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Abstract

In the past two decades there has been a significant expansion in the number of new thera-

peutic monoclonal antibodies (mAbs) that are approved by regulators. The discovery of

these new medicines has been driven primarily by new approaches in inflammatory dis-

eases and oncology, especially in immuno-oncology. Other recent successes have included

new antibodies for use in viral diseases, including HIV. The perception of very high costs

associated with mAbs has led to the assumption that they play no role in prophylaxis for dis-

eases of poverty. However, improvements in antibody-expression yields and manufacturing

processes indicate this is a cost-effective option for providing protection from many types of

infection that should be revisited. Recent technology developments also indicate that sev-

eral months of protection could be achieved with a single dose. Moreover, new methods in B

cell sorting now enable the systematic identification of high-quality antibodies from human-

ized mice, or patients. This Review discusses the potential for passive immunization against

schistosomiasis, fungal infections, dengue, and other neglected diseases.

Introduction

The last three decades have seen a dramatic rise in the use of monoclonal antibodies (mAbs) as

therapeutics. By 2017, a total of 78 antibodies had been approved by the US Food and Drug

Administration (FDA) or the European Medicines Agency (EMA) [1], with a further 11

approved by the FDA in 2018 [2, 3]. Beyond this, over 570 antibodies are in clinical develop-

ment [4]. The global mAb market reached US$100 billion annually in 2017 [5], underscoring

the considerable economic importance of these medicines.

The success of mAbs starts with the general applicability of the technology used to make

them. Antibodies can be developed that have not only high affinity for their targets but also

high selectivity, meaning they are less likely to have unwanted side effects and unexpected

safety problems. mAbs are particularly good at targeting cell-surface proteins and circulating

protein factors; this is in contrast to small molecules, in which cell surface protein–protein
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interactions have proved difficult to block. In addition, there has been great progress in the

development of technology. Early generations of antibodies for human use were developed

from mAbs developed in mice, antibodies that were then humanized. Recently, the technology

used peptide and antibody display on phages, for which part of the 2018 Nobel Prize in Chem-

istry was awarded to Sir Gregory P. Winter [6]. More recently, new technologies have been

developed to clone antibodies from memory B cells [7] or plasma B cells [8, 9], allowing the

isolation of individual antibodies from patients with viral infections—approaches that can be

applied to any infectious disease.

A second reason for the popularity of antibodies in recent years is their success rate in clini-

cal development. Once an antibody reaches testing in humans, it has a success rate of 17% to

25% for approval as a new medicine [10], compared with 5% to 10% for small molecules. This

success rate is partly due to the exquisite selectivity of mAbs, enabling them to distinguish

between closely related molecular targets. In the case of infectious disease, this selectivity can

be absolute, since antibodies can be generated that are specific for the invading pathogen and

do not cross-react with host tissues. This lack of cross-reactivity with human tissue can be con-

firmed by immunohistochemistry on both adult and embryonic tissues prior to the start of

clinical trials. This is in stark contrast to small molecules, in which sometimes unexpected on-

and off-target safety signals are frequently seen in the later stages of clinical development,

resulting in expensive late-stage attrition. In addition, antibodies show a relatively narrow

range of variation in pharmacokinetic exposure, facilitating early estimation of the human

effective dose. This is unlike true xenobiotics, whose metabolism and elimination are usually

driven by cytochromes, an enzyme class that is encoded by highly polymorphic genes in a pro-

cess that is, furthermore, sensitive to drug–drug interactions.

The third major driver for the success of mAbs has been commercial. Many mAbs have

been developed in oncology. The most recent success story is the development of the checkpoint

inhibitors against targets such as programmed death ligand 1 (PD-L1) and related targets [11].

The dramatic clinical effect in subgroups of otherwise treatment-refractory cancer patients has

led to products with prices well in excess of US$10,000 per month [12]. Another recent mile-

stone for an infectious disease was the global approval of ibalizumab, a humanized mAb that

targets CD4 (cluster of differentiation 4) for the second-line treatment of HIV-1 infection [13].

Given all this excitement about mAbs, it is pertinent to ask what role they could play in the

protection against infection, particularly in the case of diseases of neglected populations. Gen-

eral concerns arguing against their use include the need for simple delivery, the high price,

and, indeed, whether there is a need, given the potential for vaccination. In this Review, we

show how recent developments in technology have addressed many of these concerns. By

looking at the progress of mAbs against specific diseases of neglected patient populations, the

key highlights as well as the key development gaps are illustrated.

Antibodies can provide a simple option for long-term prophylaxis

Most antibodies developed to date are used as therapeutics, targeting cellular mediators that

are overexpressed in disease, such as cytokines in rheumatoid arthritis or cell-surface markers

in oncology. For the anti-tumor necrosis factor (anti-TNF) antibodies used in rheumatoid

arthritis, although there is an initial loading dose to reduce an existing inflammatory signal,

the long-term use is to provide prophylaxis against relapse. The first candidate to be approved

was infliximab, initially approved for intravenous use at a dose of 3 mg/kg. More recent anti-

bodies have been developed as subcutaneous injections, and adalimumab has taken over as the

market leader, with an injection every 2 weeks. Clearly, compliance is linked to the relative

ease of delivery of the subcutaneous approach, with a reasonable dose.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007860 January 30, 2020 2 / 20

https://doi.org/10.1371/journal.pntd.0007860


In infectious disease, the biggest success story has been the use of antibodies to provide pro-

phylaxis against infection by respiratory syncytial virus (RSV). RSV is responsible for over 30

million episodes of new lower respiratory tract infections, particularly targeting children 5

years and younger, resulting in an estimated 48,000 to 74,500 deaths globally (2015 estimates)

[14]. Palivizumab, dosed at 15 mg/kg, is given as a monthly intramuscular injection through-

out the RSV season, which is suitable for small babies but would not be appealing for adults. A

follow-on antibody—MEDI8897, now in Phase II clinical studies [15]—is 100 times more

potent than palivizumab in vitro. It is being developed as a single 50 mg injection to cover the

typical 5-month season.

Taken together, these cases illustrate, that after initial proof of concept, it is possible to find

second-generation antibodies with more simple routes of delivery and sufficient potency to

support relatively infrequent dosing in the field.

mAbs are becoming sufficiently affordable to be relevant in neglected

diseases

A major objection to the use of mAbs in infectious diseases as a therapeutic class is their high

price, which is presumed to be a consequence of a high cost of goods. Manufacturing costs are

a particularly important attribute for any medication that is developed for diseases of poverty

in low- and middle-income countries (LMICs). However, production efficiency of mAbs has

increased dramatically over recent decades, and cell-culture expression levels around 4 g/l or

even higher are common. A published analysis from a decade ago already noted that the costs

of mAb production were dropping from US$300/g to US$20/g when being produced at the

10-tonne-per-year scale, potentially using large, 100,000 L reactors [16]. A more recent analysis

has similar estimates [17], which—depending on process and volume—range from US$20/g to

US$80/g [18].

For a public health application against an infectious disease in an LMIC, an intramuscular

or subcutaneous delivery would be preferable (rather than the intravenous route). The intra-

muscular route effectively limits the dose; an injection volume of 1.0 ml is probably close to

the maximum acceptable in small children, and antibodies are typically only soluble to around

100 mg/ml, which gives a limitation on the total dose of around 100 mg, corresponding to a

range of 5 to 20 mg/kg [19]. Taken together, the cost of goods of an injection based on current

numbers would be in the range of US$1 to US$8. Benchmarking such costs is difficult, but as a

comparison, the recently launched malaria vaccine provides less than 50% protection for 3

injections at around US$5 each. The programmatic cost of protecting a child from malaria for

a year in the Sahel using existing low-cost oral medicines has been estimated at US$3.40 by

Unitaid [20]. An injectable therapeutic that could protect a child for a season for this price pro-

vides a cost-effective option.

The other important factor to manage is the reduction of the frequency of administration,

to make the prophylaxis useful in resource-poor settings. mAbs used in therapy are generally

IgGs (immunoglobulin Gs), which have plasma half-lives of 20 to 25 days in humans [21, 22].

Such antibodies can be used to provide several months of protection, as in the case of the

once-per-season anti-RSV antibody MEDI8897 (nirsevimab) discussed earlier or the anti–cal-

citonin gene-related peptide (anti-CGRP) fremanezumab, recently approved for prevention of

migraines with a dose of 675 mg every 3 months. An alternative to simply increasing the dose

would be increasing the half-life of the circulating mAb. Several strategies have been proposed

here [23]: Mutations can be made in the IgG Fc (fragment crystallizable) region, which inter-

acts with the receptors responsible for the uptake of antibodies. Such mutations, as for

MEDI8897, can significantly extend an mAb’s plasma half-life. Mutations derived from the
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neonatal Fc receptor (FcRn) increase the strength of the interaction between the Fc region and

the Fc receptors under the acidic pH conditions in lysosomes, and as a result, the receptor–Fc

complex is recycled back to the cell surface, escaping degradation [24, 25]. This approach was

followed for bevacizumab and cetuximab, by mutating Met428 to Leu and Asn434 to Ser. Dis-

cussion about even longer periods of protection has been stimulated by recent results from

virally mediated expression of antibodies targeting HIV [26]. These technologies hold out the

promise of sustained serum titers of antibodies for more than a year from a single injection,

although the technological development is more complicated than for the direct injection of

antibodies.

One final objection to the goal of administering monoclonals is that vaccination would

instead provide lifelong coverage. However, for some diseases, the development of long-lasting

potent vaccines still remains elusive. Many pathogens will not raise an adequate immune

response, due to immunosuppression. Finally, antibodies give immediate protection, impor-

tant during rapidly evolving epidemics or pandemics and for individuals being deployed into

zones of high transmission. Antibodies would thus form part of the overall armamentarium,

along with drugs, bed nets and insecticides, and vaccines.

Challenges to developing mAbs against infectious diseases

First and foremost for the development of mAbs is the question of suitable antigen targets.

Viruses are the simplest pathogens, and their genomes allow limited means to evade host

immunity; therefore, passive and active vaccinations have been most successful in this area.

Therapeutic antibodies have been developed and marketed for respiratory syncytial, varicella

zoster, vaccinia, and hepatitis B viruses (HBVs) [27, 28]. Historically, immune responses

against viruses were considered purely cellular and those against other types of pathogens

mostly humoral (antibody based) and less effective. However, nowadays the interplay between

both systems is better understood, for instance, with therapeutic opportunities against viruses

such as rabies that rely on passive immunization. mAbs that target the initial stages of an infec-

tion may provide prophylaxis, and the repertoire of potential antigens for such approaches is

greatly helped by the increased availability of genomic and transcriptional information. Passive

immunization is especially effective in infections, such as those with the rabies virus, which

avoids apoptosis of infected neurons while killing protective T cells so that carriers do not

mount an immune response themselves [29]. A recent review [30] lists 21 mAbs (and a nano-

body, a single-chain type of antibody produced by camelids) that are currently in clinical trials

in the United States. In addition, polyclonal antibodies have been approved in the European

Union or the US for cytomegalovirus, hepatitis viruses A and C, and postexposure prophylaxis

against measles, rabies, rubella, and tetanus [31]. These approaches appear most suitable for

virus infections and for protection against the consequences of snake venom but might also be

applied to other types of disease.

There are fewer marketed antibodies that target bacteria, and these target toxins, namely

anthrax and Clostridium cytotoxin [27]. This paucity may be due to a lack of discovery efforts,

a consequence of the historic availability of cheap and effective antibiotics. However, with the

worrying rise of antibiotic resistance, the tide is turning [32].

Immunization against protist parasites and fungi is generally ineffective. One problem is

that organisms such as Trypanosoma brucei (which causes sleeping sickness) and Plasmodium
(malarial parasites) encode dozens or even hundreds of different surface antigens that are

sequentially exposed at their most abundant stage, outpacing the host’s immune system.

For some pathogens, clinical trials in infected patients are not possible or desirable. In the

case of inhalational anthrax, raxibacumab has been approved using the FDA “Animal Rule”

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007860 January 30, 2020 4 / 20

https://doi.org/10.1371/journal.pntd.0007860


[33]. This provides a route forward in disease areas in which trials with infected human

patients are not possible or not ethical.

Recently, the case for discovering mAbs for neglected tropical and other infectious diseases

was reviewed [34]. This work took a broad, category-wide approach (viruses, bacteria, para-

sites) and also included venoms. Snake bites, and the challenge of envenoming, represent a

serious health problem, resulting in 81,000 to 138,000 deaths yearly [35], and were recently

included in the World Health Organization (WHO) list of neglected tropical diseases. The dis-

covery of mAbs in this area logically follows the long-standing therapeutic successes with pas-

sive immunization [36], and the costs and feasibility of developing mAbs were recently

reviewed [34, 37][38], including specific clinical development and regulatory challenges [39].

In this Review, we selected diseases prioritized by the Global Health Innovative Technology

(GHIT) Fund, an international collaboration between the public and private sectors, support-

ing collaborations between Japanese and non-Japanese entities to advance global health

research and development [40, 41]. The present vaccine discovery statuses for these diseases

are listed in Table 1.

Schistosomiasis

Human schistosomiasis is caused by infection, mainly with one of 4 species of the blood fluke

belonging to Schistosomatoidea. It is estimated that there are over 200 million cases annually

in Africa, with two-thirds being Schistosoma haematobium and the remainder S. mansoni. In

Southeast Asia, other species such as S. japonicum and S. mekongi cause smaller numbers of

infections [64]. The mortality associated with schistosomal infections is difficult to calculate.

Comorbidities linked to anemia are common, and infection with S. haematobium can lead to

female genital schistosomiasis, which results in increased susceptibility to HIV infection [65].

The life cycle of the parasite is complex, involving both a snail and a human host. In the

infective stage, cercariae migrate and penetrate the human host skin to become schistosomula,

which then move with the venous circulation, initially to the lungs. After further maturation,

the parasite migrates via the heart to the portal circulation and the intestines; from there, eggs

are excreted with the feces or, passing through the bladder wall, in urine.

Table 1. Summary of vaccine and/or passive immunization status for the neglected infectious diseases discussed in this Review.

Disease Vaccine Highest discovery status

Dengue CYD-TDV/Dengvaxia: Efficacy 60%–70%, but only given to

persons with confirmed prior infection due to safety issues [42].

Several mAbs, also with in vivo activity: SIgN-3C [43], VIS513 [44, 45], D23-

1B3B9 [46–48], and Mab11/mutFc [49].

Fungal

infections

No Two mAbs in past human trials: 18B7 [50] and Mycograb [51]; many

preclinical candidates.

HBV Yes: Energix B and Recombivax HB; 80%–100% efficacy. E6F6 is in clinical trials [52].

HIV No One mAb (ibalizumab [13]) has been approved. Eight mAb checkpoint

inhibitors are in human trials, with PRO 140 and Cenicriviroc in Phase III.

Malaria RTS,S is partially active 30%–50% [53] and in confirmatory trials

[54].

mAbs with (prophylactic) in vivo activity, including CIS43 [55, 56] and

checkpoint inhibitors.

Schistosomiasis No mAbs with in vivo activity: SJ18ε.1 [57–59].

Trypanosomiasis No An antibody–drug conjugate was active in vivo [60].

TB The BCG vaccine (partially active). Etanercept was trialed (reviewed in [61]); mAbs with in vivo activity: 2E9IgA1

[62], reviewed in [34].

VL No Diagnostic antibodies only [63].

Abbreviations: BCG, Bacillus Calmette–Guérin; CIS43, circumsporozoite protein 43; HBV, hepatitis B virus; mAb, monoclonal antibody; mutFc, mutated Fragment

crystallizable region; TB, tuberculosis; VL, visceral leishmaniasis

https://doi.org/10.1371/journal.pntd.0007860.t001
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Prophylaxis could therefore either be causal—and prevent entry and survival of the cercar-

iae—or suppressive, by killing the juvenile and adult worms. Clearly, as with the malarial para-

sites, the more stages of the parasite life cycle that can be inhibited, the more effective the

protection will be. The molecular targets best addressed by antibodies are still not clear. Some

life cycle differences can be characterized: Schistosomula recovered from the lungs are elon-

gated and more resistant to antibody-dependent, cell-mediated cytotoxicity than newly trans-

formed schistosomula. Praziquantel, the standard treatment for schistosomiasis, acts only

against adult worms and has no effects on the juveniles, thus repeat treatment is required to

eliminate all the worms in a patient. An ideal treatment would therefore kill both adult and

juvenile worms at a submicromolar concentration. This is effectively the target candidate pro-

file for a small molecule inhibitor [66].

No target-product profile (TPP) for prophylaxis against schistosomiasis has been published,

but it is possible to start to build one, with the recent characterization of praziquantel for such

use in murine models and in pediatrics. Clinically, this treatment reduces infection by 70% to

80% using doses of 40 to 60 mg/kg [67]. In a murine model with infection by S. mansoni cercar-

iae, the maximum dose of 400 mg/kg killed 96% of all adult worms [68]. However, this murine

dose produced a peak exposure of 6 ng/ml, some 10-fold higher than the exposure observed in

children at the recommended regimen of 40 to 60 mg/kg [69, 70]. It seems pragmatic to project

that an antibody that can reduce the worm burden by 80% in the mouse model, at a dose that is

clinically achievable in humans, could be acceptable. The maximally practicable injection of an

antibody in children is 2 to 5 mg/kg, and given the relatively consistent allometry between

humans and mice for mAbs, this corresponds to a dose of 80 to 200 μg in mice [19].

Target identification for schistosomiasis is not straightforward. Unlike malaria, the vaccine

field offers no clues as to useful antibody targets. Two vaccine candidates are currently being

tested in humans. The first is based on the fatty acid-binding protein (FABP) Sm-14 (Schisto-

soma mansoni-14), which is being tested in 2 small, open-label pilot studies in Senegal

(NCT03041766 and NCT03799510). A larger 300-participant trial in Uganda, NCT03910972,

is being planned for a vaccine based on Sm-TSP-2 (Schistosoma mansoni-tetraspanin-2) but is

not expected to report before 2023.

Clues about other possible ways forward, in terms of antigen selection, come from a variety

of areas.First, Schistosoma are helminths (or flatworms), and the initial immune response is a

characteristically strong T helper 2 (Th2) cytokine reaction, which is not seen in viral or bacte-

rial infections and is less pronounced in protozoan infections. The cytokines that are released

include interleukin (IL)-5, which drives the production of eosinophils to attack the parasite,

and IL-4 and IL-13, which drive the production of immunoglobulin E (IgE). Epidemiological

studies in endemic areas suggest that an age-dependent immunity may develop against infec-

tion, or against reinfection after treatment [71–73]. There is a good correlation between this

protection and the development of IgE antibodies, resulting from Th2 responses [73, 74]. A

hybridoma that produces a monoclonal IgE antibody to S. japonicum, SJ18ε.1, was identified

[57]. This mAb was protective in an in vitro, antigen-dependent, cellular cytotoxicity assay

with rat macrophages or eosinophils and also in vivo during the early phase of infection [57–

59]. It recognizes a 97 kDa antigen, Sm-97 (Schistosoma mansoni-97), identified as paramyo-

sin, a muscle protein unique to invertebrates [75, 76]. The epitope of paramyosin recognized

by SJ18ε.1 was determined to be the SJ18ε.1359−362 sequence Ile–Arg–Arg–Ala [77]. Injection

of mice with paramyosin provides protection against S. mansoni infection [78]. The S. japoni-
cum equivalent protein, Sj97 (S. japonicum-97), has also been proposed as a vaccine target

[79], although no further development has been reported. Taken together, this suggests that an

alternative approach to generating therapeutic mAbs would be to produce IgG mAbs targeting

paramyosin and potentially other soluble, nonsurface antigens [78].
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Second, beyond the cell-surface proteins, schistosomes also express a large number of gly-

cans as part of their glycoprotein and glycolipid repertoire, and an antibody response against

those glycans is mounted by the infected host [80]. In 2 cases, the specific antibodies produced

could be identified using B cell cloning [81] or after infection of mice genetically modified to

express human antibody repertoires [82]. Interestingly, there has been no systematic analysis

of the antibodies produced that target the various stages of the parasite life cycle, although

early work on S. mekongi suggests schistosomula and adult worm extracts would induce a bet-

ter response [83].

In addition to stimulating a Th2 response, schistosome infection can suppress T-cell activa-

tion [84–86]; S. mansoni uses 2 distinct mechanisms to suppress T-cell activation, resulting in

the selective up-regulation of PD-L1 on the surface of splenic F4/80+ macrophages. The pres-

ence of fatigued or anergized T cells opens up the possibility for cotherapy of low doses of

mAbs against programmed cell death protein-1 (PD-1) or PD-L1 with antibodies that reverse

the anergy.

Fungal infections

The treatment of invasive fungal infections (IFIs) remains a major challenge worldwide. There

are few broad-spectrum antifungal drugs; the most effective have substantial toxicity concerns,

and well-tolerated drugs used prophylactically frequently induce resistance. Even with the best

current treatment, the risk for mortality due to an IFI can be higher than 40%. For low-income

countries, this figure is substantially worse, as many invasive infections are uniformly fatal

without treatment, and estimates of global mortality involving fungal infections are as high as

1.5 million annually [87–89]. In addition, fungal infections are the cause of significant comor-

bidity and mortality in HIV patients. Modeling studies suggest that optimal therapy could save

the lives of 1.6 million HIV patients over a 5-year period [90].

The discussion here will focus on mAbs developed for the following significant fungal path-

ogens: Cryptococcus, Pneumocystis and Paracoccidioides, and Candida. In addition to antibod-

ies that directly target and inhibit the fungal pathogen, mAbs can be directed to checkpoints

that control the host immune response. This approach may be particularly useful against fun-

gal pathogens for which sustained infection is characterized by a shift from a protective Th1 or

Th17 response to a noninflammatory Th2 response. The clinical use of anti-IL17 in rheuma-

toid arthritis clearly exacerbates fungal infection [91], although it remains to be seen whether

the reverse—stimulating this pathway—has a clinically useful effect.

Cryptococcus neoformans predominantly causes opportunistic infection in patients with

HIV/AIDS and is responsible for a large burden of AIDS-related disease and death in sub-

Saharan Africa [92]. Although the rate of infection has decreased in recent years through

greatly improved access to antiretroviral therapy (ART), mortality in infected patients has not

declined, demonstrating the failure of antifungal development to keep pace with improved

antiviral treatment. Cryptococcosis first manifests as a pulmonary disease but spreads hemato-

genously to the cerebrospinal fluid and brain to cause meningitis and meningoencephalitis,

adding the complexity of crossing the blood–brain barrier to drug development.

The ability of mAbs to protect against a lethal cryptococcal infection in mice was first dem-

onstrated over three decades ago [93], with subsequent work demonstrating the efficacy of var-

ious mAbs that target the polysaccharide capsule, an essential virulence factor and the primary

host–pathogen interface of Cryptococcus infection [94–96]. Among these, mAb 18B7 was eval-

uated in a Phase I clinical trial [50] and was found to produce a modest reduction in circulat-

ing cryptococcal antigen. Further development has been hampered, however, by difficulties in

securing funding for a disease for which financial returns are likely to be low—a common
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problem for neglected infectious diseases. Subsequent studies have examined mAbs that target

cryptococcal melanin [97], β-glucan [98], or glucosylceramide ([99–101]; see [102] for addi-

tional in vivo and in vitro examples). Host CD40 has also been targeted to stimulate the

immune response [103]. In addition to highlighting the potential of mAbs as therapeutics,

these studies have demonstrated the diversity of inhibitory actions that mAbs can perform on

cryptococcal cells, which can include opsonization and increased phagocytosis, inhibition of

fungal growth, capsular polysaccharide release and biofilm formation, antibody-mediated tar-

get cleavage, and augmentation of the host response [104–107].

Pneumocystis, like Cryptococcus, is an important opportunistic pathogen in HIV/AIDS and

other immunosuppressed patient populations, with estimates of up to 500,000 cases per year

[87]. However, unlike Cryptococcus, which is acquired from the environment, Pneumocystis
spp. are commensals, with different species occurring in the lungs of many mammals. The

capacity for endogenous infection and for acquisition from asymptomatic carriers makes

Pneumocystis an attractive target for immunoprophylaxis. To this end, a variety of programs

are aimed at developing a Pneumocystis vaccine [108, 109], and passive immunization studies

have been initiated using mAbs raised to Pneumocystis epitopes. Intranasal administration of

4F11, an mAb that recognizes the Pneumocystis kexin-like protein KEX1, was able to prevent

transmission of Pneumocystis pneumonia from infected to susceptible cohoused mice, demon-

strating the feasibility of this approach [110]. Emerging evidence of the importance of B cell–

mediated immunity to Pneumocystis infection strongly supports further research in this area

[111].

Paracoccidioides brasiliensis, while less globally prevalent than Cryptococcus or Pneumocys-
tis, is the most important cause of IFIs in Latin America. mAbs have been raised against the

major P. brasiliensis antigens glycoprotein 43 (gp43) and gp70. In an infected mouse model,

anti-gp43 activity, mediated by mAb E3-enhanced phagocytosis of P. brasiliensis cells,

increased interferon-γ production and led to a reduction in the fungal burden [112], while

anti-gp70 mAbs significantly reduced fungal colony-forming units and almost completely

abolished granuloma formation in the lungs [113]. Antibodies raised against mouse CD25+

regulatory T (Treg) cells, which control immunity and excessive inflammation, depleted

CD25+ cells, resulting in less severe tissue inflammation, with reduced mortality in susceptible

mice [112]. Again, this demonstrates the potential for mAbs to exert control of fungal infec-

tion, either directly by incapacitating the fungal cells or indirectly via modulation of the host

response.

Candida albicans is the most commonly isolated fungal pathogen globally and is associated

with significant morbidity and mortality, particularly in patients with HIV or tuberculosis

(TB) infection [114]. A recent paper demonstrated the cloning of antibody genes from B cell

cultures derived from patients infected with C. albicans [115]. These antibodies were capable

of stimulating opsonophagocytic macrophage activity and provided protection in a murine

model of disseminated candidiasis.

In summary, mAbs offer tremendous potential to augment the antifungal arsenal: Animal

models have provided promising results, there is a wide range of potential targets, they have

the capacity to both inhibit the pathogen and augment the host response, and it may be possi-

ble to target diverse fungal pathogens with an appropriate mAb cocktail or by targeting pan-

fungal antigens. Use of mAbs as adjuvants to existing antifungal drugs also shows promise

[116]. However, it should be noted that not all mAbs are inhibitory; indeed, some may worsen

infection, species and strain specificity can be an issue, and the mechanistic basis of inhibition

by different mAbs can vary dramatically [117]. To date, only 2 mAb treatments have advanced

to clinical trials: the previously mentioned 18B7 in Cryptococcus, and Mycograb, a heat shock

protein 90 (HSP90)-specific antibody fragment, which showed promise for treating Candida
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infections but failed to make it to market due to production difficulties and unresolved safety

issues. Antifungal immunomodulation is a complex area, and the field is still emerging. These

preliminary studies highlight the potential for exciting new advances in mAb research and

application, both for understanding fungal immunity and for manipulating it to tackle life-

threatening fungal infections.

Dengue

Dengue fever is a mosquito-borne viral infection found in tropical and subtropical regions

around the world. The dengue virus (DENV) is transmitted by female mosquitoes, mainly of

the species Aedes aegypti and, to a lesser extent, A. albopictus. There are 4 distinct serotypes—

DENV-1 to DENV-4—of the virus, and all serotypes are presently circulating in endemic

areas. DENV infects cells of the human immune system and other cell types, leading to symp-

toms that include high fever, severe headache, severe pain behind the eyes, joint pain, muscle

and bone pain, rash, and mild bleeding. In severe cases, plasma leaks out of the circulatory sys-

tem, which can be fatal. The global incidence of dengue has grown dramatically in recent

decades. One recent study estimated that approximately 390 million people are infected, of

which 96 million manifest clinically each year [118]. WHO estimates that, globally, 500,000

people with severe dengue require hospitalization each year and that 2.5% of these infections

are lethal.

Antibody-dependent enhancement (ADE) is problematic in dengue infection. The presence

of subneutralizing levels of flavivirus cross-reactive serum antibodies (acting against one mem-

ber of the virus family) may result in an increase in infectivity via ADE of another virus mem-

ber or serotype, which is observed particularly after secondary dengue infection [119, 120].

Despite decades of effort, there is no effective treatment against dengue. Currently, Deng-

vaxia is approved by the FDA and is the only licensed dengue vaccine in the world. This is also

a live attenuated tetravalent dengue vaccine developed by Sanofi Pasteur [121] that has been

approved in several countries. However, interim results from long-term safety follow-up stud-

ies demonstrated an increased risk for hospitalization of vaccine-sensitized individuals [122],

suggesting that ADE-related concerns are relevant. It has been reported that non-neutralizing

levels of anti-DENV antibody can enhance viral entry into host cells by forming a DENV-

antibody complex [123, 124]. There is concern that an incomplete antibody against DENVs

may cause ADE-mediated severe dengue disease. Hence, there is a need for a safe and highly

efficacious dengue therapy or vaccine that provides immunity against all 4 serotypes

simultaneously.

mAb therapy is an alternative to vaccines and other therapies against dengue. Many mAbs

against dengue from mice and humans have been characterized, and the use of mAbs has also

been explored as a therapeutic option. Antibody SIgN-3C, identified by the Singapore Immu-

nology Network, neutralized all 4 dengue serotypes and decreased viremia of all serotypes in

mice when given 2 days after infection [43]. A humanized mAb Visterra 513 (VIS513), a pan-

serotype anti-DENV developed by Visterra [44, 45], which binds E protein domain III (EDIII)

and neutralizes all 4 serotypes of DENV, also showed useful antiviral utility. VIS513 (25 mg/kg

or 50 mg/kg) was administered at 5 days post infection in nonhuman primates, and no infec-

tious virus could be detected by either plaque assay or virus isolation after treatment, a finding

that was, however, not mirrored by reverse transcription PCR (RT-PCR) findings.

A human challenge model is now available for clinical research in dengue [125]. In this

model, the efficacy and safety profile of therapeutic antibodies can be evaluated rapidly in

small-scale clinical settings, prior to traditional large-scale field studies with naturally infected

patients. To develop mAbs for dengue therapy, it is important to consider an approach that
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prevents or reduces ADE, and several studies that address this link have been undertaken. A

neutralizing human mAb, D23-1B3B9, that targets the fusion loop in domain II showed strong

neutralizing activity against all 4 DENV serotypes [46]. However, at subneutralizing concen-

trations, it also elicited ADE activity in vitro [47]. To reduce the ADE, Injampa and coworkers

[48] modified the D23-1B3B9 antibody Fc domain at position N297Q. The modified antibody

kept the same cross-neutralizing activity to all 4 serotypes as those of wild-type antibody but

lacked ADE activity against all 4 serotypes at subneutralizing concentrations. In another neu-

tralizing mAb, SIgN-3C, 2 leucine to alanine mutations were engineered in the Fc part, abro-

gating binding to Fc gamma receptors [43]. This mutant Fc version (SIgN-3C-LALA)

protected mice, while ADE was completely abrogated. Similarly, Mab11/mutated Fragment

crystallizable region (mutFc) (an mAb that is unable to bind to cells with Fcγ receptors [FcγR])

and potentiate ADE have been used as a prophylactic therapy [49]. Passive immunization with

this mAb (at 25 mg/kg) reduced viral load and disease progression in nonhuman primates.

Here again, therapeutic antibodies can also be used for prophylaxis, affording immediate

and reliable protection.

Opportunities for other neglected diseases

TB

TB is a good example of the gap between a pathogen’s prevalence and burden. Mycobacterium
tuberculosis spreads easily among human populations; presently, about one-third of all

humans are infected, and new infections occur in 1% of the population each year. Among

these billions of carriers, there are, however, “only” 10 million active TB infections, with 1.3

million deaths in 2016. Thus, the vast majority of carriers keep the pathogen in check. TB

exerts 2 levels of immune evasion: one in which it is maintained in a latent state and one in

which it breaks free and causes active disease [126]. Several studies have tested antibody ther-

apy in TB, with varying success (reviewed in [127]). Even if an mAb treatment would not be

curative, shortening the standard treatment of patients infected with multidrug-resistant

(MDR) and extensively drug-resistant (XDR) strains would represent a major advance. In

addition, “Checkpoint blockade during chronic TB infection requires further consideration”

[128].

Malaria

The role of protective antibodies in malaria was demonstrated over 40 years ago with the find-

ing that the passive transfer of sera from mice with radiation-attenuated sporozoites delayed

the development of infection in other mice [129]. The TPPs for malaria are well described

[130, 131]. These include a profile for seasonal malaria chemoprevention, a treatment success-

fully launched in sub-Saharan Africa in the last 5 years, consisting of a full treatment course of

3 days of amodiaquine and 1 dose of sulfadoxine/pyrimethamine. It is given monthly to chil-

dren during the rainy season. Antibody therapeutics for malaria could (1) prevent the entry

(initial infection) of the parasite, (2) block entry of the sporozoite into the liver cells, (3) block

entry of the merozoites into the erythrocytes, or (4) block the uptake of the gametocytes into

the mosquito (breaking the transmission cycle).

One difficulty in targeting the merozoites in symptomatic malaria is that the extracellular

phase of the pathogen is relatively short-lived and is only a small part of the life cycle. Addi-

tionally, the number of merozoites invading erythrocytes is very large (up to 1012), compared

with the number of sporozoites invading the liver stages (dozens). As such, the most interest-

ing place to intervene with an mAb is at the initial infection of the liver. Currently there are 3

mAbs published with potent activity against the circumsporozoite protein, CSP, and these can
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reduce the parasitaemia in sporozoite-infected FRG (triple mutant Fah/Raγ2/IL2Rγ) mice that

carry a human liver implant [132]. These mAbs include mAb317, cloned from B cells obtained

from a patient in the recent RTS,S vaccine trial [133], CIS43 (circumsporozoite protein 43

[56]), and a set that included MGU12 [134], cloned from patients vaccinated with irradiated

sporozoites. Antibodies that block the invasion process of the red blood cells by merozoites

represent another possible approach. In studies of the merozoite protein RH5 (reticulocyte-

binding protein homologue 5) as a potential vaccine, some antibodies were described that

could block the cycle of erythrocyte infection [135]. The specific merozoite epitopes are now

being characterized, and this could form the basis of a second-generation antibody [136, 137].

A general observation with Plasmodium infections is that the human host is unable to

mount a sterilizing immune response. One theory is that the parasite can control the T-cell

response and induce a state of fatigue or anergy similar to that seen in tumor-invading lym-

phocytes in immuno-oncology. Several studies in mice have demonstrated that blocking

PD-L1 or CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) improves clearance in mice

infected with Plasmodium bergheii [138], and from this and similar experiments, a strong argu-

ment can be made that reversal of this fatigue by mild checkpoint inhibitor blockade may be a

way of facilitating the host response [11].

HIV

mAb therapies have also been proposed for HIV. The case for HIV was recently reviewed [139,

140]. Two such mAbs are in Phase III trials: PRO 140 and Cenicriviroc. PRO 140 targets

CCR5 (cysteine-cysteine chemokine receptor type 5) and recently entered Phase IIb/III trials

for weekly subcutaneous dosing for monotherapy maintenance [141]. Cenicriviroc is a dual

CCR2 and CCR5 antagonist investigated for a number of indications, including HIV infection

[142]. As noted earlier, ibalizumab was recently approved as a second-line treatment for HIV

treatment [13].

Hepatitis B

For HBV infection, the hypothesis is that high circulating HBsAg levels prevent a proper

immune response. A novel mAb, E6F6, is being evaluated for reducing HBsAg levels in

patients [52]. In addition, the HBV S protein is being targeted for the discovery of therapeutic

mAbs [143].

Leishmaniasis

In the case of visceral leishmaniasis (VL), IL-10 and glucocorticoid-induced TNF-receptor–

related protein have been considered as mAb targets [144], but there has been no systematic

analysis of antigens or reported cloning of B cells from infected patients.

Future directions and conclusions

Although mAbs have made a massive impact in controlling autoimmune disease, inflamma-

tion, and cancer, the relative impact in the world of infectious disease has largely been confined

to viral diseases. The use of mAbs to protect against RSV infections and the profile of second-

generation antibodies shows that it is possible to obtain mAbs that are sufficiently potent to

provide long-term protection with a single intramuscular or subcutaneous injection. With the

development of new technologies for cloning antibodies from B cells or plasma cells taken

from patients infected with bacteria, viruses, fungi, or even protozoal pathogens, it is possible
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to quickly obtain fully human antibody collections with potential activity against pathogens in

vitro and in vivo.

Technologies for expressing antibodies are now at the stage in which it is not uncommon to

see extremely high levels of expression in cell culture, and taken together with the progress in

reducing costs of production, the cost of goods for an antibody injection is starting to enter the

range of US$1 to US$10, reaching the edge of what is affordable for infectious diseases of

neglected populations.

Studies of mutations in the Fc region confirm that mAb half-lives can be extended, and the

goal of a single injection to cover an entire season for those infections with seasonality is now a

possibility. New technologies with viral delivery offer the promise that a single injection could

give protection for even longer periods. For many infectious diseases, we are now seeing the

buildup of a portfolio of potential antibodies. In cases in which little progress has been made, a

systematic attempt is needed to identify the antibodies resulting from successful control of an

infection in patients.

Beyond these basic antibodies, the availability of new monoclonals with anti-infective activ-

ity in vivo would open up the door to even more creative options: Bispecific antibodies could

be used in key immune cells and could effectively support the natural response to infection.

Studies in animal models of chronic malaria infection led to the observation that this results in

a reduction in the impact of cytotoxic T cells and modulates the Treg capacity, leading to an

“exhausted” or ineffective T-cell response [145]. Clinical trials are already underway that use

immune checkpoint blockers for chronic HIV and HBV infection [11]. This has important

implications for any infectious disease in which a single infection does not drive a sterilizing

immune response. For such diseases, which include malaria, one question for the longer term

is whether immune checkpoint inhibition, or interfering with interferon-α signaling, could be

used [128].

Two decades ago, one of the biggest challenges of working in anti-infective drug discovery

was the need to have new medicines with activities against the widest range of pathogens. In

more recent times, the tide has changed, and clinical diagnosis now is such that medicines

with a high degree of selectivity and specificity are often preferred—as long as they show good

clinical activity. This shift to highly specific medicines favors the use of mAbs. Given the over-

all rise in interest for new treatments in infectious diseases caused by concerns about antimi-

crobial resistance, there is a real opportunity now to progress the newly emerging families of

mAbs to target infectious diseases of neglected populations. Because of outdated preconcep-

tions about this class of therapeutics, few research funds are being allocated to their discovery,

resulting in an egg-and-chicken problem (the absence of conspicuous success driving addi-

tional efforts). One of the goals of the analysis that we present here is to promote making addi-

tional funds available to pursue the initial discovery of mAbs for neglected diseases.
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