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Lung cancer remains the leading cause of cancer-related mortality cytoplasmic tyrosine phosphatase Src Homology 2 domain containing

worldwide. Non-small cell lung cancer (NSCLC) predominates, account-
ing for approximately 85% of all lung cancer diagnoses, most of which
can be histologically subdivided into two primary NSCLC subgroups:
adenocarcinoma and squamous cell carcinoma. Recent scientific ad-
vances have identified several targetable, molecular drivers of NSCLC,
themost common of which are mutations in the gene encoding Epider-
mal Growth Factor Receptor (EGFR). These mutations vary in frequency
from approximately 15% of tumors in European populations to more
than 50% in East Asian populations and identify a unique subtype of
NSCLCwith specific therapeutic implications [1]. EGFR--mutant patients
are currently treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs)
with the past 15 years having seen the development and approval of
three generations of these agents with progressively higher potency
and broader indications [1,2]. Nevertheless, about 20% of EGFR-mutant
patients are primary resistant to EGFR-TKIs, yet no predictive bio-
markers exist to identify and/or alter the treatment approach for these
patients.

Experimental data have demonstrated that multiple mechanisms
may mediate resistance to EGFR-TKIs [2]. Resistance can derive from
the expansion of resistant sub-clones, already present in a treatment
naïve tumor, or from the molecular evolution of previously sensitive
sub-clones under the selective pressure of EGFR inhibition. Common
mechanisms of EGFR resistance include: the activation of other trans-
membrane receptors, both tyrosine kinase receptors (RTK), like ERBB2
[2],MET [2,3], or AXL [4,5] and non-RTK, like SMO [3]; constitutive activ-
ity of cytoplasmic signaling cascades, like themitogen-activated protein
kinase (MAPK) [2] and signal transducer and activator of transcription 3
(STAT3) [6]; and complex biological processes, such as epithelial to
mesenchymal transition (EMT) [2,3].

Rosell et al. have previously shown that, among the EGFR down-
stream signals, STAT3 and Src are not inhibited by treatment with
EGFR-TKIs, even in EGFR sensitive models, since they are regulated
also by other proteins [6]. In particular, they described that the
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Phosphatase 2 (SHP2) is a participant in the intracellular signaling cas-
cades of various RTK, including EGFR, and interleukin-6 (IL-6), all induc-
ing STAT3. Moreover, it is demonstrated that EGFR inhibitors also
directly activate Src and integrins [7]. Interestingly, both SHP2 and
integrins (through Integrin-Linked Kinase, ILK) are involved in IL-6
signaling cascade, which ultimately promotes EMT and proliferative
transcriptional programs, independently from EGFR.

In this work led by Karachaliou and Rosell [8], the authors analyzed
gene expression of ILK, gp130 (one subunit of the IL-6 receptor) and
SHP2 on tumor cells, and of IL-6 and HGF in the stroma and correlate
them with clinical outcomes of a multi-institutional cohort of EGFR
mutant patients treated with sequential first generation reversible
EGFR-TKIs and second generation irreversible EGFR-TKIs. First, they
showed that ILK expression is correlated positively with gp130 (p =
.0183) and stromal HGF (p = .0468). HGF is the physiological ligand
of MET and is also involved in activating crosstalk of METwith other re-
ceptors in EGFR-TKI resistant models [5], thus they confirm the biolog-
ical hypothesis that IL-6 signaling activation co-exists with other
signals, all converging on STAT3, Src and MAPK. Then, stratifying
patients in high- and low-expression groups for each variable, they dis-
covered that high ILK expression correlates with a significantly lower
progression free survival (PFS) after treatment with EGFR-TKI (9.4
versus 15.8 months, p = .0021), with a Hazard Ratio (HR) of 2.49
(p= .0029), that was also maintained in multivariate analysis. Regard-
ing SHP2, they extended their previous report that high SHP2 expres-
sion correlates with higher risk of disease progression with EGFR-TKI
[5], by displaying that SHP2-high patients have shorter PFS (11.4 versus
24.1 months, p = .0094, with HR = 2.40, p = .0115). Moreover, they
demonstrated that overall survival (OS) is also decreased significantly,
both in their patients cohort (18.5 versus 36.7 months, p = .0182)
and in The Cancer Genome Atlas (TCGA) EGFR mutant NSCLC cohort
(p = .0043). These results are very straightforward: they identify that
ILK and SHP2 expression levels in pre-treatment EGFR mutant NSCLC
samples may predict negative outcome from first/s generation EGFR-
TKIs therapy.

These conclusions are strengthened by the inclusion of both amulti-
institutional clinical cohort, and an independent validation set in the
TCGA. These data imply that there is a subset of EGFR-mutant patients
that may still derive some benefit from EGFR –TKIs but may require al-
ternative frontline therapy, such as a combination strategy including ILK
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or SHP2 inhibitors, that warrants future investigation. Notably, SHP2
inhibitors have already demonstrated activity in some models of lung
cancer and melanoma and ILK inhibitors showed promising results in
leukemia studies [5].

Furthermore, it will be interesting to evaluate how these observa-
tions hold up in patients treated with third generation EGFR-TKIs
(osimertinib) that are now the standard of care for EGFR-mutant
patients worldwide [1]. Interestingly, one of the main mechanisms
demonstrated for osimertinib resistance is MAPK activation and there
are various experimental data that the addition of inhibitors of MEK
can revert this resistance [9,10], thus emphasizing the importance of
studying the role of MAPK, as well as SHP2 and ILK, in prospective stud-
ies of EGFR-TKI resistance. These new results presented by Karachaliou
et al. confirm that, even in an oncogene addicted cancer type, like EGFR-
mutant NSCLC, molecularly targeted therapy is not a one-size-fits-all
approach and should prompt further studies to identify, and potentially
target, novel biomarkers of resistance to design a truly personalized
therapy.
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