 randomly selected controls from EIRA [65] and an independent Swedish
construction health examination cohort study comprising a total of 240,983 participants [66], reported
that risk of RA by silica exposure exceeded that expected from the separate effects of silica and CS
among smokers. It was suggested that silica-induced inflammation and fibrosis may be mechanistically
separate, because the steps in the development of silicosis, including acute and chronic inflammation
and fibrosis, have different molecular and cellular requirements [67]. Autoimmunity would probably
start with activation of the innate immune system, leading to proinflammatory cytokine production,
pulmonary inflammation, subsequent activation of adaptive immunity, breaking of tolerance, and
autoantibody production leading to tissue damage. It also suggests substantial genetic involvement
and gene/environment interaction in silica-induced autoimmunity [67].

3.4.2. Alcohol Consumption

Consumption of moderate amount of alcohol has been reported for the beneficial effect on RA
development [68–70]. It is well accepted that CS and alcohol consumption are common in RA patients,
thus both need to be adjusted when the association of each risk with RA is to be investigated, because
CS is more prevalent among alcohol drinkers [71]. The study conducted by Källberg et al. comprising
the Swedish EIRA cohort (1204 cases and 871 controls) and the Danish CACORA (444 cases and
533 controls) indicated a greater alcohol-related risk reduction for ACPA-positive RA observed in
ever-smokers carrying SE alleles compared with never-smokers [72].

3.4.3. Sugar-Sweetened Soda Consumption

Regular consumption of sugar-sweetened soda has been reported to be associated with increased
risk of seropositive RA in women, independent of other dietary and lifestyle factors [73]. The study
population comprised two cohorts, the Nurses’ Health Study (NHS), comprising 121,700 female nurses,
and NHS II, consisting of 116,671 female nurses, and an effect modification of CS was found among
smokers with > 10 pack-years in the NHS cohort, but not in the NHS II cohort. Thus, further studies in
independent populations are necessary for validation.
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3.4.4. High Salt Intake

According to the case-control study (386 cases and 1886 matched controls) conducted by Sundström
et al., sodium intake more than doubled the risk of RA among smokers, which was not observed
among non-smokers. Moreover, the risk was further increased in the development of ACPA-positive
and/or SE-positive RA cases, indicating a possible interactive effect between CS and high sodium
intake on ACPA-positive RA.

4. Impacts of Cigarette Smoking on RA Pathogenesis

4.1. Effects of Cigarette Smoking on Immune Systems

CS affects both innate and adaptive immune responses, leading to altered cellular and humoral
immunity to cause a systemic inflammation [74].

Skewed helper T (Th) cell subsets (Th1, Th2, and Th17) were observed depending on the relation to
specific diseases [75–77], and Th1-skewness was reported among RA patients with CS [78]. In contrast,
asthma, a Th2-skewed disease, has been reported to be associated with risk of RA [62,79–86], and CS is
one of the well-established risks of asthma [87]. Activation of Th17 cells via aryl hydrocarbon receptor
(AHR) [88] was also reported. Because Th-skewness is flexible and dynamic in the same individual
with RA depending on various factors, such as medications, which, in turn, may influence disease
activity or clinical course [89], it will be intriguing to further investigate how Th-skewness contributes
to the pathogenesis of RA in relation to CS.

Increased levels of several pro-inflammatory cytokines (tumor necrosis factor (TNF)-α; interleukin
(IL)-1α, IL-1β, IL-5, IL-6, IL-8, IL-13, IL-15, and IL-21; and interferon (IFN)-γ) in smokers with systemic
autoimmune diseases including RA have also been well-documented [74,90–95]. Indeed, drugs
targeting several of these cytokines, TNF-α, IL-6, and IL-1β, are currently used as biologic DMARDs
for the treatment of RA [96] as well as JIA [97].

According to the study conducted by Glossop et al., CS increases TNF-α production from T cells,
and both intensity and duration of CS are correlated with higher TNF-α/soluble TNF receptor (sTNFR)
ratios in RA patients. Furthermore, smokers had higher ratios of TNF-α/sTNFR than non-smokers,
suggesting that higher levels of TNF-α or ratios of TNF-α/sTNFR in smokers might be associated with
TNF-α antagonist treatment resistance [94].

It was reported that serum levels of soluble IL-2 receptor (sIL-2R) were higher in smokers [98,99].
Furthermore, sIL-2R can affect the response to infliximab in RA patients, and a low serum sIL-2R
level predicts rapid response to infliximab [100], suggesting that IL-2-sIL-2R activation may affect the
response to anti-TNF-α treatment in RA patients with CS.

Elevated serum IFN-γ levels [95] and IFN-γ secretion both from effector CD4 and CD8 T cells
have also been documented in RA patients [101]. As for the effects of CS, Bidkar et al. showed
that CS exposure induced IFN-γ secretion from splenocytes of humanized transgenic (Tg)-mice
carrying RA-susceptible HLA-DRB1*0401, while CS exposure augmented Th2 response in Tg-mice
carrying RA-resistant HLA-DRB1*04:02. Despite the limitations of a mouse study, this implied a
possible interaction of CS with the host HLA genes, leading to modulation of host immunity [102].
As mentioned above, CS can promote both Th1 and Th2 polarization. CD8 T cells, which are another
major source of IFN-γ, have been reported to increase in number and be more prone to secreting
cytokines due to CS in patients with chronic obstructive pulmonary disease (COPD) [103–107], and
low soluble programmed death protein 1 ligand (sPD-L1) levels [108] and increased activated cytotoxic
CD8 T cells [109] were also reported in RA patients. In contrast, the effects of CS on natural killer
(NK) cells, which have similar cytotoxic functions as CD8 T cells, were variable in terms of the
numbers and functions depending on an individual’s health status [110–116]. Thus, the effect of CS
on IFN-γ production might be cell-type specific under the influence of the genetic background of an
individual [117], which can eventually contribute to form a specific disease phenotype including RA.
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Other mechanisms of CS suggested to affect immune systems with regard to RA development,
such as autoimmunity to vimentin including induction of carbamylated vimentin [118], are also
intriguing and are thus expected to be studied further.

4.2. Interactive Effects of Cigarette Smoking and Genetic Components

The most rheumatic diseases show complex traits with interactions between multiple genetic
and environmental factors. Likewise, gene–environment interactions also play a critical role for RA
pathogenesis (Figure 1).
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RA development. PTPN22 and PADI4 are also implicated as additional genetic components (a). For RF
production, an interactive effect between genetic and CS is much less clear; rather, they are independent
risk factors (b).

4.2.1. Interactive Effects between CS and the HLA-DRB1 Gene on RA Development

CS has been implicated for its interactive effect, especially in relation to HLA-DRB1 in seropositive
RA cases. Several studies, not limited to Caucasian populations and including two Asian cohort
studies, have investigated the interactive association between CS and ACPA formation in the context
of HLA-DRB1 alleles [119–125]. These studies, with the exception of a single North American cohort
(SONORA), reported an interactive effect between CS and SE on ACPA-positive RA development.
While most of the recent studies have focused on ACPA positivity, there have also been several studies
that have investigated the interaction between CS and SE on RF-positive RA cases. Padyukov et
al. observed that both CS and SE alleles conferred increased risk of RF-positive RA development,
and there was a strong interaction between these two risks in the Swedish cohort (858 cases and
1048 controls) [126]. In contrast, the intra-case analysis conducted by Mattey et al. in 371 northern
European white RA cases revealed that CS and HLA-DRB1*04:01 were independently associated with
RF production [127]. Thus far, the effect of the interaction between CS and SE on ACPA production is
clear, while that on RF production is still debated—partly due to lack of recent evidence—and thus
requires more research.

4.2.2. Interactive Effects between CS and the HLA-DRB1 Gene on RA-Related Autoantibody
Production

While the interactive association of SE and CS with ACPA positivity is well documented, the
effects on levels of ACPA as well as RF have not been studied well. In our recent study of Japanese
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RA cases, CS affected not only positivity but also levels of both ACPA and RF. The effect of CS was
dependent on SE presence for ACPA but independent of SE status for RF [64]. Hedström et al. also
reported similar findings in a case-control study with 3645 cases and 5883 controls. In the subset of
patients positive for both RF and ACPA and the subjects only with positive ACPA, both CS and SE
conferred independent risks, and there was a strong interaction between CS and SE. In the subset
of patients with only positive RF, there was an increased risk of disease among smokers, which was
only marginally affected by SE, and no interaction between CS and SE was observed. In the subset
of patients negative for both RF and ACPA, neither CS nor SE conferred an increased RA risk [128].
These studies strongly indicate the different effect of CS on the development of ACPA and RF with
regard to the interaction with SE alleles, highlighting the distinctive pathogeneses in different subsets
of RA patients.

Furthermore, the study conducted by van der Helm-van Mil et al. suggested that interactive
effects with CS were different among SE subsets; the interaction was strongest for the HLA-DRB1*01:01
or *01:02 and HLA-DRB1*10:01 SE alleles [124]. In contrast, Lundström et al. also reported that all SE
alleles tested (*01, *04:01, *04:04, *04:05, *04:08, and *10:01) strongly interacted with CS in conferring
an increased risk of ACPA-positive RA, regardless of the fine specificity of SE in the EIRA cohort
(1319 cases and 943 controls) [129]. We also did not observe a difference between HLA-DRB1*04:05
and non-*04:05 SE alleles in the interactive effect with CS on ACPA levels, and *09:01 did not show an
interactive effect with CS on ACPA levels in Japanese RA cases [64]. In contrast, Bang et al. observed
the different effect of interaction of HLA-DRB1 alleles with CS on ACPA-positive RA development in a
Korean case–control study (1924 cases and 1119 controls) [130]. Among the HLA-DRB1 alleles they
tested (five SE alleles, *01:01, *04:01, *04:04, *04:05, and *10:01, and a non-SE allele, *09:01, frequently
observed in Asian populations), *10:01 showed the strongest interaction with CS, and the genotype
heterozygous for *04:05 and *09:01 conferred the highest risk of both ACPA-positive and -negative RA
development in the interaction with CS. These discrepant results may be partly due to the different
frequencies of each SE allele among different ethnicities, and thus, meta-analyses or well-powered
multi-ethnic studies are necessary to draw a solid conclusion.

4.2.3. Interactive Effects between CS and the PTPN22 Gene on RA Pathology

Mahdi et al. reported specific interactive effects of CS and SE, or PTPN22 (620W allele), one of the
major GWAS genes and a potential causal variant in RA [131], on citrullinatedα-enolase in a case-control
study (1000 cases and 872 controls) [132]. The same group further extended the study by stratifying
ACPA-positive RA patients into 17 subsets based on their profiles of different ACPA specificities
(α-enolase, vimentin, fibrinogen, and collagen type II), which revealed the strongest association of SE,
PTPN22, and CS in the subset of patients with antibodies to citrullinated α-enolase and vimentin [133].
In contrast, Willemze et al. showed that SE and CS promoted nonspecific citrullination rather than
citrullination of specific antigens (α-enolase, vimentin, fibrinogen, and myelin basic protein) in Dutch
RA patients with ACPA (661 cases) [134]. Fisher et al. also reported that the interaction between SE and
CS was not exclusive to any of the specific citrullinated peptides (α-enolase, vimentin, and fibrinogen)
in Korean RA patients (513 cases and 1101 controls) [135]. These studies strongly indicated the possible
interactive effect of CS and SE on protein citrullination, with the specificity still remaining unknown,
which in turn leads to ACPA formation.

4.2.4. Interactive Effects between CS and the PADI4 Gene on RA Pathology

Kochi et al. found that PADI4 polymorphism (rs1748033) predisposed male smokers to RA in
a total of 2018 cases and 2035 controls from Japanese samples and also observed similar trends in
a total of 635 cases and 391 controls from Dutch samples [136]. The study also showed that PADI4
polymorphism, rs11203367, was significantly associated with ACPA status in ever-smokers in a
recessive model, suggesting that PADI4 polymorphism may be involved in the appearance of ACPA
in smokers.
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In summary, the gene-environment interaction, especially SE and CS, is strongly indicated in
ACPA formation, while the effect on RF formation, if any, may be weaker than that on ACPA, although
recent studies focusing on RF positivity are relatively lacking. As we mentioned in a previous section,
seropositive polyarthritis JIA shares genetic components that confer a risk or protection with adult
seropositive RA [25,26], and thus, it will be of interest to examine if the same effects seen in adult RA
patients can also be found in the subset of JIA, especially with regard to passive smoking.

4.3. Effects of CS on Epigenetic Changes

CS causes wide-spread genome-scale changes in DNA methylation. In the epigenome-wide
association study (EWAS) of the Swedish EIRA cohort (354 cases and 337 controls), Liu et al. identified
two clusters of differentially methylated regions within the MHC region. By correcting cellular
heterogeneity to adjust for cell-type proportions and with the use of analysis to filter out associations
likely to be a consequence of disease, four CpGs also showed an association between genotype and
variance of methylation, one of which was significantly associated with both clusters and the rest of
which also showed suggestive association [76].

Zeilinger et al. conducted an independent EWAS with the use of large German populations,
a total of 1814 for discovery and a total of 479 for replication, and found wide-spread differences in
the degree of site-specific methylation as a function of CS in each of the 22 autosomes, confirming the
broad effect of CS on epigenetic changes. Among the observed changes, methylation-specific protein
binding patterns observed for cg05575921 within aryl hydrocarbon receptor (AHR) repressor (AHRR)
had the highest level of changes in DNA methylation associated with CS, suggesting a regulatory role
for gene expression. Importantly, methylation levels in past-smokers were close to the ones seen in
never-smokers depending on cessation time and pack-years [137].

As for the interactive effects of CS with gene polymorphisms on RA epigenome, Meng et al.
identified a significant interaction between rs6933349 of mucin 22 (MUC22) and CS in DNA methylation
of cg21325723 in terms of the risk of developing ACPA-positive RA in both Caucasian and Asian
populations [138].

Although data for epigenetic phenomena in RA are currently limited in terms of study scale and
power [139], it is highly likely that epigenetic changes play crucial roles in the development of RA via
gene regulation. Further study will be needed with considerations of sample throughput methods
and genome coverage and resolution, such as the use of whole-genome bisulfite sequencing [140].
Longitudinal cohorts will also be essential for establishing the temporal origin of deleterious events
and distinguishing causal from consequential effects [141].

4.4. Cigarette Smoking Modulates Periodontal Disease Leading to a Higher Risk of RA Development

It is well established that CS is one of the risks of periodontal disease (PD) [142], and there have
been many studies that have linked CS-affected PD development with a higher risk of RA development.
As we mentioned in the previous section, P. gingivalis, a major periodontal pathogen [143,144],
can induce ACPA by bacterial PAD, and worsen the severity of RA [145–147]. Another major
pathogen, A. actinomycetemcomitans is also known to be associated with hypercitrullination in the
gingival tissues [148]. Furthermore, periodontitis is known to correlate with ACPA levels in healthy
individuals [149] and often precedes RA development [150,151]. Notably, RA and periodontitis also
shared genetic risks, such as SE alleles [152]. Not only ACPA but also RF positivity is associated
with periodontitis [142,153], although the underlying mechanisms might be different between these
autoantibodies [64,128]. Collectively, CS can also be a strong risk modifier of RA development via its
effect on PD pathology, especially in individuals with SE alleles.

4.5. Airway Inflammation

CS significantly increases the number of alveolar macrophages and other monocytes, which, in
turn, increases levels of lysosomal enzymes and secrete elastase responsible for parenchymal and
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connective tissue damage [74]. Demoruelle et al. demonstrated that airway inflammation is common
in healthy ACPA-positive subjects before clinically apparent RA development [154]. Klareskog et
al. also demonstrated that CS induces protein citrullination in the lungs [119]. Thus, one interesting
possible hypothesis is that initial inflammation and immune abnormality of RA may generate from the
lungs [154].

Matrix metalloproteinases (MMP)-12 has been implicated in the pathogenesis of RA [155], and
animal experiments have suggested MMP-12 as one potential mediator of airway inflammation.
For example, MMP-12 expression was increased in macrophages and dendritic cells in the lungs of
CS-exposed mice [156]. Other MMPs, proMMP-2 and proMMP-9, have also been reported to be
increased in the sera of smokers [157]. Although RA synovial fibroblasts-derived MMP-9 may directly
contribute to joint destruction in RA [158], further investigation as to whether the effects of these MMPs
on RA pathogenesis are dependent on airway inflammation or not is required.

4.6. The Role of Passive Smoking in RA Pathogenesis and the Role of Nicotine

Although nicotine is a main toxic substance in both direct smoking and passive smoking, passive
smoking in childhood may have distinctive mechanistic impacts on RA pathogenesis from direct
CS considering that the smoke from the burning end of a cigarette has more toxins than the smoke
inhaled by smokers, and passive smoking in childhood increases the risk of asthma [159], which may
be associated with RA risk [62].

Interestingly, Jian et al. reported that the risk of CS on both ACPA-positive and -negative
RA development increased only with the use of inhaling cigarettes but not nicotine-contained
chewed cigarettes (OR, 1.0; 95% CI, 0.8–1.2), suggesting that nicotine is not directly involved
in RA pathogenesis [160]. Indeed, nicotine inhibits TNF-α-induced IL-6 and IL-8 secretion in
fibroblast-like synoviocytes (FLS) from RA patients [161]. Moreover, several animal experiments
showed an immunosuppressive effect of nicotine, such as the loss of antibody response and T-cell
proliferation [162–164]. In contrast, the paradoxical effect of nicotine on RA has also been reported;
nicotine pretreatment aggravated adjuvant-induced arthritis (AIA), whereas post-treatment with
nicotine suppressed the disease in rats [165]. Furthermore, blood cotinine, a nicotine metabolite, was
positively correlated with the prevalence of naive CD3+ T cells among non-smokers exposed to passive
smoking [166]. Thus far, the role of nicotine in the pathogenesis of RA is still questionable and needs
further investigation with regard to the effect of passive smoking on RA.

5. Concluding Remarks and Future Directions of Studies

Numerous efforts have been made to clarify the pathogenesis of RA in relation to CS. Despite such
efforts, the underlying mechanisms still have not been clarified due to the complex nature of the effects
of CS on RA pathology. However, a growing body of data has suggested that environment–environment
or gene-environment interactions are key mechanisms to trigger the onset and modify the course of
the disease, and thus, future studies should take into consideration these interactions in association
studies of CS and RA. In addition, most studies have found that the effect of CS on RA pathogenesis is
limited or much stronger in seropositive RA, and effects of CS seem to be different between ACPA- and
RF-positive subsets, which will also be an important subject of future studies. The different effect of CS
among different ethnicities will also be of interest.

In summary, the effect of CS on RA pathology has multiple aspects; interaction with genetic
components as well as other environmental factors, effects on immune systems including both innate
and acquired immunity, and epigenetic changes by several key chemical compounds or reactive
oxygen species (ROS), which altogether might contribute to pathogenesis. Well-powered studies with
consideration of several key points mentioned above will further clarify the precise pathogenic role of
CS, which will lead to our better understanding of RA pathogenesis and the development of better
treatment options.
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