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Abstract
The contribution of sexual selection to diversification remains poorly understood after decades of research.

This may be in part because studies have focused predominantly on the strength of sexual selection, which

offers an incomplete view of selection regimes. By contrast, students of natural selection focus on environ-

mental differences that help compare selection regimes across populations. To ask how this disparity in

focus may affect the conclusions of evolutionary research, we relate the amount of diversification in mating

displays to quantitative descriptions of the strength and the amount of divergence in mate preferences

across a diverse set of case studies of mate choice. We find that display diversification is better explained

by preference divergence rather than preference strength; the effect of the latter is more subtle, and is best

revealed as an interaction with the former. Our findings cast the action of sexual selection (and selection in

general) in a novel light: the strength of selection influences the rate of evolution, and how divergent selec-

tion is determines how much diversification can occur. Adopting this view will enhance tests of the relative

role of natural and sexual selection in processes such as speciation.
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INTRODUCTION

Nearly a century and a half ago Darwin proposed sexual selection as

an explanation for the evolution of extravagant traits that could not

be expected to arise under natural selection (Darwin 1871), and three

decades ago biologists started to focus on sexual selection as a pow-

erful agent of trait elaboration and speciation (West–Eberhard 1983).

Since then, much work has addressed the relative contributions of

natural and sexual selection to species divergence and to the diversifi-

cation of traits involved in adaptation and reproductive isolation (e.g.

Coyne & Orr 2004; Ritchie 2007; Ritchie et al. 2007; Seddon et al.

2008; Arnegard et al. 2010; Labonne & Hendry 2010; Kraaijeveld

et al. 2010; Maan & Seehausen 2011; Wagner et al. 2012). Several

fundamental studies have identified important differences between

natural and sexual selection: Sexual selection is stronger and more

constant; in addition, in sexual selection relative attractiveness is

never maximised, novelty per se is often advantageous and the default

dynamics of Fisherian runaway selection make it widespread and

self-reinforcing (Darwin 1871; Fisher 1958; West–Eberhard 1983;

Hoekstra et al. 2001; Kingsolver et al. 2001; Hereford et al. 2004;

Svensson et al. 2006; Prum 2010, 2012; Siepielski et al. 2011).

The above work has given us a good understanding of the fea-

tures that enable sexual selection to generate rapid divergence and

extravagance beyond naturally selected optima. A problem arises,

however, when researchers take strength and rapid evolution as the

key features that should characterise the action of sexual selection.

This is because the key to testing hypotheses about the action of

selection is to relate descriptors of selection regimes to observed

patterns of divergence or diversification. In such tests, focusing on

the strength of selection can be misleading because the effects of

selection on diversification can only be detected in relation to the

amount of divergence in the phenotypes that are favoured by selec-

tion (i.e. in fitness peaks). Consider the following heuristic model of

the process of diversification of mating displays under sexual selec-

tion by mate choice (Fig. 1): Assuming sufficient genetic variation,

diversification in mating displays will depend on two variables. First,

the strength of selection (e.g. the strength of mate preferences) will

determine how closely and how quickly display trait values come to

match the fitness peaks defined by mate preferences: The display–
preference match will be closer with strong preferences (Rodr�ıguez
et al. 2006), which are more likely to outweigh competing sources

of selection such as naturally selected costs; also, the ‘equilibrium’

display–preference match may be attained more quickly with stron-

ger preferences. Second, the amount of divergence in the display

trait values that are favoured by mate preferences will determine the

magnitude of the diversification that occurs in display phenotypes.
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The consequence is that, over evolutionary time, even weak selec-

tion can generate considerable diversification if there is a large

amount of divergence in mate preferences; by contrast, stronger

selection can more rapidly result in a closer display–preference
match but can only account for as much divergence as exists among

mate preferences (Fig. 1). The key to diversification, then, is the

divergent nature of selection, rather than its strength per se.

It may seem obvious that the action of selection should be char-

acterised not only by its strength but also by how divergent it is.

However, this point marks a contrast in how the action of natural

and sexual selection have been compared in evolutionary research.

Comparative studies of speciation by ecological selection have

focused on environment differences that help capture how

divergent the ecological context of selection is (Boughman 2002;

Schluter 2001, 2009; Rundle & Nosil 2005; Nosil 2012), whereas

comparative studies of speciation by sexual selection have sought

proxies for the strength of sexual selection, such as the degree of

sexual dimorphism or the type of mating system (Coyne & Orr

2004; Panhuis et al. 2001; Ritchie 2007; Ritchie et al. 2007; Seddon

et al. 2008). Explicit consideration of the extent of divergence in

selection has been lacking in comparative studies of the action of

sexual selection, potentially confounding comparisons of the effec-

tiveness of ecological and sexual selection as agents of divergence

and speciation.

Here, we explore the consequences of failing to capture these dif-

ferent aspects of the action of sexual selection. We ask how well

divergence in mating displays is explained by focusing either only

on the strength or on the amount of divergence in mate prefer-

ences. We use a diverse set of case studies of mate choice, drawn

from our own work and from the literature when the relevant data

could be obtained. The case studies feature crickets, frogs, katydids,

sticklebacks, tree crickets, treehoppers, and wolf spiders (see Appen-

dix S1 in Supporting Information). To be included in our analysis, a

case study had to allow extracting quantitative information about

three features related to mate choice (amount of divergence in mat-

ing display traits, amount of divergence in trait values favoured by

mate preferences, and strength of mate preferences; see below) in a

way that allowed comparison across traits and case studies. Further-

more, this information had to be available for at least three closely

related species or populations, so that we could relate the two vari-

ables describing mate preferences to the variable describing diver-

gence in mating display traits. In no case did we have prior

knowledge of the patterns that we describe, and we did not discard

contrary data, nor are we aware of other studies that meet our crite-

ria. In fact, one of the case studies – geographic sampling of a large

field cricket population for which molecular data demonstrate pan-

mixis (Gray et al. 2008) – served to examine whether our analysis

could generate spurious results: with panmixis there should be no

divergence among sample localities, and there should be no relation-

ship between display divergence and either preference strength or

preference divergence. To our knowledge, we have only excluded

two studies from the literature on population or species differences

in mate preferences (Shaw & Herlihy 2000; Simmons et al. 2001)

because they did not allow extracting comparable data for our anal-

yses. Our case studies share the following features: The taxa

involved were interesting from the perspective of research on mate

choice; they deal with pair formation (as opposed to later stages of

the reproductive process); and they involve ‘traditional’ sex roles

whereby males compete for matings and females exercise mate

choice (cf. Clutton–Brock 2007). We do not expect these common-

alities to bias our contrast of the roles of the strength of sexual

selection and of how divergent selection is.

We tested two hypotheses about the action of sexual selection

through mate choice by relating changes in display traits to changes

in mate preferences: (1) The amount of divergence in displays is

explained by the strength of mate preferences. This hypothesis pre-

dicts that stronger preferences will be associated with greater diver-

gence in display traits. (2) The amount of divergence in display

traits is explained by the amount of divergence in mate preferences.

This hypothesis makes two predictions: First, greater preference

divergence will be associated with greater divergence in display

traits. Second, this relationship will be stronger for closed prefer-

ences than for open preferences – because the display–preference
match should be tighter for closed preferences, which select against

deviation from peak preference in both directions, whereas open

preferences select against deviation from the peak in only one direc-

tion (Rodr�ıguez et al. 2006) (see Fig. 2). When possible, we also

tested a prediction that relates the two hypotheses above. In some

cases, the effect of preference divergence should be greater with

Figure 1 Heuristic model for the relationship between the amount of divergence

in the display trait values favoured by mate preferences (labelled Δp, depicted on

the x-axis), the strength of the mate preferences (depicted on the y-axis) and the

resulting divergence in mating displays (labelled Δt, indicated with brackets by

each panel). We show this for two sister species, indicated as the two data points

in each panel. The amount of preference divergence dictates how much display

divergence can occur: more divergent preferences (greater Δp) result in more

divergent displays (greater Δt). Preference strength, by contrast, determines the

rate of evolution (faster with stronger preferences) and the closeness of

the display–preference match (closer with strong preferences). In each panel, the

dotted line indicates a perfect 1 : 1 match between displays and preferences.

Bottom: an ancestral and two derived preference functions, one for each sister

species.
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stronger preferences (Fig. 1), so that these variables interact in a

positive way. However, if the amount of preference divergence

determines how much display divergence can occur, there will be a

point at which stronger preferences cannot result in any greater Δt
(Fig. 1) and the interaction may be negative. Alternatively, with

enough time, large preference divergence can result in large display

divergence even if preferences are weak (Fig. 1) and the interaction

may again be negative. These considerations predict an interaction

between the effects of preference strength and preference diver-

gence, which we tested whenever the sample size for each case

study allowed constructing a model with the interaction term (see

below). Because the interaction can be complex, we focused on

testing for its presence, rather than on its sign. We tested these pre-

dictions for each case study, and then conducted an overall analysis

of effects and effect sizes.

We find a remarkably consistent pattern: Divergence in mating

displays is predicted by divergence in mate preferences, whereas the

strength of mate preferences has a more subtle effect and is best

detected as an interaction with divergence in mate preferences. We

argue that failing to capture both of these aspects of sexual selec-

tion may lead to underestimation or mischaracterisation of its

action, and bias conclusions about its role in important evolutionary

processes such as divergent evolution and speciation.

METHODS

Our tests are based on quantitative descriptions of mate prefer-

ences, or mate preference functions. Preference functions relate var-

iation in sexual response to variation in display traits (Wagner et al.

1995; Ritchie 1996; Wagner 1998; Gray & Cade 1999; Brooks et al.

2005; Rodr�ıguez et al. 2006) (Fig. 2). Preference functions can be

described as ‘open’ or ‘closed’ according to whether they favour

extreme or intermediate display trait values (Fig. 2a,b). Assessing

the true shape of a mate preference requires testing sexual response

across a biologically relevant range of variation in display trait val-

ues. For example, if the range of values tested is too narrow the

preference may appear to be open, whereas a broader range might

reveal a closed shape. It is therefore advisable to assess preferences

along the full natural range of variation in display traits, or even to

exceed that range. An excessively broad range, however, might force

a closed shape, so the range tested should be biologically relevant.

In our case studies, the ranges of display variation used to describe

mate preferences either exceeded the natural range for each species

to a biologically appropriate extent (e.g. covered the range of the

clade; see Fig. 3a,b) or covered the full natural range for the species

or population tested (or nearly did so in one case; details in Appen-

dix S1).

When contrasted with the distribution of display trait values in a

population, preference functions constitute hypotheses about the

form of sexual selection on displays (Fig. 2c). Across species or

populations, such comparisons test the influence of past sexual

selection on displays (e.g. Ritchie 1996; Rodr�ıguez et al. 2006), and

comparing preference functions to variation in reproductive success

tests the influence of current sexual selection (Sullivan–Beckers &

Cocroft 2010). Thus, preference functions are powerful tools for

assessing the degree of coevolution between displays and mate pref-

erences, and for testing hypotheses about mate preferences as

causes of selection on display traits. As an illustration, in Fig. 3, we

show examples of the relationship between mate preferences and

male display trait distributions, and of how this relationship can be

described with mean display trait and peak preference values (as per

Fig. 2). Within and across our case studies, there is an impressive

level of display–preference correspondence (Fig. 3). Such close sig-

naller–receiver correspondence, although not universal (e.g. Ryan

1998; Hebets & Maddison 2005), is widespread and suggests a

strong potential for sexual selection by mate choice to promote dis-

play diversification and thereby contribute to reproductive isolation

between diverging populations (West–Eberhard 1983; Boughman

2001; Gerhardt & Huber 2002; Greenfield 2002; Rodr�ıguez et al.

2006; Grace & Shaw 2011).

For each case study, we relate changes in preference functions to

changes in display traits. Displays included acoustic signals (crickets,

frogs, katydids, tree crickets); substrate-borne vibrational signals

(treehoppers, wolf spiders); and visual signals (sticklebacks, wolf

spiders). Four of the case studies involved multivariate displays

encompassing a single modality and corresponding preferences that

were described with trials that assessed one or two display traits at

a time (Enchenopa, Gryllus spp., Hyla spp., Oecanthus); 2 case studies

(a)

(c)

(d)

(b)

Figure 2 Preference functions relate variation in sexual response to variation in

display traits. (a) Closed preference functions rise to peak response at the

preferred display trait value (‘peak preference’; arrow) and then decline. (b) Open

preference functions continue to rise or level off, although a peak may be

defined (arrows) if further display investment brings diminishing returns. (c) In

relation to display trait distributions (histograms), preference functions make

predictions about the form of selection (see text). Here, black vs. grey functions

predict stabilising vs. directional selection (closed preferences) or varying

directional selection (open preferences). Note that a closed preference may

predict stabilising or directional selection according to the position of the display

trait distribution relative to peak preference. (d) Preference functions may vary in

strength (grey is weaker), according to the extent of the decrease in

attractiveness as displays deviate from peak preference.
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involved multimodal mating displays and preference assessment

(Gasterosteus and Schizocosa); and in 3 case studies a single display trait

has a large effect and was the focus of the study (Ephippiger, Hyla

cinerea, panmictic cricket population). Two of the case studies

included body size estimates: for Gasterosteus, we considered body

length as part of the display because females view the entire body

of the male during courtship, and there is evidence that it plays a

role in mate selection (Nagel & Schluter 1998; Kraak et al. 1999;

McKinnon et al. 2004); for Schizocosa, we included cephalothorax

width because females could in principle perceive body size and use

(a)

(c)

(g)

(d) (e) (f)

(h)

(b)

Figure 3 Examples of variation in display–preference correspondence. (a) Close correspondence with strong preferences for Enchenopa signal frequency. (b) Lax

correspondence with weaker preferences for Enchenopa signal length. (c) The pattern from panel a, plotting mean signal and peak preference values. Here and below, the

1 : 1 line indicates perfect correspondence. (d) The pattern from panel b, plotting mean signal and peak preference values. (e) Correspondence among eight Hyla cinerea

populations, apparent over a pattern of reproductive character displacement; dark green: rough sympatry with closely related H. gratiosa; light green: rough allopatry. (f)

No correspondence in the panmictic cricket population. (g) Correspondence among species and traits in Enchenopa. (h) Correspondence among species and traits across

our case studies. In (g) and (h) the axes are dimensionless; shifts along these axes denote changes in trait type, not trait units. (a)–(d) redrawn with permission from

Rodr�ıguez et al. (2006).
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it in their mating decisions. For simplicity, we refer to all traits as

‘display traits.’

The basic data (see Appendix S2) for each analysis were as follows:

(1) the mean value for each display trait for each species or popula-

tion in each case study, (2) the strength of the corresponding prefer-

ence (Fig. 2d) and (3) the peak of the corresponding preference

(Fig. 2c). Besides preference strength and peak preference, other

aspects of the shape of mate preferences may be important, such as

the breadth of the peak or the degree of overlap among preferences.

However, our goal was to capture the difference in viewpoint that

may arise from emphasising the strength of selection vs. divergence

in a cause of selection. To this end, preference strength best approxi-

mates proxies for the strength of sexual selection that have been used

in comparative analysis of the action of sexual selection (see below),

and peak preference offers a clear prediction of where mean display

traits should be if mate preferences are an important cause of selec-

tion on displays. In addition, in our experience preference strength is

independent of peak preference (as in our case studies; see below) but

correlated with other aspects of preference shape such as breadth

(Bailey 2008; Fowler–Finn & Rodr�ıguez 2012a,b; Rodr�ıguez et al.

2013a,b). For example, stronger preferences are also narrower and

less overlapping (Fig. 3a,b). Although more work is required to assess

the generality of such correlations, we consider that the combination

of preference strength and peak preference provides a good account

of overall variation in preference shape, and one that is ideally suited

to our analysis.

Divergence in displays (Δt) and divergence in peak preferences (Δp)

We obtained dimensionless, unbounded measures of the amount of

divergence in display traits (Δt) and peak preferences (Δp) for each
species or population in each case study. These measure the dis-

tance of a species or population from the group mean in each case

study (cf. Arnqvist 1998) and allow us to compare amounts of

divergence within and among case studies. Besides mate choice,

they are likely influenced by the time since branching from the

common ancestor, with older radiations potentially showing more

divergence. Δt and Δp varied considerably among case studies (see

below), and the species or populations in each study are not sister

taxa. However, they belong to the same genus or species complex,

and likely represent relatively recent divergence.

We calculated Δt thus:
Δt = (traitmean � traitGrandMean)/traitGrandMean

where traitmean was the mean of each trait in each species or popu-

lation in the case study; and traitGrandMean was the overall mean for

each trait in the case study.

We calculated Δp thus:

Δp = (peak � peakGrandMean)/peakGrandMean

where peak was the peak preference for each trait in each species

or population, and peakGrandMean was the overall mean of the peak

preferences for each trait in the case study.

Using means in the denominator to calculate Δt and Δp
allowed us to generate dimensionless measures sensitive to

among-trait differences in the amount of divergence that has

occurred, which can then be related to among-trait differences in

preference strength and preference divergence. The alternative (to

use standard deviations for the denominator) would obscure the

among-trait differences in amount of divergence that we wished

to capture.

We note that traitGrandMean and peakGrandMean are biased estimates

of ancestral states; they would be accurate if taxa were related by a

polytomy within each group. This introduces noise into the analy-

sis – some amounts of divergence are overestimated and others are

underestimated. This noise makes the hypotheses harder to support

(it increases type II error, but not type I error), and in that sense

our hypothesis tests are conservative.

We adjusted peak preference estimates to the shape of the prefer-

ences. For closed preferences the peak was the trait value eliciting

the highest response (Fig. 2a). For open preferences, we defined the

peak according to how investment in displays may affect attractive-

ness. With preferences that plateau (Fig. 2b), investment beyond a

certain point does not increase attractiveness. In such cases

(Enchenopa and Ephippiger case studies), we defined the peak at the

beginning of the plateau. Even without a plateau (Fig. 2b) there may

be diminishing returns if the cost of extreme displays outweighs the

increase in attractiveness. In such cases (Gasterosteus and Schizocosa case

studies) we defined the peak as the display trait value at which female

response was 75% of the maximum (see dotted horizontal line in Fig.

2b). To assess if this criterion could bias our analysis, we evaluated

the effect of using other response levels: higher levels simply made

the Δt~Δp relationship shallower (Fig. S1 in Appendix S3), but did

not affect the outcome of the analyses (Table S1 in Appendix S3).

Preference strength

We obtained a dimensionless, unbounded measure of preference

strength. The strength of sexual selection is determined by variance

in reproductive success and depends largely on mating system (Shus-

ter & Wade 2003). Because mating systems are consistent within case

studies (see Appendix S1), we expect the strength of sexual selection

to be related to preference strength for each case study. Our

approach thus controls for potentially confounding variation in mat-

ing systems. We estimated preference strength with the square of the

Coefficient of Variation (CV2) of female response scores across the

range of trait values for each species/population (Schluter 1988;

Fowler–Finn & Rodr�ıguez 2012a,b; Rodr�ıguez et al. 2013a,b). For the
Gasterosteus and Schizocosa case studies (open preferences), we esti-

mated the CV2 from the Sum of Squares of a linear regression of

female response on the male trait, thus: CV2 = (√SS/traitmean)
2.

Preference strength and Δp were unrelated to each other: the cor-

relation between the absolute value of Δp and preference strength

varied across case studies (Table 1), with an overall median of

r = �0.03.

Statistical analysis

We conducted all analyses in JMP 7.0.1 (SAS Institute, NC, USA). In

each case study, the dependent variable was Δt, and the independent

variables were Δp, preference strength, and their interaction when the

sample size allowed including it in the statistical model (Table 1).

Note that the prediction is for the Δp 9 preference strength interac-

tion to be present, rather than for it to be of a particular sign (i.e. posi-

tive or negative; see above). The Enchenopa case study had open and

closed preferences, so we also tested the effect of preference shape

and its interaction with Δp and preference strength (Table 1). In the

other case studies, preferences were either all closed or all open.

We ran the models in two different ways to optimise the tests for

Δp and for preference strength (Table 1). This is because Δt and

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd/CNRS.
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Δp are signed, which is appropriate for relating changes in prefer-

ences to changes in displays (Figs 1 and 4), but inappropriate for

relating preference strength to changes in displays because stronger

preferences are predicted to result in greater divergence in any

direction. Thus, the model for Δp used the signed values, whereas

the model for preference strength used absolute Δt and Δp values.

We retained the term for preference strength in the model for Δp
to test for the Δp 9 preference strength interaction, which relates

the effects of Δp and preference strength to each other (see above).

Removing those two terms from the models testing for the effect

of Δp did not alter the outcome of the analyses (see below). We fit

the model for Δp without the intercept because the Δt~Δp relation-

ship is constrained to pass through the origin (Fig. 4). We fit the

model for preference strength with the intercept – either formula-

tion yielded qualitatively the same results for most case studies, but

the intercept model dealt better with the data in the case studies

featuring geographic variation (H. cinerea and panmictic cricket pop-

ulation). This double testing for each case study increases the risk

of spurious significance (Rice 1989), but corrections against it com-

promise statistical power (Moran 2003; Nakagawa 2004). We dealt

with this problem by assessing table-wide patterns of significance

(Moran 2003). We also estimated effect sizes for Δp and preference

strength as correlation coefficients (r) from the F ratio of their term

in the model (Table 1), thus: r = √[F/(F + d.f.error)] (Rosenthal

1991; Nakagawa & Cuthill 2007).

In the above analyses (Table 1), for each case study we use data

from different species and traits (e.g. signal frequency and length)

as independent data points although they are likely correlated (e.g.

in Enchenopa, longer signals are lower in frequency; Cocroft et al.

2010). Our rationale for this approach was as follows: we expect

the relationships between preferences and display traits to be inde-

pendent among traits; for instance, the preference strengths and

peaks pertaining to signal frequency are likely to be independent

of the strengths and peaks pertaining to signal length (e.g. Fig. 3a–
d). To test this expectation, we used linear mixed models including

species or population and trait as random effects, using the REML

Table 1 Relationship between the amount of divergence in peak preferences (Δp) and preference strength, and the amount of divergence in display traits (Δt). We high-

light the Δp term for models with signed Δ values, and the preference strength term for models with absolute Δ values (see Statistical analysis). Significant or marginally

significant terms in bold

Model for Δp Model for pref. strength

Case study

N *; r† Term d.f. F, P Effect size (r) d.f. F, P Effect size (r)

Enchenopa

N = 4, 6, 24; r = 0.18

Δp 1,18 13.60, 0.0017 0.65 1,17 3.17, 0.093

Strength 1,18 0.21, 0.65 1,17 1.41, 0.25 �0.28

Δp 9 strength 1,18 4.82, 0.041 1,17 2.40, 0.14

pref. shape 1,18 0.16, 0.70 1,17 3.28, 0.088

Δp 9 shape 1,18 9.52, 0.006 1,17 4.53, 0.048

Strength 9 shape 1,18 0.38, 0.54 1,17 0.53, 0.48

Ephippiger ‡

N = 3, 1, 3; r = �0.22

Δp 1,1 110.66, 0.060 0.996 1,1 67.61, 0.077

Strength 1,1 0.24, 0.71 1,1 0.49, 0.61 �0.57

Gasterosteus

N = 6, 4, 24; r = 0.03

Δp 1,20 21.42, 0.0002 0.72 1,19 1.08, 0.31

Strength 1,20 0.97, 0.34 1,19 0.04, 0.84 �0.05

Δp 9 strength 1,20 0.56, 0.46 1,19 0.0006, 0.98

Gryllus spp.

N = 3, 2, 5; r = �0.95

Δp 1,2 52.05, 0.019 0.98 1,1 174.10, 0.048

Strength 1,2 0.005, 0.95 1,1 3.04, 0.33 �0.87

Δp 9 strength 1,2 0.05, 0.86 1,1 3.64, 0.31

Hyla spp.

N = 3, 2, 6; r = �0.54

Δp 1,3 419.63, 0.0003 0.996 1,2 51.42, 0.019

Strength 1,3 12.81, 0.037 1,2 3.12, 0.22 �0.78

Δp 9 strength 1.3 16.78, 0.026 1,2 2.10, 0.28

Hyla cinerea pops.

N = 8, 1, 8; r = �0.08

Δp 1,4 168.24, 0.002 0.988 1,3 0.003, 0.96

Strength 1,4 0.28, 0.63 1,3 1.04, 0.38 0.51

Δp 9 strength 1,4 9.70, 0.036 1,3 0.67, 0.47

Site type 1,4 293.07, < 0.0001 1,3 1.01, 0.39

Oecanthus

N = 3, 2, 5; r = 0.43

Δp 1,2 22.84, 0.041 0.96 1,1 5.54, 0.26

Strength 1,2 0.32, 0.63 1,1 0.06, 0.84 0.24

Δp 9 strength 1,2 0.05, 0.84 1,1 0.03, 0.89

Schizocosa

N = 6, 4, 16; r = 0.16

Δp 1,13 7.79, 0.015 0.61 1,12 3.31, 0.094

Strength 1,13 3.21, 0.097 1,12 0.02, 0.88 0.04

Δp 9 strength 1,13 5.62, 0.034 1,12 2.01, 0.18

Gryllus texensis panmictic pop.

N = 18, 1, 18; r = 0.21

Δp 1,15 0.12, 0.74 0.09 1,14 1.59, 0.23

Strength 1,15 0.54, 0.47 1,14 2.40, 0.14 0.38

Δp 9 strength 1,15 0.002, 0.96 1,14 0.28, 0.60

*Sample sizes: # spp/populations in case study, # traits, # data points.

†Pearson product–moment correlation (r) between |Δp| and preference strength.

‡Due to low d.f.’s, Δp 9 pref. strength interaction not tested; both models fit without intercept.
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Figure 4 Relationship between the amount of divergence in display traits (Δt) and the amount of divergence in peak preferences (Δp, left column), or preference strength

(right column) for our case studies. The relationship between Δt and Δp was consistently positive and strong, except for the panmictic cricket population (inset). By

contrast, there was no relationship between Δt and preference strength. Note the much lower magnitude of Δt and Δp values for the panmictic cricket population (inset).

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd/CNRS.
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method in JMP. Three of the case studies involved a single display

trait (Ephippiger, H. cinerea and panmictic cricket population) and so

we only entered the term for species or population as a random

effect. If our expectation is correct, the terms for species or popu-

lation and for trait should have no effect in these models. The

REML method in JMP provides variance component estimates

rather than significance tests, and so we checked whether the con-

fidence intervals for the variance component overlapped zero. In

all cases, the confidence intervals for the terms for species or pop-

ulation and for trait overlapped zero (or the component was nearly

exactly zero in the case of the H. cinerea population term). We thus

consider that our expectation of independence in the relationships

among preferences and displays traits is justified, and we used

models without the above random effects (Table 1).

Another potential concern is that Δt and Δp values may scale

with the trait means, given that we standardised with the grand

mean for each trait in each case study (see above). If Δt and Δp are

positively correlated with the mean, then traits with larger means

might have a larger influence on the analyses than traits with smal-

ler means. In three of our case studies, there was no risk of this, as

they involved a single display trait (Ephippiger, H. cinerea and panmic-

tic cricket population). For the other case studies, we tested for this

possibility by assessing the relationship between trait means (as the

independent variable) and our estimates for Δt, Δp and preference

strength as dependent variables in separate analyses. In the 6 case

studies involving more than one display trait, there was never a sig-

nificant relationship between trait means and our estimates for Δt
(P ≥ 0.31) or for Δp (P ≥ 0.33); in four of the case studies the rela-

tionship between trait mean and preference strength was also non-

significant (P ≥ 0.35), but in 2 case studies it was significant or mar-

ginally significant (Gryllus spp.; P = 0.03; Enchenopa; P = 0.07,

although the latter relationship was negative). Overall, the criterion

of table-wide significance (Moran 2003; see above) suggests that

those two (of 18) tests that were significant may be spurious, and

that we do not have a problem of scaling with trait means.

RESULTS

We found a pronounced difference in how the amount of display

divergence (Δt) relates to preference strength and to the amount of

preference divergence (Δp). The relationship between preference

strength and Δt was never significant (Table 1; Fig. 4). By contrast,

the relationship between Δp and Δt was significant or marginally

significant in eight of the 9 case studies – i.e. in all but the panmic-

tic cricket population (Table 1; Fig. 4). The models that were opti-

mised to test for the effect of Δp (Table 1) also included terms for

preference strength and its interaction with Δp (see below). Exclud-

ing these two terms from these models yielded the same results:

The term for Δp remained significant in 7 case studies (P ≤ 0.0075)

and was marginally significant (P = 0.059) only for the Schizocosa

case study; as above, the term for Δp remained non-significant for

the panmictic cricket population (P = 0.72).

We further compared how Δt relates to Δp and preference

strength in terms of the effect size of the relationships. We found

that the effect sizes for the Δt~Δp relationship were significantly

greater than for the Δt~preference strength relationship (Welch ANO-

VA allowing for unequal variances: F1,8.9314 = 53.97, P < 0.0001;

Fig. 5a). This pattern remained when we used the absolute value of

the effect sizes (Welch ANOVA: F1,9.892 = 9.89, P = 0.022). We also

found that these effect sizes were influenced by the sample size of

each case study, with smaller N case studies likely overestimating

effect sizes (Fig. 5b). Across 8 case studies (conservatively excluding

the panmictic cricket population), the correlation between N and

the effect size for Δp was r = �0.89, P = 0.0031; for preference

strength, it was r = �0.66, P = 0.073. Nevertheless, effect sizes

remained consistently stronger for Δp than for preference strength

(Fig. 5b). In short, we found that the effect sizes for the Δt~Δp
relationship were always strong and positive, whereas the effect

sizes for the Δt~preference strength relationship were either weakly

positive or negative (Figs 4 and 5).

An additional feature of the Δt~Δp relationship was that it was

both steeper and less disperse for closed preferences than for open

preferences (Fig. 6).

In seven of the case studies, sample sizes allowed us to test for a

statistical interaction between the effects of Δp and preference

strength on Δt. In four of these 7 case studies, this interaction was

significant (Table 1). The interaction was positive in 2 case studies

(H. cinerea populations and Schizocosa; estimate = 1.9 and 0.1 respec-

tively), and negative in the other two (Enchenopa and Hyla spp.; esti-

mate = �3.45 and �0.64 respectively).

In the panmictic cricket population, any site differences reflect

sampling variation. Therefore, Δt and Δp should be small, and there

should be no relationship between them or between preference

strength and Δt. We found that Δp and Δt showed an order of

magnitude less divergence than the least divergent of the other case

studies (Fig. 4). There was no significant relationship between either

Δp or preference strength with Δt (Table 1; Fig. 4). Effect sizes

(a) (b)

Figure 5 Effect sizes (r) for the relationship between the amount of divergence

in peak preferences (Δp) or preference strength and the amount of divergence in

display traits (Δt). Data points show effect size estimates for each trait in each

case study. (a) Effect sizes for Δp were greater than for preference strength. (b)

Effect sizes varied with the sample size of each case study (N = # data points

in case study = # traits 9 # taxa in case study), but remained consistently large

and positive for Δp, and either small or large negative for preference strength.

Fitted lines are quadratic functions that asymptote at a larger effect size for Δp
than for preference strength.
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were negligible for Δp and medium positive for preference strength

(Fig. 5).

DISCUSSION

We evaluated the potential of two parameters of sexual selection by

mate choice to explain divergence in mating displays. Stronger mate

preferences were not associated with greater display divergence in a

simple way. By contrast, more divergent mate preferences were

closely associated with greater display divergence, especially for

preferences of closed shape. This pattern supports the notion that

preference strength and preference divergence play different roles in

diversification. Preference divergence determines the amount of

divergence in displays, whereas preference strength determines the

rate of evolution and the closeness of the display–preference match.

Thus, a preference with a peak near the ancestral state can only

produce little divergence, no matter how strong it is, whereas a

more divergent preference can cause greater diversification even if

weak (Fig. 1). Consequently, the best chance of detecting an effect

of preference strength in our analysis is via the interaction with

preference divergence; this interaction was significant in four of the

7 case studies in which it was testable.

Our findings suggest that failing to capture the different aspects

of the action of sexual selection may lead to underestimation of its

role in processes such as adaptation and divergence. For example, if

we were to rely solely on preference strength, we would conclude

that sexual selection by mate choice has very little to do with dis-

play trait diversification in our case studies, whereas incorporating

preference divergence in our analysis reveals quite the opposite.

This concern has implications for the study of the role of sexual

selection in speciation, a topic that remains controversial due to

mixed results in spite of decades of theoretical and empirical work.

There is, on one hand, a widespread trend for sexually selected

traits to be the most divergent aspects of the phenotypes of closely

related species (West–Eberhard 1983; Eberhard 1985; Andersson

1994; Coyne & Orr 2004; Mendelson & Shaw 2005; Arnegard et al.

2010; Safran et al. 2012). And there are also robust examples of

sexual selection making stronger contributions to the evolution of

reproductive isolation than natural selection (Gray & Cade 2000;

Wilson et al. 2000; Masta & Maddison 2002; Svensson et al. 2006;

Boul et al. 2007; Funk et al. 2009; Sota & Tanabe 2010). But, on the

other hand, there is only mixed support for the prediction

that clades wherein sexual selection has a stronger influence should

exhibit higher speciation rates (Coyne & Orr 2004; Panhuis et al.

2001; Ritchie 2007; Ritchie et al. 2007; Seddon et al. 2008; Kraaije-

veld et al. 2010). We suggest that this ambiguity may arise in part

because tests of the role of sexual selection in speciation have not

accounted both for the strength of selection as well as for how

divergent selection is. Comparative analyses may have thus underes-

timated the diversifying effect of sexual selection, perhaps drasti-

cally. Divergence in mating displays and preferences does not equal

speciation; there can be, for instance, considerable within-species

divergence in polymorphic or phenotypically plastic sexual traits

(West–Eberhard 2003). Nonetheless, when speciation occurs, the

underlying causes of reproductive isolation often involve traits such

as displays and preferences (e.g. Gray & Cade 2000; Wilson et al.

2000; Boughman 2001; Masta & Maddison 2002; Boughman et al.

2005; Svensson et al. 2006; Boul et al. 2007; Funk et al. 2009; Stel-

kens & Seehausen 2009; Sota & Tanabe 2010). We therefore sug-

gest that using quantitative descriptions of the causes of sexual

selection, such as mate preference functions, and incorporating

measures of the amount of divergence in the form of sexual selec-

tion as well as of the strength of sexual selection, will improve the

power of predictions about the rate of speciation in comparative

studies of the role of sexual selection in speciation. It may also

improve tests of the relationship between divergence in mate prefer-

ences and mating displays and reproductive isolation.

The remarkable consistency of our results across case studies sug-

gests that we have identified a robust pattern about the action of

sexual selection. However, the number of studies that can be analy-

sed with our approach is small, and should be increased in the

future. One interesting avenue to expand the empirical framework

we develop here will be to implement it with multivariate and multi-

modal approaches (e.g. Brooks et al. 2005; Hebets & Papaj 2005), as

well as to refine it by incorporating consideration of the amount of

genetic variation available for the different aspects of selection to

act upon (Chenoweth et al. 2010). It will also be important to

include traits that function at stages of the reproductive process

beyond pair formation (Eberhard 2011). Another fruitful broaden-

ing of the framework presented here will be to consider different

ways in which selection may be divergent. Our analyses encompass

two such ways: We have focused on a single cause of selection

(mate choice) that may be divergent by favouring different display

trait values (among-species variation in Δp), and by doing so to dif-

ferent extents (among-trait variation in preference strength). The lat-

ter may also take more extreme forms, so that a single cause of

selection (e.g. mate choice) may target qualitatively different traits in

different species (e.g. signal rate vs. length in different, closely

related species; Schul & Bush 2002). Similarly, male–male competi-

tion may also target qualitatively different traits (e.g. body size vs.

(a) (b)

Figure 6 The relationship between the amount of divergence in peak preferences

(Δp) and display traits (Δt) was steeper and less disperse for closed preferences

than for open preferences. (a) Difference in slope: F1,7 = 19.12, P = 0.0033. (b)

Difference in dispersion around trend line, measured with the Standard Error of

the Estimate (SEE = √MSerror): F1,7 = 8.81, P = 0.021.
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coloration; Lackey & Boughman 2013). Indeed, such qualitative

shifts in the targets of selection can be important in the evolution

and divergence of complex displays (West–Eberhard 1983). Yet

another way in which selection can be divergent involves differ-

ences in which cause of selection targets different traits. For

instance, some traits may diverge mainly because of mate choice

and others because of direct male–male competition.

In conclusion, we suggest a view of the action of selection

that focuses not only on the strength of selection but also on

quantitative descriptions of how divergent selection is, as we do

here with mate preferences. Perhaps the greatest challenge in this

endeavour will lay in putting characterisations of natural and sex-

ual selection on the same footing – i.e. generating ‘ecological per-

formance functions’ comparable to mate preference functions, to

then relate each to observed patterns of trait diversification and

species divergence. This expanded view may revolutionise our

understanding of the action of ecological and sexual mechanisms

of selection.

ACKNOWLEDGEMENTS

We thank K.D. Fowler–Finn, M. Kopp, D. Rebar, R. Safran,

E. Scordato and M. Servedio for thoughtful discussion. We also

thank F. Barbosa, M.G. Ritchie, S. Smith and two anonymous

reviewers for comments to the manuscript. J. Stafstrom, D. Wilgers

and M. Berns generously provided access to their unpublished data.

This paper arose from the Sexual Selection and Speciation working

group led by R. Safran and A. Uy at the National Evolutionary

Synthesis Center (NESCent) funded by NSF grant EF–0905606.

Support also came from NSF Grant IOS–1120790 to RLR and

K.D. Fowler–Finn; NSF Grant IOS–0919962 to RLR; NSF grant

IOS–0416808, NSF CAREER grant DEB–0952659, and Michigan

State Univ. support to JWB; NSF CAREER grant IOS–0934990 to

EAH; and a Huyck Grant to LBS.

AUTHORSHIP

All authors conceived the study and contributed to data and analy-

ses, RLR conducted the overall analysis and wrote the manuscript,

and all authors contributed substantially to revisions.

REFERENCES

Andersson, M. (1994). Sexual Selection. Princeton, New Jersey.

Arnegard, M.E., McIntyre, P.B., Harmon, L.J., Zelditch, M.L., Crampton,

W.G.R., Davis, J.K., et al. (2010). Sexual signal evolution outpaces ecological

divergence during electric fish species radiation. Am. Nat., 176, 335–356.
Arnqvist, G. (1998). Comparative evidence for the evolution of genitalia by

sexual selection. Nature, 393, 784–786.
Bailey, N.W. (2008). Love will tear you appart: different components of female

choice exert contrasting selection pressures on male field crickets. Behav. Ecol,

19, 960–966.
Boughman, J.W. (2001). Divergent sexual selection enhances reproductive

isolation in sticklebacks. Nature, 411, 944–948.
Boughman, J.W. (2002). How sensory drive can promote speciation. Trends Ecol.

Evol., 17, 571–577.
Boughman, J.W., Rundle, H.G. & Schluter, D. (2005). Parallel evolution of

sexual isolation in sticklebacks. Evolution, 59, 361–373.
Boul, K.E., Funk, W.C., Darst, C.R., Cannatella, D.C. & Ryan, M.J. (2007).

Sexual selection drives speciation in an Amazonian frog. Proc. R. Soc. B., 274,

399–406.

Brooks, R., Hunt, J., Blows, M.W., Smith, M.J., Bussi�ere, L.F. & Jennions, M.D.

(2005). Experimental evidence for multivariate stabilizing sexual selection.

Evolution, 59, 871–880.
Chenoweth, S.F., Rundle, H.D. & Blows, M.W. (2010). The contribution of

selection and genetic constraints to phenotypic divergence. Am. Nat., 175,

186–196.
Clutton–Brock, T.H. (2007). Sexual selection in males and females. Science, 318,

1882–1885.
Cocroft, R.B., Rodr�ıguez, R.L. & Hunt, R.E. (2010). Host shifts and signal

divergence: mating signals covary with host use in a complex of specialized

plant–feeding insects. Biol. J. Linn. Soc., 99, 60–72.
Coyne, J.A. & Orr, H.A. (2004). Speciation. Sinauer, Massachusetts.

Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. J. Murray,

London.

Eberhard, W.G. (1985). Sexual Selection and Animal Genitalia. Harvard,

Massachusetts.

Eberhard, W.G. (2011). Experiments with animal genitalia: a commentary. Trends

Ecol. Evol., 26, 17–21.
Fisher, R.A. (1958). The Genetical Theory of Natural Selection. New York, Oxford.

Fowler–Finn, K.D. & Rodr�ıguez, R.L. (2012a). Experience–mediated plasticity in

mate preferences: mating assurance in a variable environment. Evolution, 66,

459–468.
Fowler–Finn, K.D. & Rodr�ıguez, R.L. (2012b). The evolution of experience–

mediated plasticity in mate preferences. J. Evol. Biol., 25, 1855–1863.
Funk, W.C., Cannatella, D.C. & Ryan, M.J. (2009). Genetic divergence is more

tightly related to call variation than landscape features in the Amazonian frogs

Physalaemus petersi and P. freibergi. J. Evol. Biol., 22, 1839–1853.
Gerhardt, H.C. & Huber, F. (2002). Acoustic Communication in Insects and Anurans.

Univ. of Chicago Press, Illinois.

Grace, J.L. & Shaw, K.L. (2011). Coevolution of male mating signal and female

preference during early lineage divergence of the Hawaiian cricket, Laupala

cerasina. Evolution, 65, 2184–2196.
Gray, D.A. & Cade, W.H. (1999). Quantitative genetics of sexual selection in the

field cricket, Gryllus integer. Evolution, 53, 848–854.
Gray, D.A. & Cade, W.H. (2000). Sexual selection and speciation in field

crickets. Proc. Natl Acad. Sci. USA, 97, 14449–14454.
Gray, D.A., Huang, H. & Knowles, L.L. (2008). Molecular evidence of a

peripatric origin for two sympatric species of field cricket (Gryllus rubens and

G. texensis) revealed from coalescent simulations and population genetic tests.

Mol. Ecol., 17, 3836–3855.
Greenfield, M.D. (2002). Signalers and Receivers. New York, Oxford.

Hebets, E.A. & Maddison, W.P. (2005). Xenophilic mating preferences among

populations of the jumping spider Habronattus pugilis Griswold. Behav. Ecol., 16,

981–988.
Hebets, E.A. & Papaj, D.R. (2005). Complex signal function: developing a

framework of testable hypotheses. Behav. Ecol. Sociobiol., 57, 197–214.
Hereford, J., Hansen, T.F. & Houle, D. (2004). Comparing strengths of

directional selection: how strong is strong? Evolution, 58, 2133–2143.
Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hoang, A., Hill,

C.E., et al. (2001). Strength and tempo or directional selection in the wild.

Proc. Natl Acad. Sci. USA, 98, 9157–9160.
Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N.,

Hill, C.E., et al. (2001). The strength of phenotypic selection in natural

populations. Am. Nat., 157, 245–261.
Kraaijeveld, K., Kraaijeveld–Smit, F.J.L. & Maan, M.E. (2010). Sexual

selection and speciation: the comparative evidence revisited. Biol. Rev., 86,

367–377.
Kraak, S.B.M., Bakker, T.C.M. & Mundwiler, B. (1999). Sexual selection in

sticklebacks in the field: correlates of reproductive, mating, and paternal

success. Behav. Ecol., 10, 696–706.
Labonne, J. & Hendry, A.P. (2010). Natural and sexual selection giveth and

taketh away reproductive barriers: models of population divergence in

Guppies. Am. Nat., 176, 26–39.
Lackey, A.C.R. & Boughman, J.W. (2013). Divergent sexual selection via male

competition: ecology is key. J. Evol. Biol. (In press).

Maan, M.E. & Seehausen, O. (2011). Ecology, sexual selection and speciation.

Ecol. Lett., 14, 591–602.

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd/CNRS.

Idea and Perspective Role of strength and divergence in mate preferences 973



Masta, S.E. & Maddison, W.P. (2002). Sexual selection driving diversification in

jumping spiders. Proc. Natl Acad. Sci. USA, 99, 4442–4447.
McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson,

L., et al. (2004). Evidence for ecology’s role in speciation. Nature, 429, 294–
298.

Mendelson, T.C. & Shaw, K.L. (2005). Rapid speciation in an arthropod. Nature,

433, 375–376.
Moran, M.D. (2003). Arguments for rejecting the sequential Bonferroni in

ecological studies. Oikos, 100, 403–405.
Nagel, L. & Schluter, D. (1998). Body size, natural selection, and speciation in

sticklebacks. Evolution, 52, 209–218.
Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical

power and publication bias. Behav. Ecol., 15, 1044–1045.
Nakagawa, S. & Cuthill, I.C. (2007). Effect size, confidence interval and

statistical significance: a practical guide for biologists. Biol. Rev., 82, 591–605.
Nosil, P. (2012). Ecological Speciation. Oxford Univ Press, Oxford.

Panhuis, T.M., Butlin, R., Zuk, M. & Tregenza, T. (2001). Sexual selection and

speciation. Trends Ecol. Evol., 16, 364–371.
Prum, R.O. (2010). The Lande–Kirkpatrick mechanism is the null model of

evolution by intersexual selection: implications for meaning, honesty, and

design in intersexual signals. Evolution, 64, 3085–3100.
Prum, R.O. (2012). Aesthetic evolution by mate choice: Darwin’s really dangerous

idea. Phil. Trans. R. Soc. B, 367, 2253–2265.
Rice, W.R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225.
Ritchie, M.G. (1996). The shape of female mating preferences. Proc. Natl Acad.

Sci. USA, 93, 14628–14631.
Ritchie, M.G. (2007). Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst.,

38, 79–102.
Ritchie, M.G., Hamill, R.M., Graves, J.A., Magurran, A.E., Webb, S.A. &

Mac�ıas Garc�ıa, C. (2007). Sex and differentiation: population genetic

divergence and sexual dimorphism in Mexican goodeid fish. J. Evol. Biol., 20,

2048–2055.
Rodr�ıguez, R.L., Ramaswamy, K. & Cocroft, R.B. (2006). Evidence that female

preferences have shaped male signal evolution in a clade of specialized plant–
feeding insects. Proc. R. Soc. B., 273, 2585–2593.

Rodr�ıguez, R.L., Hallet, A.C., Kilmer, J.T. & Fowler–Finn, K.D. (2013a). Curves

as traits: genetic and environmental variation in mate preference functions.

J. Evol. Biol., 26, 434–442.
Rodr�ıguez, R.L., Rebar, D. & Fowler–Finn, K.D. (2013b). The evolution of and

evolutionary consequences of social plasticity in mate preferences. Anim.

Behav. 85, 1041–1047.
Rosenthal, R. (1991). Meta-analytic Procedures for Social Research. Applied Social

Research Methods Series, Volume 6. Sage Publications, Newbury Park, California.

Rundle, H.D. & Nosil, P. (2005). Ecological speciation. Ecol. Lett., 8, 336–352.
Ryan, M.J. (1998). Sexual selection, receiver biases, and the evolution of sex

differences. Science, 281, 1999–2003.
Safran, R., Flaxman, S., Kopp, M., Irwin, D.E., Briggs, D., Evans, M.R., et al.

(2012). A robust new metric of phenotypic distance to estimate and compare

multiple trait differences among populations. Curr. Zool., 58, 426–439.
Schluter, D. (1988). Estimating the form of natural selection on a quantitative

trait. Evolution, 42, 849–861.
Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol., 16,

372–380.
Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science,

323, 737–741.

Schul, J. & Bush, S.L. (2002). Non–parallel coevolution of sender and receiver in

the acoustic communication system of treefrogs. Proc. R. Soc. Lond. B, 269,

1847–1852.
Seddon, N., Merrill, R.M. & Tobias, J.A. (2008). Sexually selected traits predict

patterns of species richness in a diverse clade of suboscine birds. Am. Nat.,

171, 620–631.
Shaw, K.L. & Herlihy, D.P. (2000). Acoustic preference functions and song

variability in the Hawaiian cricket Laupala cerasina. Proc. R. Soc. Lond. B, 267,

577–584.
Shuster, S.M. & Wade, M.J. (2003). Mating Systems and Strategies. Princeton, New

Jersey.

Siepielski, A.M., DiBattista, J.D., Evans, J.A. & Carlson, S.M. (2011). Differences

in the temporal dynamics of phenotypic selection among fitness components

in the wild. Proc. R. Soc. B, 278, 1572–1580.
Simmons, L.W., Zuk, M. & Rotenberry, J.T. (2001). Geographic variation in

female preference functions and male songs of the field cricket Teleogryllus

oceanicus. Evolution, 55, 1386–1394.
Sota, T. & Tanabe, T. (2010). Multiple speciation events in an arthropod with

divergent evolution in sexual morphology. Proc. R. Soc. B, 277, 689–696.
Stelkens, R.B. & Seehausen, O. (2009). Phenotypic divergence but not genetic

distance predicts assortative mating among species of a cichlid fish radiation.

J. Evol. Biol., 22, 1679–1694.
Sullivan–Beckers, L. & Cocroft, R.B. (2010). The importance of female choice,

male–male competition, and signal transmission as causes of selection on male

mating signals. Evolution, 64, 3158–3171.
Svensson, E.I., Eroukhmanoff, F. & Friberg, M. (2006). Effects of natural and

sexual selection on adaptive population divergence and premating isolation in

a damselfly. Evolution, 60, 1242–1253.
Wagner, W.E. (1998). Measuring female mating preferences. Anim. Behav., 55,

1029–1042.
Wagner, W.E., Murray, A.-E. & Cade, W.H. (1995). Phenotypic variation in the

mating preferences of female field crickets, Gryllus integer. Anim. Behav., 49,

1269–1281.
Wagner, C.E., Harmon, L.J. & Seehausen, O. (2012). Ecological opportunity and

sexual selection together predict adaptive radiation. Nature, 487, 366–369.
West–Eberhard, M.J. (1983). Sexual selection, social competition, and speciation.

Q. Rev. Biol., 58, 155–183.
West–Eberhard, M.J. (2003). Developmental Plasticity and Evolution. Oxford, New

York.

Wilson, A.B., Noack–Kunnmann, K. & Meyer, A. (2000). Incipient speciation in

sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus

ecological diversification. Proc. R. Soc. Lond. B, 267, 2133–2141.

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online

version of this article at Wiley Online Library (www.ecologyletters.com).

Editor, Greg Grether

Manuscript received 26 April 2013

First decision made 22 May 2013

Manuscript accepted 31 May 2013

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd/CNRS.

974 R. L. Rodr�ıguez et al. Idea and Perspective


