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Simple Summary: Currently, breast contrast-enhanced MRI is the most sensitive imaging technique
for breast cancer detection; however, its specificity is low given the common characteristics shared
by benign breast lesions and some cancers. This leads to a high number of false-positive cases and,
therefore, unnecessary biopsies. Multiparametric MRI including diffusion-weighted imaging assists
in this task by increasing the specificity for breast lesion discrimination. Nevertheless, interpretation
of breast MRI is still highly dependent on the reader’s level of experience. Our work combines
radiomic features extracted from multiparametric MRI to generate predictive models for breast
cancer differentiation. Additionally, decision support models were compared with the performance
of two breast dedicated radiologists for lesion differentiation. Our work proves the potential of
multiparametric radiomics coupled with machine learning to be implemented in clinical practice
for lesion differentiation on breast MRI. AI algorithms show value to assist less experienced readers,
improving the accuracy for breast lesion discrimination.

Abstract: This multicenter retrospective study compared the performance of radiomics analysis
coupled with machine learning (ML) with that of radiologists for the classification of breast tumors. A
total of 93 consecutive women (mean age: 49 ± 12 years) with 104 histopathologically verified enhanc-
ing lesions (mean size: 22.8 ± 15.1 mm), classified as suspicious on multiparametric breast MRIs were
included. Two experienced breast radiologists assessed all of the lesions, assigning a Breast Imaging
Reporting and Database System (BI-RADS) suspicion category, providing a diffusion-weighted imag-
ing (DWI) score based on lesion signal intensity, and determining the apparent diffusion coefficient
(ADC). Ten predictive models for breast lesion discrimination were generated using radiomic features
extracted from the multiparametric MRI. The area under the receiver operating curve (AUC) and
the accuracy were compared using McNemar’s test. Multiparametric radiomics with DWI score
and BI-RADS (accuracy = 88.5%; AUC = 0.93) and multiparametric radiomics with ADC values and
BI-RADS (accuracy= 88.5%; AUC = 0.96) models showed significant improvements in diagnostic
accuracy compared to the multiparametric radiomics (DWI + DCE data) model (p = 0.01 and p = 0.02,
respectively), but performed similarly compared to the multiparametric assessment by radiologists
(accuracy = 85.6%; AUC = 0.03; p = 0.39). In conclusion, radiomics analysis coupled with the ML
of multiparametric MRI could assist in breast lesion discrimination, especially for less experienced
readers of breast MRIs.
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1. Introduction

Medical imaging has always played a pivotal role in breast cancer diagnosis and
treatment decision-making. The inherently high sensitivity of dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) (81–100%) [1] had led to its wide use in the
evaluation of breast cancer, with many indications. Despite its powerful ability to identify
abnormalities in the breast, DCE-MRI has limitations, such as reduced availability, high
cost, and a reduced pooled specificity of 70% [2–7].

Multiparametric MRI schemes that integrate diffusion-weighted imaging (DWI) achieve
better specificity than DCE-MRI alone, reducing the number of false-positive biopsies [8–16].
Nevertheless, the clinical standardization of DWI as a supportive MRI sequence remains
challenging, given the broad inconsistency of protocols and interpretative methods, as well
as interobserver variability [17,18].

In the last decade, radiomics has become an area of increasing interest. As a technique
that mines quantitative imaging features that are hidden to the radiologist’s eye, radiomics
can be combined with clinical data (e.g., histopathologic, genomic, or molecular informa-
tion) and artificial intelligence (AI) to build algorithms that are capable of emulating the
human brain in tasks of learning and problem solving. To date, the development of such
decision-support algorithms for breast cancer evaluation has mainly relied on radiomics
data derived from DCE-MRI. This development has had applications for the characteriza-
tion of different molecular profiles of breast cancer [19,20], the prediction of likelihood for
axillary lymph node metastatic involvement [21], and the probability of tumor response to
chemotherapy treatment [22], as well as the differentiation between breast lesions [23–29].
However, the facets of clinical implementation of these support decision models are still to
be determined, particularly in the setting of multiparametric MRI.

The purpose of this multicenter retrospective study was to evaluate the diagnostic
value of radiomics coupled with machine learning (ML) of multiparametric MRI as used
in the clinical routine by comparing its performance with that of experienced radiologists
in the classification of enhancing breast tumors. Multiparametric MRI-based algorithms
could help less experienced breast MRI readers in the task of breast lesion differentiation.

2. Materials and Methods
2.1. Study Sample

This institutional review board-approved multicenter retrospective study was con-
ducted in compliance with the United States Health Insurance Portability and Accountabil-
ity Act. The need for written informed consent was waived. Some patients were previously
reported on in a different context [8,30].

Consecutive patients were identified following a review of databases from Memorial
Sloan Kettering Cancer Center (MSK) spanning the period from January 2018–March
2020, and the Medical University of Vienna (MUV) spanning the period from January
2011–August 2014. Figure 1 illustrates the selection of the patients included in the study.
Inclusion and exclusion criteria are described in the Supplementary Materials.
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Figure 1. Flowchart for the selection of patients in the study. DWI, diffusion-weighted imaging. 
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At MSK, 3 T MRI scanners (GE Discovery 750, GE Healthcare, Chicago, IL, USA) us-

ing 8-channel (13/93 examinations, 14%) or 16-channel breast coils (Sentinelle coils, Ho-
logic, Marlborough, MA, USA) (20/93 examinations, 21%) were used. The breast MRI pro-
tocol comprised fat-suppressed T2-weighted fast spin echo imaging and fat-suppressed 
3D T1-weighted imaging using differential subsampling with Cartesian ordering (DISCO) 
before and after contrast agent injection (0.1 mmol gadobutrol/kg body weight). DWI was 
performed using two different sequences: single-shot echo-planar with parallel imaging 
array spatial sensitivity encoding technique (ASSET) (22/33 examinations, 66.7%) and 
multishot multiplexed sensitivity-encoding (MSUE) (11/33 examinations, 33.3%). At 
MUV, the scans were performed on a 3 T MRI scanner (Tim Trio, Siemens, Erlangen, Ger-
many) using 4-channel breast coils (InVivo, Orlando, FL, USA) (60/93 examinations, 65%). 
The protocol was similar including fat-suppressed T2-weighted turbo spin echo imaging, 
fat-suppressed DCE T1-weighted imaging before and after contrast injection (0.1 mmol 
gadoterate meglumine/kg body weight). DW images were acquired using a readout-seg-
mented echo planar encoding scheme. 

DWI was acquired consistently before gadolinium-based contrast injection and the 
apparent diffusion coefficient (ADC) maps were obtained using a built-in software. The 
structure and parameters for both MRI protocols are presented in the Supplementary Ma-
terials (Tables S1 and S2). 

  

Figure 1. Flowchart for the selection of patients in the study. DWI, diffusion-weighted imaging.

2.2. Breast MRI Technique

At MSK, 3 T MRI scanners (GE Discovery 750, GE Healthcare, Chicago, IL, USA)
using 8-channel (13/93 examinations, 14%) or 16-channel breast coils (Sentinelle coils,
Hologic, Marlborough, MA, USA) (20/93 examinations, 21%) were used. The breast MRI
protocol comprised fat-suppressed T2-weighted fast spin echo imaging and fat-suppressed
3D T1-weighted imaging using differential subsampling with Cartesian ordering (DISCO)
before and after contrast agent injection (0.1 mmol gadobutrol/kg body weight). DWI was
performed using two different sequences: single-shot echo-planar with parallel imaging
array spatial sensitivity encoding technique (ASSET) (22/33 examinations, 66.7%) and
multishot multiplexed sensitivity-encoding (MSUE) (11/33 examinations, 33.3%). At
MUV, the scans were performed on a 3 T MRI scanner (Tim Trio, Siemens, Erlangen,
Germany) using 4-channel breast coils (InVivo, Orlando, FL, USA) (60/93 examinations,
65%). The protocol was similar including fat-suppressed T2-weighted turbo spin echo
imaging, fat-suppressed DCE T1-weighted imaging before and after contrast injection
(0.1 mmol gadoterate meglumine/kg body weight). DW images were acquired using a
readout-segmented echo planar encoding scheme.

DWI was acquired consistently before gadolinium-based contrast injection and the
apparent diffusion coefficient (ADC) maps were obtained using a built-in software. The
structure and parameters for both MRI protocols are presented in the Supplementary
Materials (Tables S1 and S2).

2.3. Imaging Evaluation and Processing

Lesions were manually segmented for radiomics analysis. Two breast radiologists
(IDN and RLG), each one with five years level of experience in breast imaging, reviewed Dig-
ital Imaging and Communications in Medicine (DICOM) images from early post contrast-
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enhanced T1-weighted imaging, DWI, and ADC mapping in consensus to segment lesions.
Lesions from the three sets of images were matched on OsiriX viewer v 9.0, and the slice
containing the largest lesion diameter was recorded. Subsequently, one 3D segmentation
was performed on each set of images by using the online ITK-SNAP v 3.6.0 tool. The same
number of segmentations was performed per radiologist by delineating the borders of each
lesion in every slice where it was visible to obtain a volume of interest (VOI). In the case of
DW images, VOIs were directly extrapolated to ADC maps and manually corrected in the
case of mismatched areas for feature extraction.

One month after segmentation, independent reads of the multiparametric MRI images
were performed. Two radiologists (IDN and JSR) with five and six years of experience in
breast imaging, respectively, rated cases in two sessions separated by at least three weeks.
The radiologists were blinded to the patients’ selection criteria, histopathological results,
and previous imaging. In the first reading session, DW images and corresponding ADC
maps were reviewed by each radiologist, using the previously recorded slice containing the
largest lesion diameter as a reference. A category for suspicion (1—very low, 2—low, 3—
intermediate, 4—high, 5—very high) was assigned according to the signal intensity of the
lesions on DW images (b = 800 s/mm2). Lesions assigned a category ≥4 were considered
positive for malignancy. Additionally, the corresponding ADC values on ADC maps (for
ADC values, a cut-off of 1.3 × 10−3 mm2/s were noted. Lesions with ADC values above the
cut-off were considered positive for malignancy, as recommended by the European Society
of Breast Imaging international breast diffusion-weighted imaging Working Group [17].
An example of region of interest placement to obtain ADC values is shown in Figure 2.
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therefore characterized as BI-RADS 3 and 3 based on the DWI score in the consensus reading of 
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In the second reading session, DCE images were assessed using BI-RADS. Like the 
suspicion score for the DW images, lesions assigned a category for suspicion ≥ 4 based on 
BI-RADS were considered positive for malignancy. Additionally, a multiparametric MRI 

Figure 2. Axial MR images of a 48-year-old woman with a 14-mm benign mass in the right breast,
of which biopsy yielded fibro-adenomatoid changes (yellow arrows). (A) Axial dynamic contrast-
enhanced image depicts a heterogeneous, oval, and circumscribed enhancing mass in the right breast
corresponding to a heterogeneous hyperintense lesion on axial diffusion-weighted imaging (DWI) at
a b value of 800 s/mm2; (B). (C) Correlative parametric apparent diffusion coefficient (ADC) map
with a region of interest (ROI) placed within the darkest part of the lesion and ROI information. ADC
values are expressed in mm2/s. This lesion was heterogeneous vs. non-enhancing septa and therefore
characterized as BI-RADS 3 and 3 based on the DWI score in the consensus reading of radiologists.

In the second reading session, DCE images were assessed using BI-RADS. Like the
suspicion score for the DW images, lesions assigned a category for suspicion ≥ 4 based on
BI-RADS were considered positive for malignancy. Additionally, a multiparametric MRI
classification combining BI-RADS categories and ADC values was performed. In cases of
discrepancy between the suspicion level for BI-RADS categories and DWI scores, ADC
with a cut-off 1.3 × 10−3 mm2/s was used to classify the lesions.

In a third reading session, consensus analysis of the two radiologists for all cases
regarding the level of suspicion was made for the BI-RADS, DWI score, and multiparametric
MRI suspicion score. This allowed for comparison of the radiologists’ performance to that
of the ML models. ADC values obtained by the radiologist with more experience in
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using DWI (IDN) were used for consensus on the multiparametric MRI suspicion score.
Additionally, BI-RADS descriptors for enhancing lesions were noted for mass and non-mass
enhancement (NME) lesions as shown in Table 1.

Table 1. BI-RADS descriptors for enhancing lesions.

Mass Lesions Non-Mass Lesions

Internal enhancement
Homogeneous
Heterogeneous

Rim enhancement
Internal septa

Distribution
Focal
Lineal

Regional
Segmental

Diffuse

Margins
Circumscribed

Irregular
Spiculated

Internal enhancement
Homogeneous
Heterogeneous

Clumped
Clustered

Shape
Oval

Round
Irregular

Enhancing kinetics
Persistent

Plateau
Wash-out

Enhancing kinetics
Persistent

Plateau
Wash-out

2.4. Radiomics Analysis

The information extracted from the VOIs derived from DCE and DW images was
entered into the Computational Environment for Radiological Research (CERR) software
(available on Github) using an in-house MATLAB (MathWorks Inc., Natic, MA, USA) code.
CERR then allowed for the calculation of radiomic features [31], based on the grey level run
length matrix (RLM), grey level co-occurrence matrix (GLCM), grey level size zone matrix
(SZM), neighborhood grey tone difference matrix, neighborhood grey level dependence
matrix, and first-order statistics.

Data reduction to 16 grey levels was performed to account for the reduced number
of pixels in some lesions. To ensure sufficient counting statistics for the calculation of
texture features, only a distance of one was regarded between pixels. To optimize the
models, lesions containing less than 40 pixels were disregarded. As a result, 23 patients
with 23 lesions were excluded. The final study sample consisted of 93 patients (30 from
MSK and 63 from MUC) with 104 lesions (38 from MSK and 66 from MUV), with 11 patients
showing more than one lesion on MRI.

2.5. Reference Standard

The reference standard was histopathology obtained through image-guided biopsy
in all lesions, whether MRI (30 lesions) or ultrasound-guided (74 lesions). In cases of
histopathology that yielded a benign but high-risk lesion (e.g., atypical ductal or lobular
hyperplasia or papilloma), the postsurgical histopathology report was consulted to verify
concordance with results from image-guided biopsy.

2.6. Statistical Analysis and Predictive Model Building

Means (±SD) and medians (range) were used to define continuous variables whereas
proportions were used to summarize categorical variables.

Prior to statistical analysis (SPSS version 25, IBM Corp., Armonk, NY, USA), ComBat
harmonization was performed to reduce possible variability between the different MRI
protocols used [32]. Afterwards, statistical univariable modelling afforded the identification
of significantly different radiomic features between benign lesions and cancers. To prevent



Cancers 2022, 14, 1743 6 of 13

model overfitting, feature selection was performed using a fivefold cross-validated elastic
net and combining least absolute shrinkage and selection operator (LASSO) regression and
ridge regression. We selected the top five radiomic features to ensure sufficient cases per
feature for model building of the minority class. Multivariate modeling through medium
Gaussian support vector machine (SVM) modelling with fivefold cross-validation afforded
the generation of robust ML models for breast lesion differentiation. Z-score normalization
of the radiomic parameters was used for model building in consideration of the different
degrees of magnitude found in radiomics. Figure 3 shows the workflow for radiomics and
radiologist analysis.
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The area under the receiver operating characteristic curve (AUC) and accuracy were
used to assess the models’ performance. Diagnostic accuracies were compared using McNe-
mar’s test, and p-values < 0.05 were considered significant. Sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) were calculated for both radi-
ologists and models. Diagnostic metrics were obtained for mass and NME lesions together,
as well as for masses alone, allowing for the evaluation of models that utilize individual
BI-RADS descriptors (internal enhancement, shape, margins, enhancing kinetics).

3. Results
3.1. Patient Sample and Breast Lesion Characteristics

A total of 93 women (mean age: 48.5 years ± 12 years) with 104 lesions (mean size:
22.8 ± 15.1 mm) were included in the final patient sample. There were 46 cancers (mean
size: 28.8 ± 18.2 mm), of which 35 were mass lesions and 11 were non-mass enhancements.
Benign lesions accounted for 58 lesions (mean size: 18.2 ± 10 mm), of which 50 were
mass lesions and 8 were non-mass enhancements. Patient and lesion characteristics are
summarized in Tables 2 and 3.
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Table 2. Characteristics of the 93 patients included in the analysis.

Patient Characteristics Number (Percentage)

Mean age (years; SD) 49 years ± 12 years
Menopausal status

Pre-menopausal 55 (59.1%)
Post-menopausal 38 (40.9%)
Breast Findings

Benign 58 (55.8%)
Malignant 46 (44.2%)

Table 3. Characteristics of the 104 lesions included in the analysis.

Benign Lesions Malignant Lesions

Mass 50 (86.2%) Mass 35 (76%)
NME 8 (13.8%) NME 11 (24%)

Histopathology Histopathology
Fibroadenoma or fibro-adenomatoid change 30 (51.8%)

IDC

Histological Grade 1: 4 (8.6%)
Phyllodes tumor 1 (1.7%) Histological Grade 2: 18 (39·2%)

Adenosis, stromal fibrosis, ductal ectasia, or
normal breast parenchyma 10 (17.3%) Histological Grade 3: 20 (43·6%)

FCC 5 (8.6%)
ADH or ALH 4 (6.9%)

ILC 2 (4.3%)
PASH 3 (5.2%)

Papilloma 2 (3.4%)
Hamartoma 1 (1.7%)
Fat necrosis 1 (1.7%)

DCIS 2 (4.3%)Epithelial intraductal proliferation without atypia 1 (1.7%)

Abbreviations: NME, non-mass enhancement lesion; FCC, fibrocystic changes; ADH, atypical ductal hyperpla-
sia; ALH, atypical lobular hyperplasia; PASH, pseudo-angiomatous stromal hyperplasia; IDC, invasive ductal
carcinoma; ILC, invasive lobular carcinoma; DCIS, ductal carcinoma in situ.

3.2. Radiomics Analysis for Breast Lesion Differentiation

The median size of segmented lesions was 255 pixels (range: 40–5379 pixels) for benign
lesions and 2104 pixels (range: 115–58,485 pixels) for malignant lesions.

After CERR analysis, 102 radiomic features were obtained: 22 based on first-order
statistics; 26 based on GLCM; 16 based on RLM; 16 based on SZM; 17 based on neighborhood
grey level dependence matrix; and 5 based on neighborhood grey tone difference matrix.

Univariable analysis yielded 34 DWI and 27 DCE radiomic features that were signif-
icantly different between benign and malignant lesions. Feature selection, followed by
multivariable modelling, resulted in ten models for the classification of all lesions, as well
as for the classification of mass lesions alone. The top five radiomics parameters selected to
develop each model are provided in Tables S3 and S4.

3.3. Radiologist Performance vs Radiomics Coupled with ML for Malignant vs. Benign
Classification for Mass Lesions

The performance of radiologist consensus reading, as well as that of different models
for the classification of mass lesions, are shown in Table 4. The “radiomics DWI data model”
demonstrated a higher diagnostic accuracy for the classification of mass lesions based on
DWI (78.6%, CI: 68.3–86.8%) than either the ADC value (73.8%, CI: 63.1–82.8%) or the DWI
score (75.0%, CI: 64.4–83.8%) assessed by radiologists. However, this increase in diagnostic
accuracy was not significant (p > 0.38). Both the “radiomics DWI data with DWI score
model “(78.6%, CI: 68.3–86.8%) and the “radiomics DWI data with ADC value model”
(82.1%, CI: 72.3–89.7%) did not lead to a significant improvement in diagnostic accuracy
when compared with the “radiomics DWI data model” (p > 0.39 for both).
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Table 4. Diagnostic metrics for the performance of radiologists * and radiomics combining different
approaches for mass lesions only.

Assessment type Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy
(95% CI)

AUC
(95% CI)

DWI score * 66.7
(50.5–80.4)

83.3
(68.6–93.0)

80.0
(66.3–89.1)

71.4
(61.5–79.7)

75.0
(64.4–83.8)

0.76
(0.65–0.87)

ADC value * 82.9
(66.4–93.4)

67.4
(52.5–80.1)

64.4
(54.1–73.6)

84.6
(72.1–92.1)

73.8
(63.1–82.8)

0.83
(0.75–0.92)

BI-RADS *
(Classic DCE-MRI)

100
(90.0–100)

51.0
(36.3–65.6)

59.3
(52.3–66.0)

100
(90.0–100)

71.4
(60.5–80.8)

0.85
(0.78–0.93)

Radiomics DWI data 62.9
(44.9–78.5)

89.8
(77.8–96.6)

81.5
(64.9–91.3)

77.2
(68.5–84.0)

78.6
(68.3–86.8)

0.83
(0.73–0.92)

Radiomics DWI data
with DWI score

68.6
(50.7–83.2)

85.7
(72.8–94.1)

77.4
(62.5–87.6)

79.3
(69.8–86.3)

78.6
(68.3–86.8)

0.86
(0.78–0.94)

Radiomics DWI data
with ADC value

80.0
(63.1–91.6)

83.7
(70.3–92.7)

77.8
(64.5–87.1)

85.4
(74.9–92.0)

82.1
(72.3–89.7)

0.89
(0.82–0.96)

Radiomics model
using individual

BI-RADS descriptors
for masses

80.0
(63.1–91.6)

91.8
(80.4–97.7)

87.5
(73.0–94.8)

86.5
(76.7–92.6)

86.9
(77.8–93.3)

0.93
(0.88–0.99)

Radiomics DCE data 54.3
(36.7–71.2)

83.7
(70.3–92.7)

70.4
(54.0–82.8)

71.9
(63.6–79.0)

71.4
(60.5–80.8)

0.76
(0.65–0.86)

Radiomics DCE data
with BI-RADS

74.3
(56.7–87.5)

79.6
(65.7–89.8)

72.2
(59.1–82.4)

81.3
(70.8–88.6)

77.4
(67.0–85.8)

0.86
(0.78–0.94)

Radiomics DCE data
with individual

BI-RADS descriptors
for masses

80.0
(63.1–91.6)

91.8
(80.4–97.7)

87.5
(73.0–94.8)

86.5
(76.7–92.6)

86.9
(77.8–93.3)

0.95
(0.90–0.99)

Multiparametric MRI
(ADC value with

BI-RADS) *

82.9
(66.4–93.4)

89.8
(77.8–96.6)

85.3
(71.4–93.1)

88.0
(77.9–93.9)

86.9
(77.8–93.3)

0.93
(0.87–0.99)

Multiparametric
radiomics (DWI and

DCE data)

65.7
(47.8–80.9)

89.8
(77.8–96.6)

82.1
(66.0–91.6)

78.6
(69.7–85.4)

79.8
(69.6–87.8)

0.89
(0.82–0.96)

Multiparametric
radiomics with DWI
score and BI-RADS

91.4
(76.9–98.2)

83.7
(70.3–92.7)

80.0
(67.8–88.4)

93.2
(82.1–97.6)

86.9
(77.8–93.3)

0.93
(0.87–0.98)

Multiparametric
radiomics with ADC

values and
individual BI-RADS

descriptors for
masses

88.6
(73.3–96.8)

93.9
(83.1–98.7)

91.2
(77.4–96.9)

92.0
(82.0–96.7)

91.7
(83.6–96.6)

0.96
(0.92–1.00)

Abbreviations: DWI, diffusion-weighted imaging; DCE, dynamic contrast-enhanced; CI, confidence interval; PPV,
positive predictive value; NPV, negative predictive value; AUC, area under the curve; BI-RADS, Breast Imaging
Reporting and Database System. * p < 0.05.

For the classification of mass lesions based on DCE, the “radiomics model using
individual BI-RADS descriptors for masses” demonstrated a significant improvement in
diagnostic accuracy (86.9%, CI: 77.8–93.3%) compared with BI-RADS (classic DCE-MRI)
scoring as assessed by radiologists (71.4%, CI: 60.5–80.8%; p = 0.01), the “radiomics DCE
data” model (71.4%, CI: 60.5–80.8%; p = 0.013), and the “radiomics DCE data with BI-
RADS” model (77.4%, CI: 67.0–85.8%; p = 0.007). The “radiomics DCE data with individual
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BI-RADS descriptors for masses model” offered no further significant improvement in
diagnostic accuracy (86.9%, CI: 77.8–93.3%; p = 1.00).

For the classification of mass lesions based on the multiparametric assessment of
DWI and DCE data, the “multiparametric radiomics with ADC values and individual
BI-RADS descriptors for masses model” provided a significant improvement in diagnostic
accuracy (91.7%, CI: 83.6–96.6%) compared with the “multiparametric radiomics (DWI
and DCE data) model” (79.8%, CI: 69.6–87.8%; p = 0.03). However, the “multiparametric
radiomics with ADC values and individual BI-RADS descriptors for masses model” was
not significantly different compared to multiparametric MRI (ADC value with BI-RADS)
assessment by radiologists (86.9%, CI: 77.8–93.3%; p = 0.06).

3.4. Radiologist Performance vs. Radiomics Coupled with ML for Malignant vs. Benign
Classification for All Lesions (Mass and Non-Mass Lesions)

For detailed results regarding radiologist performance vs. radiomics coupled with ML
performance for the classification of all lesions together (mass and non-mass enhancement),
see the Supplementary Data (Tables S5–S7).

4. Discussion

We investigated the diagnostic performance of different models for the classification
of enhancing breast tumors that were deemed suspicious on routine clinical breast MRI
evaluation and subsequently recommended for biopsy. We compared the performance of
radiomics analysis coupled with machine learning models against that of dedicated breast
radiologists. A total of ten models were developed that used radiomic features extracted
from DCE and ADC maps derived from DW images with clinical information (e.g., BI-RADS
category, BI-RADS descriptors, or DWI-derived data) to discriminate between malignant
and benign breast lesions.

Our results showed that multiparametric MRI interpretation by radiologists, as well
as radiomic models based on multiparametric MRI combined with BI-RADS and DWI
clinical data, achieved the highest accuracies and AUC values. While yielding slightly
higher diagnostic accuracies, the multiparametric radiomics models with BI-RADS and
ADC values did not significantly improve upon the diagnostic accuracy of dedicated
study radiologists. It must be noted that all the lesions evaluated in this study had been
previously classified as suspicious on routine reads and were already recommended for
biopsy, indicating that such AI-enhanced multiparametric MRI models would be promising
in clinical practice where readers of all levels of experience are reading breast MRIs.

Regarding non-multiparametric assessments, the models based on DWI features did
not improve upon radiologist performance using DWI alone. Based on DCE, only the
“radiomics DCE data with BI-RADS model” provided a borderline significant improvement
in diagnostic accuracy when compared with radiologists’ assessment of breast lesions using
BI-RADS classification. This may be due to the addition of an algorithmic/decision-tree
component to the subjective assessment with BI-RADS. This trend was sustained, and
a significant improvement was observed when the actual BI-RADS descriptors (internal
enhancement, shape, margins, enhancing kinetics) were incorporated into a radiomics
model based on DCE in the classification of mass lesions.

Multiparametric breast MRI with DCE-MRI and DWI as a supportive sequence for
the discrimination of breast lesions is shown to be the best imaging technique for breast
cancer diagnosis [33,34]. Yet only a few studies have been published comparing the
performance of AI-enhanced models to that of radiologists for breast cancer diagnosis.
This information is key for the implementation of these models in clinical practice. We
showed that diagnostic accuracy of radiologists using multiparametric MRI with ADC
values (85.6%; p = 0.39) can be improved through use of a multiparametric radiomics model
with BI-RADS and ADC values (88.5%, CI: 80.7–93.9%). This was further emphasized when
we analyzed the subgroup of masses, in which the multiparametric radiomics model with
individual BI-RADS descriptors and ADC values provided borderline significance when
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compared with the accuracy of radiologists based on multiparametric MRI using ADC
values (91.7% vs. 86.9%; p = 0.063). This result is unsurprising given that non-mass lesions
usually present as diffuse infiltrating enhancements with ill-defined margins and often
represent a diagnostic challenge for both manual segmentation and DWI scoring [35].

Among the few studies directly comparing AI-enhanced models and radiologists, Sut-
ton et al. [36] proved that quantitative radiomic features extracted from DCE-MRI of breast
cancer could replicate human-extracted tumor size and BI-RADS imaging phenotypes.
Another study, conducted by Truhn et al. [37], assessed the performance of a convolutional
neural network (CNN) model against radiomics analysis, comparing it with the prospective
assessment of three breast radiologists discriminating breast MRI enhancing lesions. The
CNN model seemed to outperform radiomics analysis (AUC of 0.88 vs. 0.81) but did not
achieve better performance than multiparametric MRI interpreted by breast radiologists
(AUC of 0.98). Unlike our study, the input to perform radiomics analysis and to generate
the CNN model was only from features extracted from DCE images, and thus not repre-
sentative of the full diagnostic potential of breast multiparametric MRI. Lo Gullo et al. [38]
compared the qualitative morphological assessment with BI-RADS classification to ra-
diomics coupled with machine learning for the differentiation of subcentimeter breast
masses in BRCA mutation carriers. They found that radiomics analysis coupled with ML
achieved a better diagnostic accuracy (81.5%) compared with radiologists using BI-RADS
classification (53.4%). In yet another study, Bickelhaupt et al. [27] investigated two ra-
diomics classifiers based on contrast-free MRI sequences (DWI and T2-weighted sequences)
alone, and combined with ADC parameter, for the discrimination of breast lesions found
suspicious on screening mammography. As in our study, they reported that their radiomics
models performed better than ADC alone and that the inclusion of the mean ADC increased
the accuracy of the model (from an AUC of 0.842 to 0.851), demonstrating the advantages
of data sharing. Nevertheless, the performance of the proposed model combined with ADC
was lower than that of expert breast radiologists (AUC of 0.959) using multiparametric
breast MRI.

It is worth noting some of our study’s strengths. First, our study included data from 3D
segmentations, which contributes more pixels and thereby enables better model building
and accuracy. Moreover, our data are derived from images acquired from different scanners
and MRI protocols across two different institutions. Although this could be understood
as a weakness, e.g., the introduction of data noise or dilution of the association by the
protocol/image quality differences, it is helpful for the generalizability of our results.
Secondly, our study’s readers were experienced and breast-dedicated radiologists. Their
excellence in assessing the lesions certainly impacted on our results. Therefore, our study
indicates potential for AI-enhanced multiparametric MRI to be useful in clinical practice as a
decision support tool for readers of all levels of experience or as support for breast radiology
residents and fellows. Having said that, it is important to highlight that breast MRI has
a high cost, and its access may be limited in certain countries. Therefore, it is important
to quest for alternative AI-enhanced tools with wider availability. New approaches such
as ultrasound elastography coupled with machine learning techniques may represent a
feasible alternative to MRI for breast cancer diagnosis [39].

Regarding limitations, our study included a relatively small representative sample
comprised of 104 breast lesions. This small sample size precluded the separation of data into
training and test sets. In addition, some of these lesions, particularly benign tumors, were
subcentimeter, which may affect the number of pixel contributions for feature extraction
and lead to an increased proportion of features that were potentially contaminated by
partial volume effects. We tried to overcome this limitation while ensuring adequate
counting statistics by including only lesions with more than 40 pixels and lowering the
data to only 16 grey levels (vs. 32 or 64 grey levels, as previously employed in breast MRI).
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5. Conclusions

In conclusion, multiparametric radiomics analysis coupled with ML and combined
with clinical data from multiparametric MRI performed similarly to breast radiologists for
the classification of breast enhancing lesions on MRI. Multiparametric models could be
useful as a supportive decision tool to accurately classify breast lesions, especially for less
experienced breast MRI readers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14071743/s1, Table S1: Summary of imaging protocols
and acquisition parameters; Table S2: Summary of DWI protocols and acquisition parameters;
Table S3: Summary of radiomics features selected for each model for the analysis of all lesions;
Table S4: Summary of radiomics features selected for each model for the analysis of mass only lesions;
Table S5: Diagnostic metrics for the performance of radiologists * and radiomics combining different
approaches for mass and non-mass lesions; Table S6: Results from radiologist consensus reading
regarding DWI suspicion score and BI-RADS descriptors and classification for mass and non-mass
lesions; Table S7: Results from radiologist independent reading regarding DWI suspicion score,
BI-RADS classification and multiparametric MRI classification for mass and non-mass lesions.
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