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Roles of Inflammasomes in Inflammatory Kidney Diseases
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The immune system has a central role in eliminating detrimental factors, by frequently launching inflammatory responses towards
pathogen infection and inner danger signal outbreak. Acute and chronic inflammatory responses are critical determinants for
consequences of kidney diseases, in which inflammasomes were inevitably involved. Inflammasomes are closely linked to many
kidney diseases such as acute kidney injury and chronic kidney diseases. Inflammasomes are macromolecules consisting of
multiple proteins, and their formation initiates the cleavage of procaspase-1, resulting in the activation of gasdermin D as well as
the maturation and release of interleukin-1β and IL-18, leading to pyroptosis. Here, we discuss the mechanism in which
inflammasomes occur, as well as their roles in inflammatory kidney diseases, in order to shed light for discovering new
therapeutical targets for the prevention and treatment of inflammatory kidney diseases and consequent end-stage renal disease.

1. Assembly and Signaling of Inflammasomes

The concept of inflammasome was introduced in 2002 by
Dr. Tschopp et al. to describe protein complexes that form
within activated immune cells and tissue-resident cells,
leading to a series of inflammatory responses including
cytokine production and cell death [1, 2]. The inflamma-
some complex contains three components: inflammasome
sensors, adaptors, and effector proteins. The sensor proteins
belong to cytosolic pattern recognition receptors (PRRs),
which are innate immune sensors capable of recognizing
pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) [3]. The
known inflammasome sensors include receptors from the
NOD-like receptor (NLR) and AIM2-like receptor (ALR)
proteins [4]. The adaptor proteins are apoptosis-associated
speck-like proteins containing caspase activation and recruit-
ment domain (ASC) proteins with a N-terminal pyrin
domain (PYD) and a C-terminal caspase activation and
recruitment domain (CARD). Finally, the effector proteins
are proteolytic caspase-1/-11 (mice)/-4 (human)/-5 (human).

Inflammasomes are initiated by a diverse array of stimuli
which activate sensor receptors within the cells, leading to
their oligomerization and formation of a protein complex
with ASC proteins. ASC proteins bridge sensor proteins
and effector proteins via homotypic PYD-PYD and
CARD-CARD interactions to form a large filamentous
scaffold [5, 6]. Inactive caspase monomers are recruited
to the ASC filaments and become self-activated [7]. The
sensor-ASC-caspase macromolecular complex can be visu-
alized as a speck of 1-2 μM within the cytosol, which is
considered a characteristic of inflammasome assembly [8].
Activated caspases cleaved prointerleukin-(IL-) 1β, pro-IL-
18, and gasdermin D (GSDMD), resulting in the pyroptosis
of the cell [9]. Pyroptosis is a catastrophic form of cell
death with morphological characteristics of apoptosis and
necrosis. Cell lysis occurs due to GSDMD-dependent pore
formation in the cell membrane, disruption of the cellular
ionic gradient, water influx, and cell swelling. This further
leads to intensive inflammasome activation; release of cell
components including damaged DNA, mitochondria, and
enzymes; and finally cellular disruption of adjacent cells
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[9, 10]. There are five receptors known to assemble inflam-
masomes, including the NLR protein members NLRP1,
NLRP3, and NLRC4, as well as ALR protein members
absent in melanoma 2 (AIM2) and pyrin. Other proteins,
including NLRP2, NLRP6, NLRP7, NLRP12, NLRP9a,
RIG-I (retinoic acid-inducible gene I), and IFI16 (inter-
feron-γ-inducible protein 16), can also activate caspase-1,
though the underlying mechanism which is less thoroughly
explored [11–16].

1.1. NLRP3 Inflammasomes. The NLRP3 inflammasome is
the most studied type, and genome-wide associated studies
show that the mutation in the human NLRP3 gene is
linked to hereditary cryopyrin-associated periodic syndrome
(CAPS), a spectrum of clinical manifestations including
Muckle-Wells syndrome, familiar cold autoinflammatory
syndrome, and neonatal-onset multisystem inflammatory
disease [17]. It is also believed that NLRP3 inflammasomes
are closely related to the onset of many diseases, including
kidney diseases, cardiovascular diseases, rheumatoid arthritis
(RA), asthma, gout, HIV infection, and Alzheimer’s disease
[18]. The NLRP3 protein consists of a C-terminal leucine-
rich repeat (LRR) domain, a nucleotide-binding domain
(NBD) in the middle, and a N-terminal PYD domain.
The assembly of NLRP3 inflammasomes requires two sig-
nals. The first priming signal requires the engagement of
toll-like receptors (TLRs), nucleotide-binding oligomeriza-
tion domain (NOD) 2, or a tumor necrosis factor (TNF)
receptor with specific ligands and cytokines. All of these
signals activate NF-κB and thus increase the expression
of NLRP3, pro-caspase-1, pro-IL-1β, and pro-IL-18. The
second signal required is that NLRP3 molecules sense a
variety of danger signals and recruit other components
to form the macromolecular complex [3]. These danger
signals include pathogens such as Staphylococcus aureus,
Listeria monocytogenes, Escherichia coli, Sendai virus, and
Influenza virus, as well as DAMPs such as uric acid crys-
tal, silica crystals, asbestos, alum, and X-ray. Previously, it
seemed that potassium efflux was a downstream conver-
gence point for the NLRP3 inflammasome assembly trig-
gered by these diverse signals [19]. The molecular basis
for the efflux K+ signal relies on a series of events includ-
ing the activation of purinergic receptor P2X7 via ATP
from dying cells, unstable mitochondria, integration of
lysosomes, and the production of reactive oxygen species
(ROS) [8]. However, it has been recently found that K+

signals are not necessary for the formation of NLRP3.
NIMA-related kinase 7 can directly bind to the LRR
domain of NLRP3 and controls the formation of the
NLRP3 macromolecules [20, 21]. Recently, it was found
that phosphatidylinosito-4-phosphate (PtdIns4P) recruited
NLRP3 to the trans-Golgi network which served as a scaffold
for NLRP3 aggregation, while disruption of the interaction
between NLRP3 and PtdIns4P on the trans-Golgi network
blocked NLRP3 aggregation and downstream signaling
[22]. Also, cathepsins and cytoskeleton destabilization
have been implicated in NLRP3 inflammasome activation
[23, 24]. After its activation, NLRP3 proteins bind to ASC
proteins via the PYD region, then ASC proteins in turn

recruit pro-caspase-1 proteins with the same CARD region,
cleaving it into mature caspase-1 composed of p10 and p20
subunits. Active caspase-1 then processes pro-IL-1β and
pro-IL-18 into mature IL-1β and IL-18, and cuts GSDMD
into N-terminal and C-terminal fragments. GSDMD-N of
GSDMD binds to phosphoinositides and cardiolipin pre-
sented in the mammalian cell plasma, creating extensive
membrane pores with an inner diameter of 12-14 nm,
causing leakage of IL-1β and IL-18 and other cell compo-
nents [9, 25, 26]. An alternative activation pathway for
NLRP3 inflammasomes involves caspase-11/-4/-5 directly
recognizing LPS, creating macromolecules and cutting
GSDMD to release N-terminus, and thus forming mem-
brane pores. Caspase-11 can also cleave the pannexin 1
channel protein, resulting in ATP leakage, activation of
P2X7, influx of Ca2+, efflux of K+, and finally NLRP3
inflammasome activation and pyroptosis [9, 27, 28].

1.2. NLRP1 Inflammasomes. The NLRP1 inflammasome was
first found responding to the Bacillus anthracis lethal factor.
Humans only have one NLRP1 protein, whereas mice have
NLRP1a, NLRP1b, and NLRP1c paralogues, all of which lack
a PYD domain. The human NLRP1 protein contains NBD,
LRR, a function to find domain (FIIND), and C-terminal
CARD regions. Recently, it was found that functional degra-
dation of NLRP1 led to inflammasome activation by diverse
pathogen enzymes. First, autoprocessing of FIIND domain
generates two associated fragments. Secondly, NLRP1b is
cleaved by the lethal factor of B. anthracis or ubiquitinated
by Shigella lpaH7.8, targeting for proteasome degradation.
Finally, the release of bioactive C-terminal of NLRP1b trig-
gers inflammasome assembly [29, 30]. At the other hand,
experiments have shown that mouse NLRP1a protein has
inflammasome functions since a point mutation at aa593
Q→P caused a strong systemic inflammatory response,
driven by caspase-1 and IL-1β, while Nlrp1a-deficient mice
showed enhanced recovery from hematopoietic and infec-
tious stress [31–34]. Besides B. anthracis, NLRP1 has also
been implicated in the host response to protozoan Toxo-
plasma gondii. Mice deficient in Nlrp1b and Nlrp3 pro-
duced less IL-1β and IL-18 upon T. gondii infection, as
they harbored increased parasitic loads [35].

1.3. NLRC4 Inflammasomes. The NLRC4 inflammasome
contains NLRC4 and NLR apoptosis inhibitory proteins
(NAIPs). NAIP family proteins directly bind to a bacterium’s
type 3 secretion system (T3SS) and flagellin, and then
become activated, allowing them to recruit and activate
NLRC4. Humans only have one NAIP protein, whereas
mice have several members, including NAIP1, NAIP2,
and NAIP6. The ligand specificity differs in mouse and
human NLRC4 inflammasomes. Mouse NAIP isoforms
recognize flagellin, T3SS rod, and needle proteins, while
the human NAIP is activated by T3SS needle proteins
[36]. The activation of NAIP proteins attracts and acti-
vates NLRC4, which in turn attracts caspase-1 either
directly or indirectly through ASC, causing inflammatory
responses [37–40].
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1.4. AIM2 Inflammasomes. ALR proteins, which belong to
the IFI family, have also been implicated in inflammasome
activation and type I interferon response. Humans have 4
ALR genes, including AIM2, IFI16, pyrin-1, and myeloid cell
nuclear differentiation antigen, whereas mice have 13 ALR
genes [41]. AIM2 recognizes exogenous DNA of bacteria
(e.g., Listeria monocytogenes) and viruses (e.g., Papillomavi-
rus), as well as endogenous DNA within the cells, triggering
inflammasome activation and interferon synthesis [42, 43].
ALR proteins contain HIN200 and PYD regions, for which
the HIN200 region directly binds to DNA while the PYD
region mediates protein-protein interaction [44, 45]. Mouse
p202/human IFI16 proteins serve as negative regulators of
AIM2 inflammasomes by inhibiting the formation of the
AIM2-ASC complex [46–49].

1.5. Pyrin Inflammasomes. Pyrin is coded by theMEFV gene,
and its mature form includes a PYD, two B-boxes, and a
coiled-coil domain. The human pyrin protein also includes
a B30.2 domain. Pyrin can sense signals from Clostridium dif-
ficile TcdB, Clostridium botulinum C3, and Vibrio parahae-
molyticus VopS proteins. Pyrin does not directly interact
with the aforementioned signals; instead, these signals cause
various modifications (glycosylation, adenylylation, ADP-
ribosylation, etc.) of Rho GTPases, causing the rearrange-
ment of the cytoskeleton and subsequent activation of pyrin
inflammasomes [50–52].

2. Research in Inflammasome-Related
Kidney Diseases

Inflammatory responses exist in almost all kinds of kidney
diseases, which are consequences of immune cells sensing
PAMPs and DAMPs. It is believed that innate immune
systems participate more actively than adaptive immune sys-
tems in recognizing and responding to PAMPs and DAMPs
in kidney,maintaining homeostasis by regulating endogenous
processes like inflammation and apoptosis [53]. PAMPs, such
as virus and bacteria, are closely linked to pathogenesis of
kidney diseases. For example, acute poststreptococcal glo-
merulonephritis is the leading cause of glomerulonephritis
in children and is mainly caused by group A Streptococcus
[54]. Hepatitis B virus triggers IgA nephropathy (IgAN)
and membranous nephropathy, while measles and dengue
fever virus are linked to acute interstitial nephritis [55].
DAMPs derived from endogenous molecules released from
dying cells (e.g., amyloid-β, high-mobility group box 1 pro-
tein, ATP, uric acid crystals, chromatin, and DNA) also acti-
vate cellular receptors, leading to downstream inflammation
resembling PAMPs-triggered signaling pathways [56].

The innate immune defense is characterized by PRR fam-
ilies of membranouse and cellular receptors (TLRs, RIG-I
receptors, NOD receptors, scavenger receptors, C-type lectin,
etc.) recognizing PAMPs and DAMPs, then initiating inflam-
mation which primarily include interferon-(IFN-) α and
IFN-β, as well as proinflammatory cytokines TNF-α, IL-1β,
IL-6, IL-18, etc. [57]. Within this, innate immune cells (e.g.,
macrophages, monocytes, and dendritic cells) frequently
employ inflammasomes to trigger the synthesis of IL-1β

and IL-18 [1]. In the kidneys, IL-1β and IL-18 cause renal
injury after binding to their receptors, which are abundantly
expressed on infiltrated leukocytes, renal endothelial cells,
and tubular epithelial cells [58–62]. IL-1β and IL-18 can acti-
vate MAPK and NF-κB signaling pathways, thus leading to
the production of nitric oxide, cyclooxygenase-2, inflam-
matory cytokines, and superoxide products [58, 63–65],
finally exacerbating renal inflammation. Also, IL-1β and
IL-18 promote the expression of adhesion molecules such
as vascular cell adhesion molecule-1, intercellular cell adhe-
sion molecule-1 [58, 66], and vascular endothelial growth
factor [67], which cause systemic endothelial dysfunction
(ED), a process that promotes leukocyte adhesion and vas-
cular leakage in the kidney. Besides the IL-1β/IL-18 axis,
other proinflammatory mediators (e.g., cytokines, ROS,
bioactive lipids, and adhesion molecules) derived from
inflammatory responses also contribute to ED, aberrant
extracellular matrix metabolism, proliferation of renal res-
ident cells, activation of coagulation system, and receptor-
mediated vasoreactivity, finally leading to tubular injury,
nephron dropout, and kidney function deterioration [68].

Besides immune cells, resident kidney cells also take
part in inflammation and the tissue repair process. Intrare-
nal cells respond to circulating proinflammatory mediators
by amplifying production of ROS and other proinflamma-
tory factors [68]. Intrinsic renal cells (epithelial cells, podo-
cytes, and endothelial cells) express components of the
inflammasome pathway, synergically contributing to renal
inflammation [61]. Evidence demonstrates positive expres-
sions of NLRP2, NLRP3, NLRP6, NLRP10, and NLRP12 in
human kidney samples [53]. The expression of NLRP3
was confirmed in both tubular cells and podocytes, and it
was increased in biopsies of human kidney diseases (hyper-
tension kidney injury, acute tubular necrosis, diabetic
nephropathy, IgAN, and lupus nephritis) [69]. Most of
inflammasome research is focused on NLRP3 inflamma-
somes, though the roles of other inflammasomes are also
important in the pathogenesis of inflammatory kidney dis-
eases. Below, we review recent research on inflammasomes
relating to various kidney diseases (Table 1), to understand
the role inflammasomes play in them and to hope to pro-
vide clues to new therapeutic strategies.

2.1. Inflammasomes in Acute Kidney Injury. Acute kidney
injury (AKI) is acute, but reversible kidney function deterio-
ration in a short period caused by ischemia, sepsis, and renal
toxins. Research suggests that AKI accompanies large
amounts of cell apoptosis and necrosis, as well as the release
of cell debris. The heat shock proteins, histones, and high-
mobility group B1 proteins in the cell debris can activate
NF-κB via TLR2 and TLR4 in a MyD88-dependent pathway
to promote the expression of NLRP3 and pro-IL-1β, there-
fore activating the inflammasome pathway [70–72]. Hydro-
xychloroquine (TLR7/8/9 inhibitors) blocked the priming
and activation of NLRP3 by downregulating NF-κB signal-
ing and activity of cathepsins B and L, thus attenuating
renal dysfunction in an ischemia-reperfusion (I-R) model
[73]. In the murine acute kidney injury model, a lack of
NLRP3 resulted in protected kidney functions, attenuated
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inflammation, and increased survivability of mice [74]. In
the murine I-R injury model, Shigeoka et al. found that
Nlrp3-/- mice demonstrated decreased mature forms of
IL-1β, IL-18, and caspase-1, alleviated renal function dam-
age, tubular necrosis, and leukocyte infiltration [75]. How-
ever, no difference was found when comparing Il-18-/-
mice, Il-1r-/-mice, caspase1-/- mice, and Asc-/- mice to reg-
ular mice after I-R injury, which indicated a new functional
role of NLRP3. They also found that in the I-R injury
model, Nlrp3-/- mice had much less apoptosis than wild-
type and Asc-/- mice [75]. All evidence agrees with the
proinflammatory role of the NLRP3 molecule in AKI,
though the interactions of apoptosis, inflammasomes, and
pyroptosis are intertwined. For instance, the apoptotic
caspase-8 and its adaptor are required for priming and acti-
vation of NLRP3 inflammasomes [76]. In human mono-
cytes, LPS signaling can recruit caspase-8 to trigger
NLRP3 activation in a K+ efflux-independent manner while
the apoptosis signal can induce a K+ efflux-dependent

inflammasome activation [77]. Recently, two groups have
found that Yersinia infection recruited caspase-8 to cleave
GSDMD at Asp276, leading to cell pyroptosis but not apo-
ptosis [78, 79]. This event happened before the activation of
NLRP3 inflammasomes and the release of IL-1β. In brief,
apoptosis limits cells from further cytokine production
and tissue injury, while inflammasome-induced pyroptosis
destroys injured cells but releases proinflammatory cyto-
kines. The regulation and switching of these events are
fine-tuned and controlled under different pathological situ-
ations [36].

2.2. Inflammasomes in Chronic Kidney Disease. Chronic
kidney disease (CKD) develops over several years without
obvious clinical symptoms, but results in irreversible kidney
damage, ultimately leading to end-stage renal disease. CKD
is characterized by leukocyte infiltration, proinflammatory
cytokine secretion, cell damage/death, fibrosis, and renal
function failure as a common end. Persistent, low-grade

Table 1: Roles of inflammasomes in inflammatory kidney diseases.

Disease
Inflammasomes

involved
Roles and potential mechanism Reference

Acute kidney
injury

NLRP3

Nlrp3 gene deletion protected mice from AKI.
[143,
144]

ATP-sensitive P2X7 receptor activates the NLRP3 inflammasomes. [145]

Cell debris (histones, HGBM1, etc.) mediated NLRP3 inflammasome activation.
[70, 72,
74]

IgA
nephropathy

NLRP3

Nlrp3 deficiency improved renal function and renal injury in a mouse IgAN model. [85]

NLRP3 gene expression was correlated with clinical outcome in IgAN patients. [82]

IgA-immune complexes activated NLRP3 inflammasomes involving ROS production in
macrophages, dendritic cells, and renal intrinsic cells.

[85]

Generation of ROS and activation of NF-κB lead to NLRP3 activation,
which is a key event in IgAN.

[84]

Diabetic
nephropathy

NLRP3

Nlrp3-deficient mice are protected against diabetic nephropathy. [88, 89]

Mitochondrial ROS, TLR4 signaling, and NLRP3 inflammasome activation
aggravate diabetic nephropathy.

[89, 91]

TXNIP activated NLRP3 inflammasomes in podocytes of diabetic nephropathy. [95, 146]

High glucose and LPS activate ROS/TXNIP/NLRP3/IL-1β inflammasome
signaling in glomerular mesangial cells.

[96]

ATP-P2X4 signaling mediated high glucose-induced activation of NLRP3 inflammasomes. [90]

NLRC4
Nlrc4 deficiency resulted in diminished disease progression in diabetic mice.
Activation of NF-κB and MAPK pathways was blocked by Nlrc4 deficiency.

[98]

Lupus nephritis

NLRP1 Polymorphism of NLRP1 was related to the pathogenesis of lupus. [119]

NLRP3

NLRP3 inflammasomes were activated in podocytes from NZM2328 mice and
patients of LN; P2X7/NLRP3 is a key signaling pathway.

[110,
111]

Immune complex containing dsDNA induced IL-1β production
through NLRP3 inflammasomes.

[104,
105]

Lack of NLRP3 enhanced lupus symptom in B6lpr mice by inhibiting TGF target genes. [114]

AIM2
AIM2 expression was increased in lupus patients and closely correlated with the severity of
disease in SLE patients. AIM2 facilitates the apoptotic DNA-induced lupus damage via

arbitrating macrophage functional maturation.

[100,
131]

IFI16
IFI16 expression was increased in leukocytes but not in kidney biopsies of lupus patients.

[129,
131]

Anti-IFI16 antibody titers were higher in lupus patients and inversely
correlated with proteinuria.

[110]
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chronic inflammation has been recognized as an essential
part of CKD. Biomarkers of inflammation were inversely
correlated with the estimated glomerular filtration rate
(eGFR) in CKD patients [80]. The unilateral ureteral obstruc-
tive (UUO) model is commonly used to study renal fibrosis
in CKD. In this model, Nlrp3-deficient mice demonstrated
less damage regarding of tubular injury, inflammation, and
fibrosis, as well as less activation of caspase-1 and release
of mature IL-1β and IL-18. Furthermore, it has been
proven that myeloid cells and nonmyeloid cells both play
important roles in NLRP3-mediated renal fibrosis by chi-
meric mouse experiments [36]. Additionally, Aim2-/- mice
exhibited attenuated renal injury, fibrosis, and inflamma-
tion compared with wild-type littermates in the UUO
model. In terms of mechanisms, researchers found that
DNA released from necrotic cells drives the activation of
AIM2 inflammasomes in macrophages, thus promoting
tissue injury in the kidney [81].

2.3. Inflammasomes in IgA Nephropathy. NLRP3 expression
in the kidney was increased in patients of IgAN [82]. In
normal kidneys, NLRP3 expression was detected in kidney
tubular epithelial cells, while it was found with increased
amounts in renal tissue and glomeruli of IgAN. However,
increased NLRP3 expression was associated with better clin-
ical outcome in IgAN, for reasons still unclear [69, 82]. In an
accelerated and progressive IgAN model, compound antro-
quinonol and osthole can suppress ROS production and
NLRP3 activation, thus reducing mesangial cell proliferation,
glomerular sclerosis, and lymphocyte infiltration [83, 84]. In

the same murine model, Nlrp3-deficient mice demon-
strated less leukocyte infiltration, better renal functions,
and less caspase-1, IL-1β, and IL-18 synthesis; while their
Th17 ratios were decreased, and Treg ratios were increased
[85]. The mechanism was explained as follows: IgA-IC can
induce the activation of NLRP3 inflammasomes in macro-
phages, dendritic cells, and renal mesangial cells, causing
the release of IL-1β and IL-18. Hence, suppressing the activa-
tion of NLRP3 decreased inflammatory response [85]. These
results demonstrated that activation of NLRP3 inflamma-
somes in both innate immune cells and kidney-resident cells
led to kidney damage in IgAN.

The expression profiles of inflammasome components in
the peripheral blood of IgAN patients were lacking. Here, we
analyze the mRNA levels of eleven members of the inflam-
masome pathway (NLRP3, NLRP1, NLRC4, NAIP, AIM2,
IFI16, PYRIN, ASC, caspase-1, IL-1β, and IL-18) from
peripheral blood mononuclear cells (PBMCs) in IgAN
patients, and we found that mRNA levels of NLRP3 were sig-
nificantly increased in PBMCs of IgAN patients (Table 2).
Considering previous data showing that NLRP3 expression
was increased in the kidneys of IgAN patients, increased
expression of NLRP3 in PBMCs strengthens the notion that
NLRP3 is relevant to the pathogenesis of IgAN, both in renal
resident cells and in myeloid cells.

2.4. Inflammasomes in Diabetic Nephropathy. In diabetic
nephropathy (DN), NLRP3 inflammasomes promoted dis-
ease onset and progress under high-glucose conditions [86];
meanwhile, IL-1β and IL-18 secreted from both immune

Table 2: Expression profiles of inflammasome members in PBMCs of IgAN patients.

Healthy donors
n = 17

IgAN patients
n = 22 P value

Gender F8/M9 F15/M7 0.19

Age 34 9 ± 9 3 32 ± 10 3 0.38

CREA 56 2 ± 10 4 87 ± 38 3 0.007∗∗

NLRP1 mRNA levels 0 062 ± 0 003 0 068 ± 0 005 0.42

NLRP3 mRNA levels 0 018 ± 0 0007 0 028 ± 0 003 0.014∗

NLRC4 mRNA levels 0 016 ± 0 0010 0 015 ± 0 0015 0.64

NAIP mRNA levels 0 069 ± 0 006 0 07 ± 0 005 0.69

AIM2 mRNA levels 0 0035 ± 0 0003 0 0032 ± 0 0005 0.68

PYRIN mRNA levels 0 07 ± 0 005 0 08 ± 0 009 0.30

IFI16 mRNA levels 0 13 ± 0 012 0 10 ± 0 011 0.08

ASC mRNA levels 0 18 ± 0 02 0 16 ± 0 019 0.47

Caspase-1 mRNA levels 0 17 ± 0 02 0 12 ± 0 002 0.41

IL-1β mRNA levels 0 015 ± 0 0016 0 011 ± 0 0012 0.10

IL-18 mRNA levels 0 012 ± 0 002 0 010 ± 0 001 0.49

Verified healthy donors and primary IgAN patients were enrolled under the supervision of the Ethics Review Committee of the First Affiliated Hospital, Sun
Yat-sen University (Guangzhou, China), and this study was conducted in accordance with the guidelines proposed in the Declaration of Helsinki. None of the
patients had been treated with steroids and/or immunosuppressive drugs within one year nor did they show clinical infection symptoms at the day when blood
samples were taken. PBMCs from venous blood with anticoagulant EDTA-K2 were enriched and subjected to RNA extraction. Gene expression was analyzed
with real-time PCR analysis and calculated with the 2-ΔΔCt method, using GAPDH as the internal control. Sequences and primers for each genes were acquired
from the NCBI database (https://www.ncbi.nlm.nih.gov). All statistical assessments were two-sided using a significance value of P < 0 05 (indicated as ∗) and
P < 0 01 (indicated as ∗∗).

5Mediators of Inflammation

https://www.ncbi.nlm.nih.gov


cells and glomerular resident cells exaggerated disease
severity [87–89]. Indeed, the lack of NLRP3 or blockade of
IL-1R mitigated the symptoms of diabetic mice [89]. It was
found that the immunostaining of P2X4, NLRP3, IL-1β,
and IL-18 was sharply increased in renal tubular epithelial
cells from patients of DN [90]. Moreover, the ATP-P2X4
and TLR4 signaling pathway closely controlled the expres-
sion, as well as the activation of NLRP3 inflammasomes
[90, 91]. In addition to tubular epithelial cells, NLRP3 was
also detected in murine cultured podocytes and human kid-
neys with mild DN [92]. Considering recent evidence dem-
onstrating their positive MHCII expression and antigen-
presenting capacity, podocytes may have similar functions
as renal dendritic cells and kidney-infiltrating macrophages,
contributing to the pathogenesis of DN and other inflamma-
tory renal diseases [93, 94]. When exposed to high-glucose
environments, podocytes significantly produced ROS, which
is key to the activation of NLRP3 inflammasomes [89].
Meanwhile, another pro-oxidative factor thioredoxin-
interacting protein (TXNIP) activated NLRP3 inflamma-
somes by interacting with NLRP3 in high glucose-treated
podocytes [95]. In addition, LPS worked synergically with
high glucose to induce the production of ROS and IL-1β
in renal cells, indicating that ROS/TXNIP/NLRP3/IL-1β
pathways are highly relevant in the development of DN
[96, 97]. Recently, it was found that Nlrc4 deficiency also
resulted in diminished renal injury in a murine diabetic
model [98]. NLRC4 inflammasomes augmented NF-κB acti-
vation, IL-1β release, and macrophage infiltration in diabetic
mice, in parallel to NLRP3 inflammasomes [98].

2.5. Inflammasomes in Lupus Nephritis. As an autoimmune
disease, systemic lupus erythematosus is composed of a series
of immune aberrances, including abnormal T cell develop-
ment, innate immune dysregulation, and increased B cell
activity [93]. These events contribute to the occurrence of
circulating double-stranded DNA- (dsDNA-) containing
immune complexes and other nuclear component debris, as
well as the production of the central cytokine mediator of
lupus, IFN-α [99]. Lupus nephritis (LN), a major cause of
morbidity of lupus, is induced by inflammation following
deposition of the immune complex in the kidneys [100].
The roles of inflammasomes in lupus are complicated, and
numerous molecules contribute to the pathogenesis of lupus
as illustrated in Figure 1. Nuclear dsDNA derived from cell
apoptosis, necrosis, and neutrophil extracellular trap leads
to the formation of anti-dsDNA autoantibody [101–103].
These immune complexes can bind to TLRs and other cyto-
solic receptors, causing activation of NLRP3 inflammasomes,
and in turn activation of caspase-1 and release of IL-1β and
IL-18 [104, 105]. At the same time, ATP released from dead
cells further hastens this process through P2X7 [105, 106].
New Zealand Black/New Zealand White hybrid F1 mice is a
common model for a murine lupus study. In this model, T
cells are poorly developed and inclined to apoptosis, and B
cells produce high titers of anti-DNA antibodies and anti-
nuclear antibodies, which causing mice often dying from
severe glomerular nephritis [107, 108]. NZM2328 mice,
derived fromNZBmice, also developed self-reactive antibod-

ies and glomerular nephritis [109]. According to research on
this model, it has been found that blockade of NLRP3 inflam-
masomes resulted in abated LN symptoms, impaired IL-1β
release, and improved kidney functions [104]. At the same
time, it was found that the P2X7 inhibitor decreased the
protein expression of NLRP3 and ASC, therefore reducing
IL-1β release, anti-dsDNA antibody concentration, and
symptoms of LN [110, 111]. Moreover, this model revealed
that NLRP3 inflammasomes were activated in podocytes via
ROS production, while similar evidence was found in the
kidney biopsies of patients with LN [112]. In another LN
model based on NZB mice combined with LPS injection,
inhibiting ROS and NLRP3 inflammasome pathways also
protected kidney functions, by alleviating cell apoptosis
and renal histopathology [112]. In a murine lupus model
induced by lupus serum, Il-1r-deficient mice and caspase-
1-deficient mice demonstrated major improvements in
skin inflammation, with decreased expression of MCP-1
and TNF-α [113], indicating inflammasome pathways con-
tribute to skin inflammation of LN. All these results show
that inflammasome-related molecules play roles in lupus
progression, including LN. However, in the common lpr
lupus model, the lack of NLRP3 and ASC did not deliver
an expected effect on disease improvement, instead further
damaging kidney function and causing exacerbated activa-
tion of lymphocytes [114]. Further research had shown
that NLRP3 drove the expression of the TGF-β receptor
and downstream molecules which can suppress lupus pro-
gression [114]. Another explanation is that the lpr lupus
model is based on extensive cell apoptosis, and as men-
tioned before, the apoptosis signaling pathway interacted
with the NLRP3 signaling pathway.

On the other hand, complement components were also
found capable of influencing the activation of inflamma-
somes in lupus. Genomics research found that polymor-
phism of C1q was closely related to the pathogenesis of
lupus and the lack of C1q promoted the development of
lupus-like autoimmune diseases [115]. Evidence showed that
C1q suppressed the NLRP3 inflammasome pathway, whereas
it promoted the synthesis of anti-inflammatory cytokines
IL-10 and IL-37 [116]. Meanwhile, it was reported that
NLRP1/IL-1β polymorphism was correlated with the patho-
genesis of autoimmune diseases including lupus [117–119];
however, exact evidence about how NLRP1 was involved in
lupus was not illustrated.

The importance of dsDNA-sensing inflammasomes
(AIM2, IFI16) in LN is also worth mentioning. AIM2 expres-
sion was first found to be related with colorectal cancer and
prostate cancer [120–122]. Additionally, AIM2 expression
was increased in autoimmune diseases, and dsDNA was rec-
ognized by AIM2 in keratinocytes to boost autoimmunity
[123]. In lupus, increased AIM2 expression was positively
correlated with the disease’s SLEDAI score and was regulated
by body hormones [100, 124, 125]. Male hormones can
increase the expression of AIM2 in cells [125], and consis-
tently, a higher level of AIM2 mRNA in macrophages was
observed in male patients with lupus compared with female
patients [126]. In the LN model induced by apoptotic
DNA, AIM2 expression in macrophages showed a substantial
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increase, demonstrating a positive correlation to anti-dsDNA
antibody titer. Injecting siAIM2 can reduce the activation
of macrophages, thus diminishing renal inflammatory
responses [100]. However, there is also contradictory evi-
dence showing that AIM2 was negatively associated with
inflammation in lupus. Aim2 knockdown augmented type
I IFN response induced by cytosolic DNA in macrophages

[127]. Inhibition of AIM2 promoted the expression of
another IFI member IFI16/p202 [128], which was found
increased in leukocytes of lesion skin and peripheral blood
from lupus patients [129–131]. IFI16/p202 conversely
suppressed the activation of AIM2 inflammasomes by
binding to the AIM2-ASC complex [46, 49, 128]. More-
over, the critical cytokine of lupus, IFN-α, can influence
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Figure 1: Schematic illustration of the role of inflammasomes in lupus nephritis. ATP released from dead cells activates P2X7 on the cell
membrane, inducing the K+ efflux and NLRP3 inflammasome assembly. The assembly of NLRP3 inflammasomes and maturation of
caspase-1 caused the cleavage of pro-IL-18 and pro-IL-1β, as well as the release of the N-terminal gasdermin D to induce pyroptosis. The
neutrophil extracellular trap releases a large amount of dsDNA and other cellular components and induces the formation of a dsDNA-
containing immune complex, which promotes the activation of NLRP3 inflammasomes via TLRs. The endogenous RNA-containing
complex can also activate NLRP3 inflammasomes through the endosome-located TLR7/8 signaling pathway. AIM2 and another IFI family
member IFI16 can sense/recognize dsDNA, leading to the activation of caspase-1 and maturation of IL-18 and IL-1β. The signature
cytokine of lupus, IFN-α, binds to IFN receptors on the cell surface, which regulate the expression and maximum activity of AIM2
inflammasomes. Released IL-1β, IL-18, and other inflammatory mediators resulted in endothelial leakage, immune cell infiltration, and
finally tissue inflammation and functional deterioration of the kidney.
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expression/activity of both AIM2 and IFI16 [132, 133].
Considering the antagonizing relationship of IFI16 and
AIM2, how AIM2 and IFI16 work in lupus is worthy of
further investigation.

3. Closing Remarks

From all of the above, it is clear that inflammasomes play
key roles in inflammatory kidney diseases. At present, the
most current research is still focused on NLRP3 inflamma-
somes. Glomerular dysfunction associated with inflamma-
tory microenvironments may benefit from inhibiting
NLRP3 inflammasomes, and many compounds have
shown this effect in murine models of kidney diseases
(Table 3). High-throughput screening and an in vitro engi-
neered cell line have also been used for hunting specific
compounds for inflammasomes [134, 135]. Convincing
evidence from clinical trials also demonstrated that by
blocking the inflammasome pathway, cellular inflamma-
tion and tissue damage are reduced. In human, antago-
nism of IL-1 signaling has been proved effective in
several types of inflammatory diseases. Recombinant
human IL-1ra (anakinra), inhibiting IL-1 binding to IL-1
receptors, has been successfully used in RA [136]. A mono-
clonal antibody against IL-1β (canakinumab) is beneficial
in the treatment of RA and CAPS [137, 138]. An anti-IL-1β
antibody (gevokizumab) has been tested in patients with
DN since 2015 [139]. Also, antagonists of P2X7 have shown

positive outcome in clinical trials of Crohn’s disease [140]
and RA [141, 142].

Much of our knowledge about inflammasomes is limited
to experimental animal models, and the role of inflamma-
somes in kidney diseases still requires more intensive
research. For instance, the effects of AIM2 and IFI16 in
kidney diseases are very intriguing, though there is still no
direct evidence proving how they play roles in the pathogen-
esis of nephritis. As many signals may influence the activa-
tion of inflammasomes, any molecule involved in the
inflammasome pathway could be the key to therapeutic
intervention of kidney diseases. Analyzing how these signals
influence inflammasomes will provide much-needed evi-
dence in understanding and curing kidney diseases.

Abbreviations

AIM2: Absent in melanoma 2
AKI: Acute kidney injury
ALR: AIM2-like receptor
ASC: Apoptosis-associated speck-like protein contain-

ing a CARD
CAPS: Cryopyrin-associated periodic syndrome
CARD: Caspase activation and recruitment domain
CKD: Chronic kidney disease
DAMPs: Damage-associated molecular patterns
DN: Diabetic nephropathy
dsDNA: Double-stranded DNA

Table 3: Compounds targeting inflammasomes for kidney diseases.

Compound Inflammasome target Disease/animal model Reference

BAY 11-7082 (NF-κB inhibitor) NLRP3 Paraquat-induced acute kidney injury model (rat) [147]

Allopurinol (oxidase inhibitor) Need to be specified Glycerol-induced acute kidney injury model (rat) [148]

4-Hydroxycinnamaldehyde-galactosamine NLRP3 LPS-induced renal inflammation (mice) [149]

Harmine NLRP3 LPS-induced renal inflammation model (mice) [150]

Artemisinin NLRP3 5/6 nephrectomy (rat) [151]

Rotenone (inhibitor of mitochondrial complex I) NLRP3 Aldosterone-infused renal nephropathy model (rat) [152]

Hydroxychloroquine NLRP3 Ischemia-reperfusion model (mice) [73]

1,3-Butanediol (inhibitor of the NLRP3) NLRP3
Nephrocalcinosis-related chronic kidney

disease model (mice)
[153]

CP-456773 (inhibitor of the NLRP3) NLRP3 Oxalate- or adenine-induced crystal nephropathy [154]

Ginsenoside compound K NLRP3
High-fat diet/streptozotocin-induced diabetic

nephritis (mice)
[155]

Unilateral ureteral obstruction model (mice) [156]

FL-926-16 (carnosine derivative) NLRP3 db/db diabetic mice [157]

Verapamil NLRP3 Diabetic nephropathy [158]

Osthole

NLRP3 A progressive IgAN model (mice)

[84]

Antroquinonol [83]

Resveratrol [159]

Citral NLRP3
LPS-induced accelerated and severe lupus

nephritis model (mice)
[112]

Piperine NLRP3 Pristine-induced lupus nephritis (mice) [160]

Curcumin NLRP3 Lupus-prone female MRL/lpr mice [161]

Brilliant blue G (P2X7 antagonist) NLRP3 NZM2328 lupus-prone mice [110]

MCC950 (inhibitor of NLRP3) NLRP3 NZM2328 lupus-prone mice [111]
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ED: Endothelial dysfunction
eGFR: Estimated glomerular filtration rate
FIIND: Function to find domain
GADMD: Gasdermin D
IgAN: IgA nephropathy
NAIP: NLR apoptosis inhibitory protein
NBD: Nucleotide-binding domain
NLR: NOD-like receptor
NLRP: Nucleotide-binding oligomerization domain,

leucine-rich repeat, and pyrin domain containing
protein

NOD: Nucleotide-binding oligomerization domain
IFN: Interferon
IL: Interleukin
I-R: Ischemia-reperfusion
IFI: Interferon-γ-inducible protein
LRR: Leucine-rich repeats
LN: Lupus nephritis
PAMPs: Pathogen-associated molecular patterns
PBMCs: Peripheral blood mononuclear cells
PRRs: Pattern recognition receptors
PYD: Pyrin domain
TLR: Toll-like receptors
TNF: Tumor necrosis factor
TXNIP: Thioredoxin-interacting protein
T3SS: Type 3 secretion system
RA: Rheumatoid arthritis
RIG-I: Retinoic acid-inducible gene I
ROS: Reactive oxygen species
UUO: Unilateral ureteral obstruction.
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