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The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation

(SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical

actions for an effective adaptive immune response. However, in addition to the benefits

generated by its physiological roles, AID is an etiological factor for the development of

human and murine leukemias and lymphomas. This review highlights the pathological

role of AID and the consequences of its actions on the development, progression, and

therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for

mature lymphoid malignancies. First, we summarize pertinent aspects of the expression

and function of AID in normal B lymphocytes. Then, we assess putative causes for AID

expression in leukemic cells emphasizing the role of an activated microenvironment.

Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained

by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating

on the frequency of AID signatures in these cancers and correlating previously described

tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how

these changes could affect tumor suppressor and proto-oncogene targets and how they

could be associated with disease progression. Collectively, we hope that these sections

will help to better understand the complex paradox between the physiological role of AID

in adaptive immunity and its potential causative activity in B-cell malignancies.

Keywords: AID, CLL, microenvironment, off-target mutations, SHM

INTRODUCTION

In general, cancers progress by the emergence of subclones with additional, distinct genomic
aberrations not recognized in the initial tumor. These subclones possess advantages in cell survival
and/or growth. It is still debated whether these more aggressive cell variants are present from the
beginning of the neoplasm, develop afterwards, or are induced or selected by therapy. Regardless,
the key concept is that these variants must be generated to lead to disease progression and
therapeutic resistance.

DNA abnormalities can result from several processes, either inherent to the cell type being
considered and/or induced by environmental insults. In this document, we concentrate on the
ability of activation-induced deaminase (AID) to generate such genetic variants, focusing on
the specific leukemic subsets in which AID protein is upregulated. Finally, we approach the
pathological role of AID and the consequences of its actions on the development, progression, and
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therapeutic refractoriness of chronic lymphocytic leukemia
(CLL) as a model disease for mature lymphoid malignancies.

ACTIVATION-INDUCED DEAMINASE IN
NORMAL B LYMPHOCYTES AND ITS
EFFECTS ON NORMAL B-CELL BIOLOGY

AID as a Key Molecule in the Adaptive
Immune Response
The immune system of vertebrates is unique because the antigen-
specific receptor expressed by lymphocytes, which initiates
cascades leading to activation of the adaptive immune system,
is not the product of a single germline inherited gene. Rather,
receptors are generated somatically during cell ontogeny from
genes scattered at a particular locus (1). Specifically, an individual
B lymphocyte acquires the capacity to respond to external
antigens (Ags) but not to self-antigens by a complex and
regulated tolerance mechanism. Humoral immunity depends on
the production of immunoglobulins (Igs) capable of recognizing
the full range of these Ags with high affinity. The generation
of this diversity is linked to three different modifications in
the genes encoding the Igs: (a) genetic recombination, which
takes place on the genes encoding the variable (V), diversity
(D) and junction (J) regions. This recombination gives rise to
the formation of the variable domain of an IG, which will then
be associated with the constant region Cµ to establish the first
repertoire of IgM-type Ig (2). This event occurs in the fetal liver
and in the bone marrow and is independent of the interactions of
the B cell with Ag and/or T lymphocytes.

The following two steps take place when B cells meet Ag
through the B-cell receptor (BCR). After this exposure, B
lymphocytes accumulate in secondary lymphoid organs (SLO)
in which two other genome modifications take place: (b) somatic
hypermutation (SHM) occurs in the variable domains of Ig heavy
chains (VH) and light chains (VL) introducing point mutations
mainly in the complementary determining regions (CDRs) of
VH and VL domains (3), and (c) class switch recombination
(CSR), which is also dependent on the Ag and takes place at
“pre-switch” regions causing the deletion of portions of the
IgH (switch regions) located upstream of each Ig isotype locus,
thereby permitting the assembly of the variable domain (VDJ) to
the constant domain of a heavy chain (CH) located downstream.
Through this process, the Ig effector function exerted by the
CH domain is altered, giving rise to the expression of different
Ig isotypes (IgG, IgA, and IgE) (4). Isotype-switched Igs more
readily leave the circulation and enter solid tissues and eliminate
foreign insults. Both SHM and CSR take place in SLO and are Ag-
and T cell-dependent (5).

AID Structure and Function
AID is coded by the activation-induced cytidine deaminase
(aicda) gene that in humans is located on chromosome 12p13 and
is a member of the APOBEC (apolipoprotein B mRNA-editing
enzyme, catalytic polypeptide) family of deaminases. Because the
two genes, APOBEC-1 and AID, are found at the same portion of
the same chromosome, it is assumed that they came about from a

duplication event (6). AID is a molecule of 198 amino acids with
a relative molecular size of 24 kDa and has a 34% identity with
APOBEC-1 at the amino acid level (7).

The AID gene (Aicda) was discovered by a subtraction
technique using Ig isotype switch-induced and uninduced
derivatives of a murine B-cell line (7). The fact that AID has a
catalytic cytosine deamination domain highly conserved among
all members of the APOBEC family led to the recognition
that the physiological role of AID in B lymphocytes is the
induction of mutations and deletions of segments of DNA
(8–11). AID can deaminate deoxycytidine in a single-stranded
DNA, thus converting it to deoxyuridine (12). This is already
a mutagenic lesion causing a C:G to T:A base change after
replication. Processing of the uracil by base-excision repair (BER)
and mismatch repair (MMR) enzymes leads to the broader
spectrum of point mutations characterizing SHM, and to DNA
double strand breaks, which are necessary intermediates in CSR
[Figure 1 and reviewed in (14, 15)].

Similar to APOBEC-1, AID has cytidine deaminase activity in
vitro that is inhibited by tetrahydro-uridine, a Zinc ion chelator
(7). Despite the fact that, by analogy with APOBEC-1, initially
AID was proposed to deaminate cytidines in specific RNAs,
no evidence showing this action was documented. However,
AID does display a mutational preference for small RNA genes
suggesting a putative role for RNA in its recruitment (16,
17). Rather, the DNA deamination model proposing that AID
promotes antibody diversity by deaminating deoxycytidine (dC)
to deoxyuridine (dU) within Ig genes is currently accepted (18).
AID acts on single strand DNA (ssDNA) by inducing multiple
deaminations per binding event while remaining bound to the
same ssDNA (19, 20). A detailed review of the mechanisms
explaining AID activity and the biochemical, biophysical, and
structural characteristics of AID activity are reviewed in Feng
et al. (15) and Methot and Di Noia (21).

Structure–function relationships of AID have been probed by
different in vitro experiments focused on natural and engineered
mutations in the protein. Interestingly, these data underline
differential roles for the N-terminus of AID, which appears to be
involved in SHMbut not in CSR, whereas the C-terminus appears
to selectively initiate CSR (22–24).

Four splice variants of Aicda have been identified that
remove portions of the C and N termini. Detailed analyses
of the expression of these variants have indicated that
human centroblasts, the cells that are actively producing
AID and undergoing SHM, express only full-length Aicda
messenger, whereas centrocytes, which are re-expressing
membrane Ig and undergoing antigen selection to identify
and preserve high-affinity antigen binders, produce full-length
and spliced forms of the mRNA (25). Since AID functions
as a dimer, these findings suggest a potential inhibitory
and amplificatory role for the splice variants, since they
could heterodimerize with the full-length form and alter its
functional capacities.

Finally, an experiment of nature highlights the importance
of AID in CSR and SHM. Hyper-IgM syndrome, type 2, is an
autosomal recessive disease caused by mutations in aicda (11).
People with this syndrome have elevated levels of serum IgM and
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FIGURE 1 | Differential processing of AID lesions. (i) AID deaminates cytosine residues on single-stranded DNA that is exposed during transcription, converting C

(cytosine) into U (uracil). (ii) The U-G (guanine) mismatch can be processed through different pathways. Either by replication that will result in a C>T transition or by

(Continued)
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FIGURE 1 | uracil DNA glycosylase (UNG) followed by base excision repair (BER) resulting in C>T/G/A substitutions or homologous repair. This will often result in a

mutational profile known as canonical AID signature (c-AID). (iii) On the other hand, mismatch-repair proteins (MMR) can also recognize and process AID-induced

lesions. Exonucleases resect the abasic sites, which are followed by error-prone polymerase repair. This processing often results in a mutational profile similar to the

non-canonical AID signature. Lower panels (A,B) depict mutational profiles using the conventional 96 mutation type classification. This classification is based on the

six substitution subtypes: C>A, C>G, C>T, T>A, T>C, and T>G (all substitutions are referred to by the pyrimidine of the mutated Watson–Crick base pair). Each of

the substitutions is examined by incorporating information on the bases immediately 5′ and 3′ to each mutated base generating 96 possible mutation types (6 types of

substitution × 4 types of 5′ base × 4 types of 3′ base). Mutational signatures are displayed and reported based on the observed trinucleotide frequency of the human

genome, i.e., representing the relative proportions of mutations generated by each signature based on the actual trinucleotide frequencies of the reference human

genome version GRCh37. (A) SBS84 is found in clustered mutations in the immunoglobulin gene and other regions in lymphoid cancers. (B) SBS9 may be due in part

to mutations induced during replication by polymerase eta. Mutation frequencies were retrieved from the Comic Catalog v3.1 (cancer.sanger.ac.uk) (13).

markedly diminished levels of switched Ig isotypes, consistent
with a defect in CSR. Additionally, their Ig molecules do not
develop V region mutations, indicating the inability to carry out
SHM. Inactivating aicda in the murine B cell line used to identify
AID leads to similar functional defects (8).

Molecular Actions and Targeting of AID
AID is a highly efficient DNAmutator, based on themuch greater
frequency that it alters Ig loci (∼10−4-10−3/base pair/generation)
compared to mutations occurring spontaneously in the genome
(∼10−9) (26). Because of its potency, AID’s actions need to be
tightly regulated. This is accomplished at the transcriptional,
post-transcriptional, and post-translational (27–35) levels as well
as by its location, which is predominantly cytoplasmic (36, 37).

Additionally, its actions are normally rigorously restricted
to Ig loci of B lymphocytes. This is done in a lineage specific
and a stage-specific (activated B cell) manner. Restriction to
B lymphocytes is controlled primarily by lymphoid-specific
transcription factors (38–42). Once directed to the Ig loci of B
cells, AID directs its action to the variable (V) and switch (S)
regions. At the V region, mutations start shortly downstream of
the promoter and proceed for∼2 kB (43). At S regions, mutations
are found downstream of the intronic promoter and extend ∼4–
6Kb beyond (44). Of note, AID-mediated mutations are rarely
found in the C region (45, 46).

AID activity is characterized by cytidine deamination, and
repair of U:G lesions may result in mutations within defined
trinucleotide signatures. Direct replication over the AID-induced
lesions or removal of the uracil by UNG (uracil DNA glycosylase)
followed by replication accounts for the mutations of the
canonical AID signature (c-AID) (C to T/G mutation at RCY
motifs, R = purine, Y = pyrimidine) (47). Processing of the
AID-induced lesions by the error-prone DNA polymerase η may
result in A>C transversions at WA motifs (W: A or T, A), earlier
described as the non-canonical AID signature (nc-AID) (48)
(Figure 1). The signature generated by polymerase η repair could
reflect either an initial AID-induced lesion or the consequence
of other mutagenic events, and therefore the nc-AID signature
may be less informative of AID activity than the RCY motif
(47, 49, 50). COSMIC analyses on tumor samples in general also
demonstrate that this signature is less representative than the
classical c-AID signature (Figure 1). A third pattern, recently
described in association with AID-mediated CpG-methylation
dependent mutagenesis, is characterized by C>T transitions at
RCG motifs (49, 51).

AID preferentially targets cytidines (C) at WRC (W = A/T,
R = A/G) hotspots (52–54), known targets of SHM (55–60).
The resulting mutations are the consequences of the enzyme’s
direct action as well as from the repair mechanisms (BER
or MMR) that follow to correct or not the change. These
mutations are primarily transitions rather than transversions
(∼2:1) (Figure 1). Additionally, the overlapping AID hotspot,
WGCW, has a markedly enhanced propensity to be deaminated
(61). If overlapping hotspots in CDRs are not altered, there is a
significant decrease in the mutation frequency throughout the V
region (61, 62).

SHM is focused to DNA sequences that are being transcribed
(63–65), occurring most effectively at pause sites (66). Consistent
with AID acting on ssDNA is the finding that highly transcribed,
non-Ig genes can be mutated (Bcl-6, Bcl7, Myc, Pax-5, Pim-1,
Rhoh, S1pr2, Socs1, CD95, and mir142) (26, 67). This occurs in
normal B cells (68–79) as well as in B-cell lymphomas (80–82).

Thus, in some instances, restricting AID’s mutational and
deletional functions to the Ig loci is comprised, resulting in DNA
alterations at other sites in the genome. This aberrant action
has been found in cancers not only of the B-lymphocyte lineage
(83, 84) but also in other lymphoid (85) and non-lymphoid types
(86, 87). Moreover, we (88) have reported data consistent with
this occurring in CLL, which will be discussed in detail below.

Normal B Lymphocytes Expressing AID
AID is expressed in activated B lymphocytes, specifically in
cells undergoing germinal center activation (centroblasts) (7, 89).
Based on finding the gene upregulated upon immunization and
finding it in B lymphocytes localized in germinal centers, AID
was shown to be crucial in murine and human germinal center B
cells, although it can be found in extrafollicular B cells (38). AID
can be upregulated in mature B lymphocytes in T-cell-dependent
and T-cell-independent manners. The former is carried out by
CD40–CD40L interactions in the presence of IL-4 (90). T-cell-
independent stimulation can be achieved with TLR7 + IL-4 (91)
and by dual engagement of TLRs and the BCR (92–94). Both
stimuli upregulate AID and lead to CSR and/or SHM. Moreover,
a combination of T-dependent and T-independent stimuli do
the same. Notably, in this setting, the combination can reduce
the level of signal needed to accomplish AID expression and
action (95).

However, the effects of BCR engagement on the production
of AID by mature murine B cells stimulated in vitro appear to be
time dependent. For example, B cells stimulated T-independently
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by LPS + IL-4 upregulate AID levels dramatically by 48 h.
However, engaging the BCR at that point reduces AID levels to
essentially baseline within ∼ 4 h (96). This fall is due to a block
in transcription. The rapidity and efficiency of BCR engagement
in downregulating AID is probably aided by the very short half-
life of the enzyme. This fall in production is consistent with
a negative feedback loop initiated in an activated cell that has
achieved enhanced affinity for the stimulating antigen through
V region mutations induced by AID.

Finally, although in general AID is found in activated mature
B lymphocytes, several reports suggest that it can be found in
less mature, developing (immature/transitional 1) B cells (93, 97–
100). These young cells can undergo CSR to produce non-
IgM antibodies (93, 101, 102) and SHM to generate higher-
affinity antibodies (97). Expression of AID in these cells can be
constitutive (93, 97–99) or induced by CD40 (103, 104) and TLR
(93, 94) signaling.

THE ROLE OF AID IN CANCER

AID-generated uracils are recognized by the uracil-DNA
glycosylase (UNG) or the MMR heterodimer MSH2/MSH6
(105). The processing of these uracils produces double-strand
breaks, which are the substrates of the end-joining mechanisms
that complete CSR by joining two separate S regions (106).
Although AID was originally believed to specifically target
Ig gene V and S regions, it has become evident that AID
also deaminates other genes, which, unless faithfully repaired,
can be oncogenic (107). UNG and MSH2/MSH6 modulate
the mutagenic capacity of AID either by initiating error-
free BER and MMR, respectively, or by triggering mutagenic
repair (26).

The first evidence about the oncogenic role of AID was
supported by mice models in which constitutive Aicda gene
expression was forced (108). AID-transgenic mice show tumors
developed in various cells, in which mutations accumulate in
non-Ig genes, including proto-oncogenes (108, 109). However,
the number of gene AID that actually targets is not clear (18).
Using AID chromatin immunoprecipitation (ChIP), Yamane
et al. (67) showed that AID binds to thousands of genes in
activated B cells but mutates only a fraction, although these data
have been contested (110). So, although the number of non-Ig
genes targeted by AID remains elusive, it is clear that AID can
initiate chromosomal translocations or point mutations, some of
which can be oncogenic (74, 111).

In a normal setting, DSBs are promptly repaired; for instance,
homologous recombination prevents widespread DNA breaks by
AID (112). Still, since the main factor influencing the rate of
translocations is the formation of DSBs, continual localized DNA
damage by AID probably favors recurrent translocations (74). A
prime example is the IgH/c-Myc translocation typical of mouse
plasmacytoma models and a hallmark of Burkitt’s lymphoma
in humans (72, 113). C-myc transgenic animals develop pre-B
lymphomas or B lymphomas without SHM, whereas ubiquitous
AID transgenic overexpression is sufficient to cause T cell
lymphomas, lung adenomas, and adenocarcinomas (108).

Endogenous levels of AID are sufficient to predispose B
cells for transformation. This has been demonstrated in IL-6
transgenic or pristane-induced plasmacytomas, in which AID is
crucial for the creation of the IgH/c-Myc translocation (114, 115).
Additionally, similar experiments indicate the importance of AID
for diffuse large-cell lymphoma (DLBCL)-like malignancies in
the Iµ-BCL6 transgenic mouse model (31). Interestingly, AID
deficiency reduces the incidence of B lymphomas, but not pre-
B lymphomas, whereas this deficiency also prevents GC- and
post-GC-derived lymphomas, but not marginal zone lymphoma
development, in Iµ Bcl6 transgenic mice (109). These results
indicate that AID is mainly involved in tumorigenesis in mature,
activated B cells (18).

AID is expressed physiologically in GC B cells (8) and
accordingly in GC-derived human B-cell lymphomas, such
as diffuse large B-cell lymphoma (DLBCL), follicular B-cell
lymphoma (FL), and Burkitt lymphoma (BL), which express
AID constitutively (116–119). While aberrant SHM in normal
and lymphoma B cells affects many proto-oncogenes and tumor
suppressors (Myc, Ig alpha, Pax-5, Bcl-6, Rhoh, and Pim-1)
(80, 120–122), presently no direct evidence has been published
relating an AID DNA mutation signature with these off-
target mutations.

AID is consistently expressed not only in neoplastic cells
in Hodgkin’s lymphoma but also in many other human
hematological malignancies including CLL (123–125), B-cell
acute lymphoblastic leukemia (126), mantle-cell lymphoma
(127), and in some cases of MALT lymphoma, which derives
from marginal zone B cells in mucosa-associated lymphoid
tissue, of immunocytoma, which is derived from plasma cells
(117, 119), and of hairy cell leukemia, which derives from
memory cells (128). These studies indicate that AID can be
expressed not only in GC-derived B-cell lymphomas but also in
leukemias and lymphomas originating from B cells at various
stages of differentiation (18). In addition, AID expression can
be found in a number of non-B cell malignancies including
epithelial cancers such as H. pylori-associated gastric cancer
(129), hepatocellular carcinomas (130, 131), and lung carcinomas
(132). AID expression can be especially problematic in chronic
diseases, where even a small but continuous level of AID activity
could lead to selectable genetic mutations over time, giving rise
to more aggressive tumors and treatment resistance.

CHRONIC LYMPHOCYTIC LEUKEMIA: THE
ROLE OF MICROENVIRONMENTAL
SIGNALING ON INTRACLONAL CLL
FRACTIONS

CLL is characterized by progressive accumulation of monoclonal
B-lymphocytes expressing CD5 and CD23 molecules and
characteristic low amounts of surface membrane Ig and CD79b
molecules (133). Interestingly, in this leukemia, the mutational
profile of VH immunoglobulin genes (IgHV) divides patients
into two categories (134, 135) that differ dramatically in
prognosis (136, 137). Patients expressingmutated IgHV (M-CLL)
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develop a more indolent disease, whereas IgHV unmutated (U-
CLL) patients display a more aggressive disease that is often
unresponsive to treatment. Although CLL remains an incurable
disease, very important progress in this area of knowledge has
been recently achieved. The accumulation of mature B-cells,
which have escaped programmed cell death and have undergone
cell cycle arrest in the G0/G1 phase, is characteristic of CLL. In
contrast with these in vivo features, apoptosis occurs after in vitro
culture, suggesting an important role of the microenvironment
on CLL cell survival (138, 139). CLL is the prototype of a
cancer where both genetic and microenvironmental factors
promote the onset, expansion, and progression of the disease
(140, 141). Although classically CLL was considered a disease
of accumulation, new data indicate that CLL expansion is a
dynamic process in which cell proliferation compensates for
the cell loss from death (142, 143) and that accumulation of
the malignant cells reflects a balance between the effects of cell
proliferation and death (144). Moreover, the balance between
cell proliferation and cell loss appears to vary in different
subsets of the disease, which have been defined based on the
cell genotypic and phenotypic features (143, 145). The seminal
hypothesis postulating that phenotypic cell heterogeneity could
exist within the tumor clone of the same CLL patient was first
explored two decades ago. The notion that the leukemic clone
could hold CLL cells either phenotypically activated or kinetically
resting leads to key questions in the CLL biology: (a) Are
there distinct subpopulations within the tumor clone? (b) Does
the microenvironment favor the development of proliferative
CLL subpopulations? (c) Which microenvironmental elements
influence the malignant clone and which molecular pathways
do they utilize? (d) Is the microenvironment affecting the
relationships between proliferation and extended survival?

Evidence for the important role of the BCR in CLL
pathogenesis is given by the fact that the mutational status
observed in BCR sequences divides CLL cases into two subsets
(134, 135), and this is one of the strongest predictors of
disease outcome (136, 137). In addition, BCR signaling has been
postulated to play a role for CLL trafficking and interaction
with the stromal microenvironment (146). Increasing evidence
suggests that CLL cells in lymph nodes (LN) and bone marrow
(BM) interact with stromal cells and thereby receive proliferative
and survival signals. Disease prognosis and evolution is probably
related to the consequence of this interaction. In line with this
hypothesis, CLL cells residing in LN show increased proliferation
when compared to leukemic cells in the bone marrow (BM) and
peripheral blood (PB) (147) and have a gene expression profile
compatible with activated B cells (148).

Pseudofollicular proliferation centers (PCs) are classical
anatomical structures in CLL patients similar to those
observed in inflamed tissues of patients with chronic
autoimmune/inflammatory disorders. These PCs are composed
of a complex mixture of T cells, monocyte-derived cells,
and stromal cells that provide pro-survival signals and form
suitable niches for tumor growth (149, 150). CLL cells in
PCs can have higher levels of the proliferative marker Ki-67
(151). Microenvironmental signals in additional to BCR that
appear to be delivered in tissues important for the crosstalk

between CLL cells and their microenvironments involve CD40
(138), TLR (152), B-cell activating factor receptor (BAFFr),
and transmembrane activator CAML interactor (TACI) (153).
However, the relative, individual pathogenetic influences of
each molecule are unclear, as it is unknown to what extent they
cooperate with the BCR stimulation in different patients.

During recent years, a variety of novel kinase inhibitors
targeting various components of the BCR signaling pathway
have been designed. These mainly inhibit phosphoinositide
3’kinase (PI3K), Bruton’s tyrosine kinase (BTK), and spleen
tyrosine kinase (SYK). Each of these shares a pattern of response
resulting in nodal reduction and increased lymphocytosis, thus
reflecting microenvironmental modulation (154). These new
drugs affecting the signaling activation pathway have generated
significant promise by targeting the proliferative pools existing in
BM and LN and inducing release from and preventing re-entry
to survival niches, thus bringing us closer to curing the disease.

Intraclonal CLL Fractions as a Marker of
Disease Progression
The presence of proliferating and accumulating clonal CLL cells
inside of the tumor clone in the same patient was postulated
by Caligaris-Cappio (155), and this was confirmed in 2005 by
Messmer et al. (143). In the latter, CLL patients drank deuterated
water (2H2O), and

2H incorporation into the DNA of newly
divided CLL cells was measured. Collection and analysis of
these data indicated that the leukemic cells of each patient had
definable and substantial birth rates, varying from 0.1 to 1.0%
of the entire clone per day. These findings were confirmed and
extended by others (156, 157). More importantly, the former
suggested that those patients with higher proliferation rates
experienced a more progressive disease than those with lower
birth rates (143), and this was confirmed in a larger, independent
study (158).

Based on these observations, two key concepts in the CLL
biology were established: (1) CLL is not a static disease but a
disease of proliferating and over-surviving pools, and (2) the
balance between these subsets explains, at least in part, the
heterogeneous clinical outcome of CLL patients (144, 146). These
two concepts are exemplified in Figure 2.

In the ensuing years, efforts have been made to characterize
the proliferative compartment of the leukemic clone considering
that the study of this fraction could lead to new therapeutic
targets in CLL. Initial studies focused on leukemic cells
expressing CD38 (CD38+), a molecule involved in signaling
and activation that also serves as a prognostic marker in the
disease. This identified a close association between the expression
of CD38 expression and of increased Ki-67 and ZAP-70 levels,
suggesting that the CD38+ fraction contains more activated
members and could more frequently enter the cell cycle than the
counterpart CD38− fraction (159). However, and despite these
activation/proliferation differences, both CD38+ and CD38−

fractions have similar telomere lengths, suggesting that CD38
expression is a temporal and dynamic marker of an activated
B-cell status instead of a specific marker of the proliferative
fraction in CLL. As previously mentioned, CD38 expression is
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FIGURE 2 | Progressive and indolent CLL landscapes based on microenvironmental influences. In patients with progressive disease, an activated microenvironment

continuously nourishes leukemic cells by maintaining proliferative fractions that can express AID. Proliferating cells overexpressing AID are susceptible to novel DNA

(Continued)
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FIGURE 2 | lesions (many of them in non-Ig genes), establishing clonal and subclonal entities before and/or after treatment. These can lead to CLL progression

and/or therapy resistance. Some of the leukemic cells dividing in proliferation centers leave the tissues and move into the blood. These circulating cells must return to

lymphoid tissues to receive survival signals. If not, they eventually die. Cycles of these two events overtime lead to increased numbers of circulating AID+ leukemic B

cells, which is a hallmark of progressive CLL. In patients with indolent disease, microenvironmental signaling is similar to that taking place in normal GCs, with CLL

cells becoming physiologically activated and AID expression and non-Ig genes mutations being better controlled.

also a prognostic marker in CLL in which a correlation with
poor prognosis was described for those patients with higher
percentages of CD38+ cells (>/=30% of the leukemic clone)
(136). The fact that CD38 is expressed in a high percentage of
leukemic cells in IgHV-unmutated (U-CLL) patients indicates
that CD38+ leukemic cells constitute a heterogeneous population
including a small fraction of cells with an increased proliferative
potential, ranging from 0.08 to 1.7% (143), suggesting that not all
CD38+ cells are actively proliferating.

Pepper et al. also characterized the CD38+ fraction showing
that CD38+ CLL cells overexpressed vascular endothelial
growth factor and its expression associated with increased
expression of the anti-apoptotic protein MCL-1 (160). Overall,
these data describe an interesting subset of proliferative CLL
cells with overexpression of different molecules that suggest
microenvironment signaling activation but are not enough to
specifically identify the proliferative subset in CLL.

In a similar research line, Palacios et al. described a
different, clonally related CLL subset with ongoing CSR to IgG
(IgM/IgG), mainly found in progressive and U-CLL patients
(161). This subpopulation exhibited increased levels of Ki-67
and Survivin proteins and decreased levels of p27−Kip1, which
underline a clear proliferative behavior for these cells (145).
Other molecular markers associated with tumor proliferation
and microenvironment activation such as high expression levels
of mRNA of c-myc, Bcl-2, CD49d, Ccl3, and Ccl4 were found
in this subset. Interestingly, Palacios et al. also found that
AID, a molecule responsible for SHM and CSR of Ig genes
in B lymphocytes, is expressed mainly in this proliferative
subpopulation of the CLL clone (161). Since AID is a mutagenic
enzyme, its expression is strictly regulated in B cells (162) and
in physiological conditions limited to the centrocyte/centroblast
stages in germinal centers (163). The discovery that CLL cells
with ongoing CSR expressed AID in the PB of progressive CLL
and that percentages of these subset ranged between 0.1 and 5%
leads researchers to speculate that these cells could also represent
a proliferative compartment of the CLL clone (145).

It is difficult to determine the precise role of these highly
proliferating, activated leukemic B cells expressing class switched
Igs distinct from that of the parent clone. Since the presence of
this subset is clearly associated to poor prognosis, it might play
an adjuvant role in the maintenance of the CLL proliferative
pool. However, given their increased proliferative potential, one
would expect that they would eventually outnumber the IgM+

cells, and this is not the case. Thus, we assume that these
cells undergo apoptosis once leaving the PCs. A recent study
suggesting a link between AID expression and B-cell apoptosis
in GC favors this view (164). In these conditions, the IgM+/IgG+

subset could reflect the existence of an active microenvironment

leading to permanent stimulation of the IgM+ pool, which
could turn on the CSR machinery maintaining this subset in the
PB. Despite the fact that a clear association was demonstrated
between the existence of this subset with an unmutated profile
and poor clinical outcome, their roles in CLL evolution remain
to be elucidated.

Subsequently, another proliferative subset that can also
express AID was identified by Calissano et al. (165). They
characterized the proliferative and resting compartments of
CLL using differences in the densities of a surface membrane
molecule upregulated after normal B-cell activation, CD5 (166),
and another involved in maintaining B-cell retention in contact
with stromal elements of solid lymphoid tissues, CXCR4 (165).
Specifically, they postulated that high CD5 density would reflect
cellular activation as in normal human B cells and low CXCR4
levels would identify cells that internalized the receptor because
of an activation event and therebymoved out of a lymphoid tissue
to the periphery (165).

This work proposed a life cycle for individual CLL cells
representing a continuum between the CXCR4dimCD5bright,
CXCR4intCD5int, and CXCR4brightCD5dim fractions. At one
extreme is the proliferative fraction, highly enriched in young,
vital cells that recently left a solid lymphoid tissue where
activation and proliferation occurred. At the other end is the
resting compartment, containing older, less robust cells that may
have been circulating in the periphery longer and are attempting
through high CXCR4 levels to migrate into a solid tissue niche to
avoid death (165).

A similar approach involving the marker CXCR4 was
performed by Huemer et al., using another B cell activation
marker CD86 to identify the proliferative fraction (167). CD86
is upregulated in B lymphocytes undergoing cell division in the
light and dark zones of the germinal centers (168) and, in line
with this idea, they found that expression of the proliferation
associated antigen Ki67 was higher in CD86highCXCR4low CLL
cells than in CD86low CLL cells (167). This proliferative fraction
also expressed AID and overlapped with the CXCR4dimCD5bright

subset previously described (165).
There is clear evidence that a fraction of the CLL clone

is generated each day. These results and those of Herishanu
et al., describing that the LN constitute a privileged site of
tumor proliferation (148), underlining the importance of the
proliferating fractions inside the tumor clone of different CLL
patients. Being aware that AID overexpression is a hallmark
of these subsets and is associated with loss of target specificity
resulting in mutations in non-Ig genes (Bcl-6, Myc, Pax-5, and
Rhoh) (169), it is logical to assume that progressive disease
could be related to clonal evolution of these proliferating
cells. The constitutive expression of AID in the leukemic
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clone history could be a key event in disease progression
(Figure 2).

ACTIVATION-INDUCED DEAMINASE IN
CLL CELLS AND ITS EFFECTS ON
CLL-CELL BIOLOGY

AID Molecular and Structural
Considerations in CLL
There are no reports suggesting that the aicda gene is mutated in
CLL, as is the case in Hyper-IgM Syndrome, type 2. However, the
splice variants mentioned above that have been found in normal
B lymphocytes have also been detected in CLL by our (124,
125) and other (25, 123, 170–172) laboratories. Furthermore,
like normal human B lymphocytes, CLL B cells express only a
single variant form of AID mRNA (25), although this might
change with environmental input. Thus, it appeared that splice
variants lacking the CSR domain were better able to carry out
SHM than full-length protein. This was consistent with the
finding that normal germinal center B lymphocytes express full-
length AID mRNA, whereas the CSR-deficient, SHM-enhanced
spliced variant was present at higher levels in CLL B cells.
Interestingly, AID transcript levels have been associated with
the occurrence of CLL founding events. In a cohort of 149
patients, higher levels of alternatively spliced transcripts of AID
(AID1E4a, AID1E4, AIDivs3, and AID1E3E4) were associated
with trisomy of chromosome 12. Functional analysis of AID
splice variants revealed loss of their activity with respect to SHM,
CSR, and induction of double-strand DNA breaks (25, 172).

Despite these findings, a recent study suggested that AID
splice variant proteins are not functional (172), which might be
expected since AID splice variant patterns are not different at
the time of diagnosis, nor do they appear to have an impact
on progression-free and overall survival (171). Favoring this
hypothesis, the work of Rebhandl et al. proposed that despite the
presence of alternatively spliced AID transcripts, only full-length
AID was detected at the protein level (173). Interestingly, when
analyzed under limiting dilution conditions, it became clear that
AID was expressed in a very minor subpopulation of the CLL
clone (125). As has been previously demonstrated, the expression
of AID in CLL is restricted to the proliferative fractions, which
can be visualized in the peripheral blood of the most progressive
cases (88, 174).

Molecular Actions and Targeting of AID in
CLL
AID efficiently mutates the V and S regions of CLL cells. Since
some CLL cells do not contain any or only a few mutations (U-
CLL) (134, 135) but can express isotype-class switched Igs (175,
176), we correlated AID levels with V and S region mutations in
CLL patients (124). This revealed that U-CLL cells express AID,
and this expression associates with mutations in the S region.
The cells of these patients also contained clonally related, isotype-
switched transcripts (124), as previously reported (176–178).

Next, we focused on mutations occurring in the IgHV gene
to determine those that could be attributed to the action of

AID (158). Moreover, replacement (R) mutations segregated
to complementarity-determining region 1 (CDR1) and CDR2
and silent mutations concentrated more in framework regions,
FR (CDR R:S = 4.60 vs. FR R:S = 1.72). These results were
consistent with the IgHV mutations resulting from an AID-
mediated process and being selected for altered but structurally
sound BCRs. Similar findings were reported by others (179), who
also investigated expression of DNA polymerases zeta and eta
that can be involved in repair of DNA altered by AID.

Because overlapping AID hotspots are critical sites for V
region diversification (61) and key evolutionary components
of human IgHV genes (62), Yuan et al. analyzed those IgHVs
most used in CLL patients and in the clinically relevant U-CLL
and M-CLL subgroups for such hotspots (180). This revealed a
highly significant, but surprisingly inverse relationship between
the number of WGCW hotspots in the germline IgHV and the
observed mutation frequency in patients. This correlation was
not observed in sequences from the B-cell repertoires of normal
individuals and from those patients with autoimmune diseases.
The relevance of these observations to the development of CLL
and to patient outcome is not clear at this point.

Relationship of AID Expression to CLL Cell
Activation
There is consensus that AID activity is upregulated in activated B
lymphocytes in G1 or the G1-S phase transition and is maximally
expressed in the highly proliferative centroblasts in the germinal
center. Thus, proliferating leukemic cells resemble this situation
and upregulate ormaintain AID expression (50).When analyzing
PCs in lymph nodes for the presence of AID protein, we found
that only Ki-67+ leukemic B cells contained the enzyme (88).
Moreover, when examining CLL cells in the blood, we (124)
and others (123, 170) found that AID is present in subsets of
CLL clones, in particular those of the U-CLL type. However,
expression was restricted to a minor subfraction of the clone,
∼0.1% (125, 161).

Based on the latter observation and the requirement for
cell cycle entry to upregulate AID, we tested if the AID+

fraction in CLL clones correlated with those few CLL cells
in the blood that contain 2H-DNA after ingestion of 2H2O
(165, 181). Cells containing 2H-DNA have recently completed
the cell cycle and duplicated their DNA (182). In CLL, this
fraction is small, ranging from 0.1 to ∼4.0% of the CLL clone
on a daily basis (156, 157, 165, 181). Indeed, we found that
recently divided cells (“proliferative fraction”), identified by a
CXCR4DimCD5Bright (165) or CLL cells undergoing CSR to
IgG (IgM+/IgG+ phenotype) (161), were the only circulating
leukemic cells that expressed AID (88, 145, 161). Cells that had
divided earlier did not. Thus, those few cells in the blood of CLL
patients that express AID are recent emigrants from tissue niches
where cell division occurred and where AID was upregulated.
Therefore, although circulating CLL B cells are unlike normal
B lymphocytes from healthy people in that they express AID,
this expression is a function of upregulation as a consequence of
proliferation in tissue niches and not an aberrant function of a
neoplastic cell (Figure 2).
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Moreover, AID expression is dynamic, with its levels and the
cells making it changing over time in individual patients (88,
125). This recognition led us to follow the clinical course of>100
patients over several years (88). The presence of circulating AID+

cells presaged significantly shorter time to first treatment and to
decreased overall survival. This was the case, not only for U-CLL
patients who had higher levels of AID, but also for the fraction
of M-CLL patients with increased AID amounts. Moreover,
U-CLL patients with high AID levels had a shorter overall
survival than U-CLL patients with lower levels. Finally, AID
levels correlated with cytogenetic abnormalities that associate
with poor clinical outcome, and together, these foretold shorter
time to treatment (88). The latter findings are reminiscent of
other studies associating AID and AID+ cells with genomic
abnormalities and clinical poor outcome (167, 170, 183–185).

Ibrutinib, Which Blocks CLL Cell Replication, Inhibits

AID Expression
Ibrutinib has emerged as a potent treatment for CLL (186).
Although the drug alone does not appear to be curative, it clearly
delays disease progression andmarkedly improves patient quality
of life (186). Because ibrutinib has been shown to rapidly inhibit
CLL B cell proliferation in vitro (187, 188) and in vivo in mouse
(188) and man (189), we tested if it would affect the size of the
recently divided, proliferative fraction and thereby block AID
expression (190).

In this way, we found that CLL proliferative fractions,
defined as cells bearing a surface membrane phenotype
of CXCR4DimCD5Bright (165) or IgM+IgG+ (161), were
significantly decreased by ibrutinib. We recently demonstrated
that ibrutinib downregulated AID in treated CLL patients and
that, interestingly, this downregulation correlated with reduced
AKT pathway and Janus Kinase 1 signaling (190). These findings
also had important clinical implications since they showed that
ibrutinib did not lead to increased levels of AID and thus would
likely not result in genomic instability, as had been reported in a
preclinical study (191).

Additionally, we studied the effects of ibrutinib on CLL cell
growth directly in patients, using the 2H2O ingestion technique
to label leukemic cells dividing in vivo (189). Treatment-naive
patients with progressive disease, who were deemed to require
treatment within 6 months, drank 2H2O before starting therapy,
allowing the direct determination of birth rates of their leukemic
clones and calculation of death rates based on blood counts.

Upon starting ibrutinib, birth rates decreased to negligible
levels and death rates increased. This was direct documentation
in patients that ibrutinib blocks CLL cell proliferation and that
it promotes CLL cell death by inhibiting trafficking to tissue
survival niches (189). Although AID levels were not measured
in these samples, based on our data above and the knowledge
that AID requires cell proliferation to be expressed, it is highly
likely that AID’s synthesis and its on- and off-target actions
were aborted.

Collectively, therefore, these findings indicate several key
features of AID expression in CLL. First, like normal B
lymphocytes, AID is regulated by the stage of cell activation of
the leukemic B cell, and those CLL cells in the blood expressing

AID have recently divided and emigrated from lymphoid tissues,
most likely lymph nodes based on the documented higher rate of
cell division at that site (147). Second, the fraction of activated,
AID+ cells is small and changes over time. Finally, the presence
and levels of AID+ intraclonal members correlate directly with
worse clinical course and survival.

Thus, the small AID+ fraction, which is contained almost
exclusively in the recently divided proliferative fraction of a CLL
clone and that just replicated its DNA, has the highest likelihood
of having just developed a new genetic lesion that could lead to
disease progression. Hence, this fraction is especially dangerous.
This supposition is supported by our finding that the daily rate
of CLL-cell division, which correlates with the extent of AID
expression, correlates with poor prognostic markers (unmutated
IgHV, levels of ZAP70 and CD38) (143, 192) and predicts time-
to-first treatment (192). This helps explain the underpinnings
that allow ibrutinib and other small molecules that inhibit the
activation of CLL cells to extend and improve the quality of life of
CLL patients (193). Another promising possibility to accomplish
this is the use a bispecific antibody that in preclinical studies
preferentially targets this small intraclonal fraction (194).

Other interesting drugs targeting PF cells expressing AID are
the inhibitors of HSP90. Chaperon HSP90 regulates numerous
signaling proteins and pathways helping the cancer survive
environmental stresses (195). Results reported by Ortehwein
et al. propose AID as a novel HSP90 client, and consequently,
treatment with HSP90 inhibitors could inhibit AID nuclear
import or induce AID degradation (196). Preliminary results in
collaboration with Di-Noia lab allowed us to provide proof-of-
concept that HSP90 inhibitors target human AID in primary CLL
cells (197). Other studies have also proposed the use of HSP90
inhibitors as candidate drugs in CLL to achieve a multi-targeting
effect by inhibition of AKT and different kinases signaling (198).
Currently, clinical trials using Hsp90 inhibitors in CLL are under
development. For example, SNX-5422 (a highly selective, small
molecule inhibitor of the HSP90) in combination with Ibrutinib
is being tested in a phase I clinical trial in CLL patients with
residual disease (NCT02973399, by Esanex Inc.).

Thus, targeting the proliferative fraction appears to have
therapeutic value in CLL, but more time is required to
corroborate the success of this idea.

Microenvironmental Signals That Induce AID

Expression in CLL B Cells in vitro
Like normal B lymphocytes, CLL cells upregulate AID
in response to T-cell-dependent and T-cell-independent
stimulation. Specifically, culturing CLL B cells with activated
T lymphocytes (199); C3d-coated Ag, IL-4, and BAFF (200);
CD40L + IL-4 (88, 124, 201); and TLR9 agonist + IL-15 (202)
can lead to AID expression. Consistent with TLR signaling being
relevant to this disease are gene expression analyses indicating
that CLL cells in LNs express a profile consistent with TLR
activation (203).

Specifically, we have provided T-cell-dependent stimulation
in the form of intact activated T cells or T-cell-derived signals
(CD40L + IL-4) to stimulate upregulation of AID and induce
CSR (124) and SHM (88, 199) in vitro. In this way, we found that
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cultured CLL samples expressed AIDmRNA and that production
of AID protein varied considerably on a patient basis with the
percentages of AID+ cells ranging from ∼1 to ∼80% (88). As
expected, production of AID followed the extent of cell divisions
undergone by a given sample. Furthermore, the cells in these
cultures exhibited features consistent with the protein being
biologically active, in that phospho-histone H2A.X (pH2A.X)
that binds to dsDNA breaks, mRNA transcripts for IgG along
with surface membrane IgG, and new DNA mutations in IgHV-
D-J DNA sequences were found. Strikingly, there was no major
difference between U-CLL and M-CLL cases for these findings.
Finally, we investigated the association of AID expression with
time to first treatment over an 8 year period. This revealed that
patients with AID+ cells in the blood had significantly shorter
time to treatment and overall survival (88).

Consistent with this, when primary CLL cells were transferred
into lymphoid mice, a technique that leads to leukemic B-cell
engraftment and growth (204), a relatively large fraction of
transferred leukemic B cells synthesized AID and underwent
CSR and SHM (205). Thus, the production of AID in response
to T-cell co-stimulation can occur in vivo as well. Notably, the
ability to express AID and undergo CSR and SHM in vitro
and in vivo is as efficient for U-CLL clones as M-CLL clones
(88, 205). This suggests strongly that the absence of IgHV-D-J
mutations in U-CLL patients is not inherent but influenced by
the microenvironment (205).

After Leukemic Transformation, AID Continues to Act

on Ig Variable and Switch Regions in Individual

Members of CLL Clones
Early studies analyzing molecular clones by Sanger sequencing
suggested that CSR (201) and SHM (199, 206) occurred after
leukemic transformation in individual, clonally related members
of the leukemic CLL cell. This finding has been confirmed using
next-generation, deep DNA sequencing (207).

Collectively, these data indicate that the AID mutational
process continues after leukemic transformation within
individual members of CLL clones, including those in which
the clinically defined clone is classified as U-CLL. Thus, it is
reasonable to expect that non-Ig genes could also be affected
by this ongoing mutational process. The contributions of
AID-mediated and non-AID-mediated mutations to genomic
instability and disease progression are discussed in detail below.

THE CLL GENOME

The CLL genome is characterized by the presence of structural
alterations and a wide range of mutations that depicts a
heterogeneous genomic landscape. IgHVmutation status and the
presence of chromosome abnormalities are among the strongest
predictors of clinical outcome (208). Approximately 80% of
CLL patients carry at least one of four common chromosomal
alterations, and the average CLL mutation rate ranges between
0.4 and 2.1 alterations per Megabase (48, 209). Overall, a typical
CLL genome carries ∼2,500 molecular lesions. M-CLL patients
carry a higher mutational load (3,000 mutations/Mb) than U-
CLL patients (2,000 mutations/Mb) (210).

Structural Lesions
The most recurrent alterations in CLL are chromosome
abnormalities, and the most frequent lesions are deletions of
chromosome 13q (55% of cases), 17p (7%), 11q (6% to 18%), and
trisomy 12 (12 to 16%) (211).

Structural rearrangements and SNV occur at similar
frequencies when compared with other indolent B-cell
lymphomas such as follicular lymphoma (212); however,
their frequency is substantially lower than in most solid
tumors. Initial studies of somatic copy number variations
using karyotyping, fluorescence in situ hybridization, or single-
nucleotide polymorphism arrays are extensively reviewed
elsewhere (213).

In the clinical setting, these prevalent chromosomal
aberrations are used in the widely accepted cytogenetic
classification proposed by Dohner et al. (211). A hierarchical
model based on five risk categories was established by correlating
FISH lesions with clinical outcome. CLL cases with the 17p13
deletion (prevalence 7%) had the worst prognosis, independent
of the presence of concomitant abnormalities, with a median
survival of 32 months. Cases carrying the 11q22-q23 deletion
(prevalence 18%) had a median survival of 79 months. Longer
survival rates were associated with trisomy 12 (prevalence 16%,
median survival 114 months), normal karyotype (prevalence
18%, median survival 111 months), and 13q14 monoallelic
deletion (prevalence 55%, median survival 133 months) (211).

Cytogenetic lesions, however, do not entirely explain the
genetic basis of the heterogeneous clinical outcome of CLL.
The wide availability of next-generation genome sequencing has
enabled the identification of new recurrent structural and single-
nucleotide lesions. New recurrent genomic aberrations include
trisomy 19, amplifications at 2p and 8q, and deletions at 8p, 6q21,
18p, and 20p (209, 214). A recent study supports the existence
of multiple recurrent focal copy number alterations and of copy
number neutral losses of heterozygosity affecting key oncogenic
pathways, associated with higher proliferative capacity, shorter
survival, and altered gene expression. Therefore, focal structural
changes may also play a relevant role in CLL pathogenesis
(215). Genome sequencing has also enabled the definition of
the molecular correlates of CLL chromosomal aberrations (216,
217), in particular Tp53, the tumor suppressor gene affected
by 17p13 deletion, and Atm, the gene targeted by 11q22-q23
deletion (218).

Recurrent Oncogenic Mutations
Although recurrent chromosomal abnormalities can be found in
most CLL patients, only very few single-nucleotide variants show
a recurrence higher than 5% across patients. Additionally, a large
number of biologically and clinically uncharacterized genes are
mutated at a lower frequency.

Similar to the inherent clinical heterogeneity, the genetic
landscape of CLL is markedly complex with a rapidly growing list
of genes mutated at a low frequency. Most gene mutations still
require rigorous validation in large, prospective patient studies,
and only a few genes have been implied to have diagnostic and
prognostic impact.

Frontiers in Oncology | www.frontiersin.org 11 May 2021 | Volume 11 | Article 634383

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Oppezzo et al. AID Expression in CLL

TABLE 1 | Recurrently Mutated Genes in Different Clinical Settings.

Early (Binet A) (222) (%) Advanced (Binet B/C) (222)

(%)

Mutated (223) (%) Unmutated (223) (%) Refractory Relapsed (224) (%)

NOTCH1 6 13 7.0 20.4 14.9

SF3B1 6 18 28.1

TP53 8 17 22.8

BIRC3 1.9 4.5

MYD88 2 2.5 5.6 0.8 2.6

XPO1 0 4.6 14.9

KLHL6 4.5 0

ATM 26.3

Within this heterogeneous landscape, there is a set of shared
genetic lesions among B-cell malignancies, affecting similar
mechanisms and processes such as DNA repair and antigen
receptor signaling indicating certain degrees of shared pathways
involved in lymphomagenesis (219, 220).

The most frequent recurrent mutations in CLL affect
Notch1, Sf3b1, and Birc3 and have been reported to occur in
approximately 2–10% of patients within a general practice setting
(221). The frequency of mutations of candidate driver genes, with
the exception ofMyd88 and Igll5, has been consistently associated
with progressive, high-risk disease or U-CLL (Table 1) (225, 226).

The Role of AID in CLL Mutagenesis
SHM represents an endogenous mutator mechanism in B
lymphocytes initiated by AID, and its mutagenesis has been
associated with lymphomagenesis in B-cell neoplasms (195,
220). The availability of next-generation sequencing and
the development of modern machine learning algorithms
to deconvolute underlying mutagenic processes has enabled
identification of putative mechanisms driving genetic lesions in
cancer cells (227). In CLL, the main mechanisms consistently
identified in patients are aging, enzymatic deamination, and
defects in DNA repair (48, 227–229). Whereas, aging-induced
deamination may account for up to three quarters of the
single-variant substitutions, the remaining lesions can be
linked to endogenous deamination and defects in DNA
repair (48).

One intriguing issue regarding AID activity in
lymphomagenesis is the apparent decoupling between AID
expression and SHM, not only in CLL (124) but also in other
B-cell malignancies such as follicular lymphoma (230, 231). In
line with these results, the ongoing AID activity is enriched in
higher risk U-CLL cases (228), and the contribution of subclonal
aberrations to CLL pathogenesis is being increasingly recognized
(232). The analysis of clonal and subclonal mutations has
allowed the reconstruction of tumor phylogeny (233). Clonal
lesions, which encompass mostly structural changes, generally
correspond to earlier driving events, while subclonal lesions in
driver genes (e.g., Notch1 and Sf3b1) are acquired later over the
course of the disease (222, 234, 235) (Table 1).

Considering all this evidence, it can be hypothesized that
AID first plays a broader role at early stages of leukemogenesis
contributing to the induction of founding events and later

preferentially acts in proliferating fractions contributing to
mutagenesis, facilitating the emergence of new clones involved
in tumor progression.

An interesting study by Kasar et al. showed that in a cohort of
30 indolent CLL cases, c-AID and nc-AID signatures accounted
for 25% (5 and 20% respectively) of somatic mutations (210,
236). Our preliminary data analyzing an unbiased CLL cohort
(237) also shows a proportion of c-AID signature distribution
similar to those described by Kasar and Brown (236). However,
when follicular lymphoma (FL) cells (a germinal center B-cell
malignancy with constitutive AID expression) are analyzed, our
results revealed a c-AID contribution up to 9% (237).

Given that from a biological point of view CLL can be
separated into two broad subsets according to the IgHV
mutation status (208), we speculate that c-AIDl and nc-AID
signature contribution could be different between both entities.
U-CLL and progressive patients might have a more important
ongoing c-AID signature similar to those presented in FL cells,
whereas indolent and mutated CLL cases might exhibit a lower
ongoing c-AID signature. At present, the real rate of the c-
AID contribution in those progressive CLL patients in which
a functional AID was established (25, 124) or in the CLL
proliferative fractions that express AID in these patients (88, 161)
remains unknown. Indeed, how this ongoing c-AID activity
influences the mutational status of the CLL genome and, in
consequence, in the long term, the disease outcome remains an
important and unanswered question.

To move deep into this hypothesis, we recently developed
an in vivo model by inducing constitutive AID expression in
Eµ-TCL1 mice (named DT-AID). In this CLL-like model, we
observed that DT-AID mice showed altered disease kinetics and
higher percentages of CLL-cell proliferation, and these resulted
in a more rapid progression of the disease compared with their
TCL1 counterparts. Interestingly, a comparison of c-AID and
nc-AID contributions between DT-AID and TCL1 revealed an
increased ongoing c-AID signature in many non-Ig, cancer-
related genes also described in human neoplasms (238).

In summary, cumulative evidence demonstrates that AID is
involved in leukemogenesis and tumor progression.We speculate
that AID is involved in mutagenesis of CLL clones at very
early stages, thereby participating in founding events leaving a
genomic footprint readily sizable by somatic signature analysis.
At later stages or after cytotoxic treatment, AID could further
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act at the subclonal level, facilitating the emergence of additional,
mutated malignant cells involved in progression.
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