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Exit point in the strong field 
ionization process
I. A. Ivanov1,3, Chang Hee Nam1,2 & Kyung Taec Kim1,2

We analyze the process of strong field ionization using the Bohmian approach. This allows retention 
of the concept of electron trajectories. We consider the tunnelling regime of ionization. We show that, 
in this regime, the coordinate distribution for the ionized electron has peaks near the points in space 
that can be interpreted as exit points. The interval of time during which ionization occurs is marked by a 
quick broadening of the coordinate distribution. The concept of the exit point in the tunneling regime, 
which has long been assumed for the description of strong field ionization, is justified by our analysis.

An atom exposed to a strong laser field can be ionized. The Keldysh theory1 (also known as the strong field 
approximation or SFA theory) provides a basis for understanding this process and introduces the well-known 
classification of ionization phenomena based on the value of the Keldysh parameter γ ω ε= E2 /0 . (Here ω, E 
and |ε0| are the frequency, field strength and ionization potential of the target system, expressed in atomic units). 
The ionization regime corresponding to the values γ ≫​ 1 is known as the multi-photon regime. The opposite limit, 
γ ≲​ 1, is known as the tunnelling regime2. Depending on the ionization regimes, the ionization process is 
described in drastically different ways1,2.

The tunnelling regime is particularly interesting since many features of tunnelling ionization and its accom-
panying phenomena are directly related to applications such as high harmonic generation (HHG), attosecond 
pulse generation and above-threshold ionization. Simple models based on the concept of electron trajectory have 
been developed in order to describe these phenomena. A well-known example demonstrating the great utility of 
such models is the famous simple man model (SMM)2–6, reproducing many qualitative features of strong field 
phenomena. The semiclassical TIPIS (tunnel ionization in parabolic coordinates with induced dipole and Stark 
shift) model5,7,8 is known to produce quite accurate quantitative results5–7,9,10.

In the TIPIS and similar approaches, the quantum-mechanical Keldysh theory and its modifications1,11–15 
provide initial velocity distributions6,7,9 for the subsequent classical electron motion. The initial value of the 
coordinate is defined either by the Field Direction Model (FDM)10 or, in a more refined approach based on 
use of the parabolic coordinate system16, as a point at which electron emerges from under the barrier. This sep-
aration of the tunnelling ionization process in the quantum-mechanical part, describing the ionization event 
proper, and the classical part, describing subsequent motion, has been extremely fruitful, as it allows us to con-
sider processes occurring in the strong laser field for systems that are too complex to allow an ab initio quan-
tum mechanical (QM) treatment. It has been demonstrated17,18 that for small values of the Keldysh parameter, 
deep in the tunnelling regime, the results obtained using TIPIS agree very well quantitatively with the results 
of the Perelomov-Popov-Terentiev (PPT) theory13, which considers all stages of the electron motion fully 
quantum-mechanically. Despite this success, the concept of the electron exit point remains somewhat elusive. 
This is mainly due to the wave nature of QM.

In the present work we explore the view of the ionization process offered by the so-called Bohmian QM19. 
Bohmian QM introduces a well-defined notion of the electron trajectory. One need not be misled by the name 
into believing that Bohmian QM is something drastically different from orthodox QM. The difference between 
Bohmian and orthodox QM is, largely, only in the interpretation of the role of the wave-function. Bohmian 
mechanics reproduces exactly all the predictions of orthodox QM20. One does not need to subscribe to the 
Bohmian interpretation, moreover, to use its useful features, such as the concept of the electron trajectory. This 
feature has been exploited to describe ionization of atoms21,22 and molecules23,24 driven by strong laser fields, 
and for the description of the HHG process25,26. An approach to the problem of the tunnelling time, based on 
Bohmian QM, has been described recently in ref. 27. In the present work, we show that, by following the Bohmian 
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trajectories, we can introduce the coordinate distributions describing ionized electrons. In particular, we can find 
a justification for the notion of the exit point.

Theory
We recapitulate briefly a few facts constituting the basis of the Bohmian approach to quantum mechanics19. 
Substituting the polar form of the wave function of a system (we consider for simplicity a one-electron system), 
Ψ​(r, t) =​ R(r, t) exp {iS(r, t)} with R(r, t) =​ |Ψ​(r, t)| and S(r, t) =​ arg(Ψ​(r, t)), into the time-dependent Schrödinger 
equation and taking real and imaginary parts, one obtains:
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The Bohmian interpretation involves assuming that the velocity field (4) generates a family of electron tra-
jectories for an ensemble of particles. At the initial time, t =​ 0, the coordinates of the particles constituting the 
ensemble are distributed as prescribed by the usual R2(r, 0) rule of QM. Initial velocities of the particles of the 
ensemble are given by Eq. (4), evaluated at t =​ 0. Electron trajectories for t >​ 0 can be found by integrating Eq. (4) 
along each trajectory, provided that the velocity field, v(r, t), is known as a function of coordinates and time. 
Alternatively, one may note that Eq. (1) is a Hamilton-Jacobi equation for a system described by the quantum 
potential (3). One may, therefore, find Bohmian trajectories by solving Newton’s equations of motion that are 
equivalent to the Hamilton-Jacobi equation (1), with the initial conditions specified above.

We consider a hydrogen atom in the field of a laser pulse Ez =​ E0f(t)cos ωt, polarized along the z-direction, 
which we use as a quantization axis. The pulse envelope function is f(t) =​ sin2 (πt/T1), where T1 is the total pulse 
duration. We performed calculations for pulses with T1 =​ 3T and T1 =​ 4T, where T =​ 2π/ω is an optical cycle 
(o.c.) of the field. We present results for various field strengths and frequencies, corresponding to the tunnelling 
regime of ionization. The initial state of the system is the ground state of the hydrogen atom. To solve the fully 
three-dimensional time-dependent Schrödinger equation (TDSE), we employed the procedure described in the 
works28,29. The atom-laser field interaction is described using the length gauge.

Using the time-dependent wave-function Ψ​(r, t) provided by the TDSE, we can rewrite Eq. (4) in an equiva-
lent way as:
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where p̂ is momentum operator. This equation gives us the velocity field as a function of spatial coordinates and 
time. Since the wave-function in our approach is defined on a spatial grid, we obtain the velocity field at the 
grid-points. The velocity field at other points is found by means of the Lagrange interpolation procedure. Due to 
the symmetry of the problem with respect to rotations around the z-axis, it is sufficient to compute the velocity 
field in any plane containing the z-axis. We choose the (x, z)- plane for this purpose. For the initial ground state 
of the hydrogen atom, all the Bohmian trajectories launched at t =​ 0 have zero velocities. It is a well-known feature 
of Bohmian QM19 that the velocity field in a state described by a real wave-function is zero. The physical possibil-
ity of this state of motion in the Bohmian picture is due to the fact that the force corresponding to the quantum 
potential (3) vanishes for such states, allowing particles to stay at rest.

Having obtained the velocity field v(r, t) in the (x, z)- plane, we launch an ensemble (≈​5 ×​ 105 trajectories) of 
electron trajectories. The evolution of the trajectories in time is found by numerically integrating the system of 
differential equations = rv t( , )rd

dt
 with the initial conditions x(0) =​ x0, z(0) =​ z0 in the (x, z)- plane.

Some of the trajectories obtained in this way describe electrons remaining bound, while some describe ion-
ized electrons. Two typical examples for different pairs of initial conditions, x0, z0, producing bound and ionized 
trajectories, are shown in Fig. 1.

The overall character of the trajectories can be inferred from the inset in Fig. 1, where we left uncolored the 
region in the (x, z)-plane from which bound trajectories originate. We define ‘ionized trajectories’ here as those 
trajectories for which the distance of the electron from the atomic core at the end of the pulse exceeds a thresh-
old value Rmin. We found that the particular value of Rmin is not important, as long as the value of this parameter 
exceeds atomic dimensions. We use below Rmin =​ 10 a.u.

As in ordinary statistical mechanics, an ensemble of particles can be described using distribution functions. 
At any time t1 >​ 0, a distribution function ρ(Ω, t1) giving the probability of detecting an electron with coordinates 
r and velocity v, lying inside a region, Ω, of the electron’s phase-space can be found as:
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where φ0(r) is the initial ground state wave-function of the hydrogen atom, N is an overall normalization factor, 
and only trajectories ending in Ω at t =​ t1 are included in the sum. We impose one further restriction on the tra-
jectories included into the sum (6). We are interested in those members of our ensemble for which ionization has 
occurred. This means that we must separate the distribution function describing the ionized subsystem from the 
total ensemble. This separation is necessary if the ionization probability is small and the contribution of the ion-
ized electrons is difficult to see. To separate the ionized trajectories, we use the same criteria we employed above, 
including in the sum in Eq. (6) only those trajectories for which the distance of the electron from the atomic core 
at the end of the pulse exceeds the value Rmin. We should note that, with this choice of the parameter Rmin, the elec-
trons which end up in the Rydberg atomic states after the end of the pulse are counted as ionized. This procedure 
agrees with the physical picture we are describing in the manuscript. Our aim is to follow the development of the 
ionization process in time. We must, therefore, take into account all the electron trajectories for which ioniza-
tion event occurred at least once during the time interval of the pulse duration. It has been suggested30 that the 
dominant mechanism, leading to the population of the Rydberg states in the tunnelling regime, is the frustrated 
tunnelling ionization (FTI), a two-step process including tunnelling and subsequent rescattering. The majority 
of the electrons ending up in the Rydberg atomic states must, therefore, undergo ionization during the interval 
of the pulse duration.

For practical computation of the sum in Eq. (6), we launch the trajectories at time t =​ 0 with the initial condi-
tions in phase-space region Ω0 =​ D0 ×​ {0}, i.e. initial coordinates (x0, z0) in a region D0 of the (x, z)-plane, and zero 
velocities. For the region D0, we take a rectangle in the x, z-plane: |z| <​ 6 a.u., 0 <​ x <​ 6 a.u. The rectangle is divided 
into a number of squares, each with a side length of 0.01 a.u. Similarly, the phase-space volume at the time t =​ T1 
at the end of the pulse is divided into a set of regions Ωi (with each Ωi being a direct product of squares with a side 
length of 0.01 a.u. in the momentum and coordinate spaces). With phase-space thus discretized, the discretized 
version of the distribution (6) can be obtained (apart from an overall normalization factor) as a number of trajec-
tories arriving at the time t =​ T1 into a given region Ωi, weighted with the appropriate scaling factor, depending 
on the coordinate probability distribution in the initial state. We checked that the results we obtain are stable with 
respect to variations of the discretization parameters.

From the point of view of the statistical mechanics, the procedure encapsulated in Eq. (6) is equivalent to 
solving the Liouville equation for the distribution function describing the ensemble:
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2
, with a quantum potential defined in Eq. (3), and a distri-

bution function describing the ensemble at the initial time t =​ 0 given by ρ(r, v, 0) =​ |φ0(r)|2δ(v). We shall be 
interested not in the full distribution function, but in the reduced quantity W(z, t), describing the probability 

Figure 1.  Electron coordinate along the polarization direction, as a function of time for a laser pulse with 
peak strength E0 = 0.0534 a.u., frequency ω = 0.057 a.u. and total duration of 3 optical cycles. (Red) solid 
line: bound trajectory zb(t) launched with initial conditions x0 =​ 0, z0 =​ 0.5 a.u. (Blue) dots: ‘ionized trajectories’ 
zi(t) with x0 =​ 0.3 a.u., z0 =​ 3.5 a.u. For better visibility, two vertical axes are used – the left vertical axis shows 
the range of the z-values for the bound trajectory zb(t), while the right vertical axis shows the range of z-values 
for the ionized trajectory zi(t). Inset shows dependence of the character of the electron trajectory on the initial 
coordinates in the (x, z)-plane. The initial values (x0, z0) corresponding to the ionized trajectories are in the (red) 
filled area.
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distribution for the electron coordinate along the laser polarization direction. This can be obtained by integrating 
ρ(Ω, t1) over all variables except z. A discretized version of this distribution function can be computed by includ-
ing in the sum in Eq. (6) all the ionized trajectories having, at time t, a value of z-coordinate between z −​ Δ​/2 and 
z +​ Δ​/2. We use Δ​ =​ 0.01 a.u. in the calculation.

Results and Discussion
Distribution functions, W(z), calculated according to the recipe described above, are shown in Fig. 2 for the 
tunnelling regime of ionization (Keldysh parameter γ =​ 0.57 for the field parameters used to obtain the results 

Figure 2.  Distribution W(z) for E0 = 0.1 a.u., ω = 0.057 a.u. Pulse duration of 3 optical cycles (top panel), 
and 4 optical cycles (bottom panel). Insets show electric field of the pulse as a function of time (in units of 
optical cycles).
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presented in the Figure). One can clearly see that the distribution obtained in the tunneling regime has a double 
peak structure for small t, meaning that the ionization predominantly originates from two points along the polar-
ization vector direction, which can be interpreted as exit points. This observation agrees with FDM.

To see how an ionized electron moves in the laser field, we follow the evolution of W(z) as time evolves. As the 
top panel of the Fig. 2 shows, in the case of tunneling ionization by a laser pulse with a total duration of 3 optical 
cycles, the distribution is a narrow-peaked function of z for all t except when the absolute value of the electric 
field of the pulse reaches a local maximum. In a narrow interval, including the local maximum at t ≈​ 1.5T, W(z) 
undergoes a qualitative change. For this interval of time W(z) becomes a broad coordinate distribution, extending 
far into the region of large positive z-values. This long tail, which the distribution W(z) acquires, ensures that for 
a short period of time around the local field maximum, the probability to find an electron at the distances from 
the atom exceeding typical atomic dimensions increases dramatically. Natural interpretation of this behavior is to 
consider it as a signature of a burst of ionization in the Bohmian picture. This interpretation is further supported 
by the behavior of W(z) in the intervals of time containing secondary field maxima at t =​ T and t =​ 2T. In these 
intervals the distribution W(z) undergoes similar qualitative changes, developing tails extending far into the 
region of large negative z-values, with the implications that the probability to find an electron at large distances 
from the atom rises considerably. This behavior is consistent with the pulse shape shown in the inset in the top 
panel of the Fig. 2, electric field lowering the barrier in positive z-direction for t =​ 1.5T and negative z-direction 
for t =​ T and t =​ 2T, thus enabling electron to escape in these directions.

We have performed analogous calculations for other field parameters (different pulse strengths and pulse 
durations) and found that the described behavior is quite typical for the tunnelling regime of ionization, as evi-
denced by the results shown in Figs 2 and 3. In all cases, the tails in W(z) appear only in relatively short intervals 
of time, in agreement with the well-known fact that ionization predominantly occurs in short time intervals 
around the peak field strength. We may interpret the appearance of these tails in the coordinate distribution as 
a signature of ionization bursts in the Bohmian picture of ionization. The value of z immediately before the time 
when the tails appear may then be interpreted as the exit point, i.e. the z-value of the electron coordinate at the 
time when electron exits from under the barrier. This value is to be understood in the probabilistic sense, as the 
distribution W(z) at the time before the electron’s exit has finite width. This width is, however, relatively small, and 
this justifies the concept of a well-defined exit point that is often assumed in simulations5,7.

Figure 4 gives a more detailed view of the process of the formation of the tails in the tunnelling regime, illus-
trating the evolution of the distribution W(z) for different times around the mid-point of the pulse shown in the 
inset in Fig. 2. One can observe the fast process of the development of a tail in the coordinate distribution, W(z) 
undergoing a change from a narrow to a broadly-peaked function of z in a short interval of time around the max-
imum peak field strength. This agrees with the probabilistic view of the exit time10. As present results show, the 
coordinate of the exit point should also be understood in a probabilistic sense.

To understand better the Bohmian perspective of the development of the ionization process in the tunnelling 
regime, let us consider in more detail the quantum potential given by the Eq. (3). The Bohmian trajectories are 
real for all the interval of the pulse duration. The tunnelling in the Bohmian picture occurs not because the trajec-
tory at some point becomes complex (as in the quantum orbits31,32 approach), but because the quantum potential 
(3) effectively removes the barrier. For electric fields that are not too strong, when the depletion of the ground 
state can be neglected, the time-dependent wave-function of the system can be written as Ψ​(r, t) =​ φ0e−iεt +​ φi(r, 
t), where φ0e−iεt is the time-evolved ground state wave-function and φi(t) describes the ionized wave-packet. The 
SFA ionization amplitudes, which are the Fourier transforms φ̂ v( ) of the φi(t), are essentially Gaussian functions 
of the velocity components14. The main dependence of the amplitude on the velocity in the polarization direction 
(which interests us presently) is given, for a hydrogen atom, by the factor14: φ ≈ γ

ω
−ˆ { }v( ) expz

h v( )
2

z
2

, where 

h(γ) =​ arcsinhγ −​ γ(1 +​ γ2)−1/2, γ is the instantaneous value of the Keldysh parameter. The characteristic length 
on which φ̂ v( )z  changes appreciably in v-space is, therefore, a ≈​ (2ω)1/2h(γ)−1/2. The characteristic length on which 
φi(z, t) changes in the coordinate space (assuming Gaussian character of φ̂ v( )z ) is then 2/a. From this estimate and 
from the Eq. (3), defining the quantum potential, we may deduce that as long as we stay close to the atomic core, 
so that |φi(r, t)| ≪​ |φ0(r)|, the contribution to the quantum potential due to the ionized wave-packet is confined to 
the region z ≲​ 2a−1. This point is illustrated in Fig. 5, where the snapshots of the quantum potential computed 
according to Eq. (3), are given for several times around the maximum field strength for the pulse with shape 
shown in the inset in the top panel of Fig. 2. The quantum potential VQ(r, t) =​ VQ(0, 0, z, t), evaluated along the 
laser polarization axis, is shown.

One can see that, at time t1 =​ 1.45T near the pulse midpoint, the quantum corrections effectively remove the 
barrier in the positive z–direction, so that a classical escape trajectory is possible. (This point is better illustrated 
in the bottom panel of Fig. 5, which shows potential curves under magnification). For times t2 =​ 1.6T, t3 =​ 1.35T, 
farther from the pulse midpoint, the barrier is closed. The quantum corrections to the potential are due to the 
part of the wave-function describing the ionized wave-packet, and using the estimate we made above, we find that 
these corrections manifest themselves close to the atomic core in the region z ≲​ 3 a.u. for the field parameters in 
the Fig. 5. These corrections may become important again near the nodes of the wave-function, where the con-
dition |φi(r, t)| ≪​ |φ0(r)| is not satisfied. Figure 5 supports these assertions. For z-values outside the range of the 
quantum corrections due to the ionized wave-packet, VQ(z, t) is (up to an insignificant constant factor) just the 
potential E(t1)z describing the electron interaction with the instantaneous electric field of the pulse, provided the 
trajectory does not pass through a node of the wave-function. As Fig. 5 shows, this is the case for the trajectory 
escaping at t1 =​ 1.45T in the positive z-direction. The electron motion along this trajectory after the ionization 
event can be described considering only the laser field, which is a basic assumption made in the SMM.
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The coordinate of the exit point can be estimated using a variant of the FDM formula obtained using parabolic 

coordinates to take full account of the Coulomb atomic potential: ≈ −
+ −

ze
I I E

E

2

2

2
10. Here I is the ionization 

potential and E- is the z– component of the electric field at the peak strength. This formula gives ze ≈​ 3.6 a.u. for 
the field parameters in Fig. 4, in good agreement with the location of the peak of the distribution W(z) at the 
instant when it broadens and describes (in the picture we developed above) the time of ionization.

To summarize, we have performed an analysis of the strong field ionization process based on the Bohmian 
approach. An advantage offered by the Bohmian approach, which we have exploited in the present work, is the 
possibility of using the well-defined notion of an electron trajectory that is valid on the whole interval of the 
duration of the laser-atom interaction, including the interval of the sub-barrier motion. After the ionization 
event, the Bohmian trajectories describing ionized electrons are essentially the classical trajectories describing 
electron motion in a laser field. This provides a connection between the Bohmian approach and the SMM. Using 
the Bohmian approach, we defined the notion of the distribution of the electron coordinate in the direction of the 
laser field, and this sets initial conditions for the subsequent classical motion. This distribution undergoes rapid 
changes at times when ionization occurs, remaining a sharply-peaked function of z for times immediately prior 
to the ionization event. This can be interpreted as a justification of the notion of the electron coordinate at the 
exit point.

A question arises: can the results presented above be obtained using prescriptions of the conventional QM? 
To answer this question, one should note that the statement that the Bohmian approach leads to the same pre-
dictions as conventional QM requires a qualification. This statement is literally true, i.e. there is a one-to-one 

Figure 3.  Top panel: distribution W(z) for E0 = 0.0534 a.u., ω = 0.057 a.u. Bottom panel: distribution W(z) 
for E0 = 0.12 a.u., ω = 0.057 a.u. Pulse duration 3 optical cycles (pulse shape shown in the inset in the top 
panel of Fig. 2).
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Figure 4.  The evolution of the distribution W(z) with time. E0 = 0.1 a.u., ω = 0.057 a.u., pulse duration 3 
optical cycles (pulse shape shown in the inset in the top panel of Fig. 2).

Figure 5.  Top panel: quantum potential, VQ(z, t), evaluated along the laser polarization axis for t1 = 1.45T, 
t2 = 1.6T, t3 = 1.35T for a laser pulse of the peak strength E0 = 0.0534 a.u., where the pulse shape is shown in 
the inset in the top panel of Fig. 2. (Black) dashed line corresponds to the energy of the initial state. (Magenta) 
dotted line shows the potential E(t1)z, with electric field amplitude evaluated at the time t =​ t1. Bottom panel: 
potential curves under magnification.
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correspondence between the predictions of the Bohmian and conventional QM only when the latter provides an 
unambiguous answer33. Consider, as an example, the tunnelling time problem, which has been discussed recently 
in ref. 27 or transmission time, discussed in ref. 33. One can propose several definitions of the tunnelling time 
(e.g., Larmor time, Büttiker-Landauer time, Eisenbud-Wigner time), based on various aspects of the description 
of the motion based on conventional QM27. Analogously, several plausible definitions for the transition time can 
be given within the framework of conventional QM33. The Bohmian approach, on the other hand, leads to defini-
tions of these concepts that are based on the the so-called ‘dwell time’ (i.e. the time a particle spends inside a given 
region), which in the Bohmian picture is defined in a quite natural and essentially unique way. (For discussions of 
the relations between Bohmian time and tunnelling and transmission times, see refs 27 and 33, respectively.) This 
essential uniqueness is an attractive feature of the Bohmian approach. The situation with the exit point is similar, 
the Bohmian approach offers the possibility of defining this notion in a natural way.
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