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Abstract: Phytophthora sojae is a destructive soybean pathogen that orchestrates various secreted
proteins (effectors) to modulate plant immunity and facilitate infection. Although a number of effec-
tors have been identified and functionally studied in P. sojae, the way these molecules are regulated
is marginally known. In this study, we performed a weighted gene correlation network analysis
(WGCNA) based on digital RNA-seq, which enabled the identification of a transcription factor
(PsCZF3) in P. sojae. This transcription factor is a C2H2-type zinc finger protein that regulates the
transcription of 35 RxLR effectors during the early infection stage. Phylogenetic analysis revealed
that PsCZF3 is a highly conserved protein across oomycetes, suggesting that this regulation mech-
anism may broadly exist in oomycete species. In addition, by building a subnetwork of PsCZF3
and correlated genes, we also found that PsCZF3 contributed to the transcriptional regulation of
carbohydrate-active enzymes. Our findings suggest that the activation of PsCZF3 facilitates P. sojae
infection by up-regulating RxLR effectors and carbohydrate-active enzymes.

Keywords: digital RNA-seq; Phytophthora sojae; WGCNA; transcription factor; RxLR effector

1. Introduction

Phytophthora sojae is a devastating oomycete pathogen that causes the stem and root rot
of soybean crop, resulting in approximately USD1–2 billion losses globally per year [1]. Gen-
erally, oomycete pathogens use different mechanisms, such as the production of extracellu-
lar toxins, hydrolytic enzymes and inhibitors, and effector proteins, for their virulence [2].
Particularly, the proteaceous effectors, which are one of the most important virulence
factors, target numerous host cellular processes, commonly leading to the suppression of
PAMP-triggered immunity (PTI), effector-triggered immunity (ETI), and programmed cell
death (PCD) [2]. Thus far, the best-studied effector class in oomycetes is the RxLR effectors,
which are named for a conserved N-terminal amino acid sequence motif (arginine, any
amino acid, leucine, arginine) [2]. Genomic and transcriptomic studies have advanced
our understanding of the biology and pathology of P. sojae RxLR effectors. With genomic
analysis, the P. sojae reference genome was found to have approximately 400 genes en-
coding RxLR effectors [3,4]. Transcriptomic analyses further indicated that these effectors
were expressed in a timely manner. The immediate-early effectors were strongly expressed
before infection and moderately induced upon infection (2- to 10-fold), while the early ef-
fectors were very weakly expressed prior to infection, but strongly induced (10- to 120-fold)
during the first 12 h of infection patterns [4,5]. To date, however, the way these effectors
are regulated is unknown.

In eukaryotes, the regulation of gene expression generally depends on the activity
of trans acting factors such as transcription factors, which subsequently regulate the tran-
scriptional initiation of genes. Transcription factors can be involved in the transcriptional
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regulation of different (multiple) genes [6]. In oomycetes, transcription factors have been
reported to contribute to pathogen development and virulence. For instance, in both
P. sojae and P. infestans, the MADS-box transcription factors played significant roles in
sporulation [7,8], while the Myb transcription factors regulated both vegetative growth
and sporulation [9,10]. Other transcription factors have been shown to be involved in
the resistance of plant defense response [11–13]. Despite the association of transcription
factors with pathogenesis that have been found, no transcription factor has been reported
to directly regulate RxLR effectors.

Weighted gene co-expression network analysis (WGCNA) is a powerful network
analysis tool that describes the correlation of gene expression based on the microarray
or RNA-seq data. It takes advantage of a graph theoretical approach to understanding
correlations amongst genes and grouping genes into modules that typically have coordi-
nated biological functions and regulatory mechanisms [14]. Currently, WGCNA has been
extensively used to construct gene co-expression networks and identify centrally connected
hub genes in humans, animals and plants [14–16]. However, this method is rarely applied
to plant pathogens.

The objective of this study was to identify transcription factors associated with RxLR
effectors by WGCNA. In the present study, the WGCNA was constructed based on the
digital RNA-seq data during the early stage of the P. sojae infection. Key gene modules
including a large number of RxLR effectors were identified. In one key module, we
found a transcription factor closely associated with RxLR effectors and carbohydrate-active
enzymes. The structure, DNA-binding sites and conservation of the protein were analyzed
in detail. Based on the bioinformatic analyses, our study is expected to provide novel
insights into the transcriptional regulation mechanisms of RxLR effectors.

2. Materials and Methods
2.1. Strain and Culture Conditions

P. sojae strain P6497 was used in this study. The strain was grown in 20% V8 liquid
medium at 25 ◦C under darkness for 72 h and was then washed with sterile distilled water
in order to collect the culture. The soybean cultivar Williams, which is susceptible to P6497,
was grown in a greenhouse at 25 to 30 ◦C and was used at the second-leaf stage. A mycelial
mat (d = 3 cm) was laid on and sandwiched between the upper surfaces of two leaves
at 25 ◦C, respectively, for 0, 6, 12, 24 and 48 h post-inoculation (hpi) [5]. Three biological
replicates were applied for each time point. The regions of the leaves in contact with the
mycelia were excised together with the mycelia and were preserved in liquid nitrogen.

2.2. RNA Isolation, Library Preparation, and Sequencing

Total RNA was isolated from a mixture of leaf and mycelium using TRIzol reagent
(Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s recommenda-
tion. The quality of RNA was estimated by using 1% agarose gel electrophoresis, and its
concentration and purity were assessed by using the NanoDrop 2000 Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). The integrity of total RNA were assessed on
the Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA) using
the RNA Nano 6000 Assay Kit. The sequencing library was constructed with KC-Digital
Stranded mRNA-seq Library Prep Kit for Illumina (Seqhealth, Wuhan, China), according
to the manufacturer’s instructions. Oligo (DT) magnetic beads were used to enrich the
mRNA with poly-A structure in the total RNA. The RNA was fragmented into ~300-bp
fragments by ion interruption. Purified RNA was reversely transcribed into cDNA using
random primers and reverse transcriptase, and the unique identifier (UID; a short sequence
of 8–10 nt) was added. After the construction of the library, PCR was conducted to enrich
the library fragments. Finally, the fifteen libraries were sequenced using the Illumina Hiseq
X Ten System.
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2.3. Digital RNA-Seq and Data Analysis

Using the Illumina Hiseq X Ten System, transcriptome sequencing generated 150-bp
paired-end (PE) raw reads. The raw reads were subjected to quality control. High-quality
reads were filtered using Trimmomatic v0.36 (Anthony M. Bolger, Berlin, Germany) [17],
and data quality scores were sorted using the same software. The cleaned reads were further
processed with the kcUID to remove duplication bias introduced during amplification and
sequencing [18]. The consequent reads were grouped based on their UIDs, in which reads
carrying the same UID were clustered into the same cluster. In the same cluster, the reads
with a minimum of 95% sequence identity were extracted to generate a new sub-cluster
through pairwise alignment. After all sub-clusters were generated, multiple sequence
alignment was conducted to obtain an consensus sequence for every sub-cluster. The
kcUID reads were mapped onto the P. sojae genome V3.0 using Hisat2 v2.0.1 (Daehwan Kim,
Baltimore, MD, USA) [19]. The read count values on each gene as the original expression of
the gene were compared using RSEM v1.2.31 (http://deweylab.github.io/RSEM/, accessed
on 4 June 2016), and the expressions were standardized by RPKM (reads per kilobase per
million mapped reads).

The gene expression profiles of all 15 samples were compared using the hierarchical
clustering analysis (HCA). HCA was implemented according to a distance matrix of the
Spearman correlation [20], and samples with a similar expression profile were clustered
together. HCA was performed using the gplots functions in the R package [21]. The
genes with a difference of at least two-fold change with p-value < 0.05 were considered as
significantly differentially expressed genes. The “DESeq2” R language package was used
to identify differently expressed genes (DEGs) between non-infection (mycelia) stages and
infection stages [22].

2.4. Weighted Gene Co-Expression Network Analysis

Co-expression analysis was conducted using WGCNA [23]. A matrix of pairwise
Pearson correlation coefficients between all pairs of genes was created, and the matrix was
converted into an adjacency matrix using the soft threshold power beta (β), which proposes
covariant similarity, and the topological overlap measure (TOM) similarity algorithm
was used to transform the adjacency matrix into a topological overlap matrix to reduce
noise and false correlation. Successively, hierarchical clustering was performed to identify
modules. To obtain moderately sized modules, the minimum number of genes was set
at 30 and merging modules with highly correlated (r > 0.75) eigengenes (defined as the
first principal component of a given module and may be considered as a representative
of the gene expression profiles in that module). All modules depicted in the hierarchical
clustering dendrogram are henceforth referred to by their color labels. The grey module
is used to hold all genes that do not clearly belong to any other module. To identify
the relationship between modules and various infection stages, module–trait associations
were estimated using the correlation between the module eigengene and the phenotype at
the infection stages, which enabled the easy identification of the expression set (module)
highly correlated with the phenotype. In addition, from the above analysis, we gained the
weighted values, which represent the relationships between genes in pairs. The weighted
values, which are >0.15, were used to perform network analysis using Cytoscape v3.7.2
(Paul Shannon, Seattle, WA, USA) [24]. Weighted values > 0.15 were considered highly
correlated and strongly regulatory.

2.5. Gene Ontology (GO) Enrichment Analysis

The ClusterProfiler package of R was used to identify the GO categories signifi-
cantly enriched with the differentially expressed genes that were highly correlated with
PsCZF3 [25]. p < 0.05 was considered as a threshold of GO enrichment analysis.

http://deweylab.github.io/RSEM/
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2.6. DNA-Binding Site Prediction

In this study, two transcription factors (PsCZF3 and PsCZF4) were identified. Because
PsCZF3 had stronger associations with RxLR effectors than PsCZF4, we focused on PsCZF3.
The 0DNA-binding site prediction for the Cys2-His2 zinc finger transcription factor PsCZF3
was performed based on the webtools “ZFModels” (http://stormo.wustl.edu/ZFModels/,
accessed on 1 April 2014) and “DNA-binding Specificities of Cys2His2 Zinc Finger Proteins”
(http://zf.princeton.edu, accessed on 9 September 2010). The predicted DNA-binding
sequence was represented as a sequence logo [26].

2.7. Identification and Phylogenetic Analysis of PsCZF3 Orthologs

PsCZF3 orthologs were selected based on Blastp searches against NCBI (threshold
values were set to ≥80% coverage, ≥50% identity, and ≥200Max score). The full-length
protein sequences of PsCZF3 orthologs were selected for phylogenetic analysis, and the
tree was constructed by MEGA 6.0 [27], employing the neighbor-joining (NJ) algorithm.
Bootstrap analysis with 1000 replicates was used to evaluate the significance of the nodes.
Conserved motifs in the PsCZF3 homologous proteins were analyzed by MEME (https:
//meme-suite.org/meme/tools/meme, accessed on 5 February 2021) [28].

2.8. Validation by Reverse Transcription-Quantitative PCR (RT-qPCR)

The remaining total RNA samples were reversely transcribed to cDNA after sequenc-
ing libraries were constructed. Twelve genes from different modules were randomly
selected for RT-qPCR analysis. Gene-specific primer pairs of the selected genes (Table S1)
were designed using the primer design website (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/, accessed on 18 June 2012) and were commercially synthesized by Sangon
Biotech Co., Ltd. (Shanghai, China). RT-qPCR was performed using a CFX96 Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). The reaction mixture with a total
volume of 20 µL contained 10 µL of 2XWiz Universal SYBR qPCR Master Mix, 2 µL of
cDNA mix, 0.4 µL of each primer (10 µM), and 7.2 µL of RNase-free double-distilled H2O.
The qRT-PCR was programmed at 95 ◦C for 60 s, followed by 40 cycles of 95 ◦C for 10 s and
60 ◦C for 20 s. A melting curve analysis was performed at the end of each PCR reaction
at 95 ◦C for 15 s, 60 ◦C for 60 s, and 95 ◦C for 15 s. The P. sojae actin gene (ACT, accession
number: XM_009530461.1) was used as a reference. Relative expression level was measured
by normalizing the expression of targets against ACT, based on the 2−∆∆CT method [29].
RT-qPCR assay was repeated three times and three technical replicates were used for each
RT-qPCR.

3. Results

To create a weighted gene co-expression network and explore the transcription factors
involved in the regulation of RxLR effectors, we performed the digital RNA-seq of the
reference P. sojae strain P6497 during the early infection stage. The mycelium was sampled
for RNA extraction at 0, 6, 12, 24, and 48 h after inoculation onto susceptible soybean
leaf tissues. An average of 82,385,841 raw reads for a sample were generated (Table S2).
To analyze the digital RNA-seq data, the raw sequencing reads were first filtered, which
yielded 1112 million clean reads (Table S2). For each of the fifteen libraries, at least 98.40%
of the clean reads had a quality score of Q30. The cleaned reads were further processed
with the kcUID. Eventually, an average of 59 million of the UID reads were selected, and
89.79–97.00% of the reads were uniquely mapped to the P. sojae reference genome V3.0
(Table S3). In total, there were 28,142 genes, including both protein and non-protein coding
genes. After excluding 4335 genes that showed an RPKM value = 0 in all 15 samples,
23,807 (84.6%) genes were present in at least one library. To test the correlation of the
gene expression level among the samples, we conducted a hierarchical clustering analysis
(HCA). Fifteen samples were clearly clustered into five groups on the basis of the infection
time points, suggesting that there was a high correlation coefficient within the groups
(Figure 1A).

http://stormo.wustl.edu/ZFModels/
http://zf.princeton.edu
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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DEGs identified from comparison of 6, 12, 24 and 48 hpi with 0 hpi. 

Figure 1. Comparison of gene expression and differentially expressed genes (DEGs) during the
early infection stage of P. sojae to soybean leaves. (A) Hierarchical clustering analysis (HCA) of
transcriptome data from 15 samples during the early infection. Color scale ranging from green to red
indicates the inter-sample correlation from low to high. (B) Volcano plots illustrating the DEGs at
different sampling time points after the inoculation of P. sojae to leaves. (C) Venn diagram showing
the DEGs identified from comparison of 6, 12, 24 and 48 hpi with 0 hpi.

To examine the DEGs, we compared the gene expression levels at 6, 12, 24, and 48 hpi
to that at 0 hpi. Some 8381 DEGs were observed from the four different expression groups
(Figure 1B,C). To validate the DEGs that were identified, we randomly picked 12 genes
based on their expression patterns at the five infection time points, and conducted RT-qPCR
analysis. The RT-qPCR results show a consistency with those of RNA-seq (Supplementary
Figure S1), confirming the gene expression differentiation that we obtained from the
DESeq2 analysis.

To determine the average expression pattern of RxLR effectors at each time point
of early infection, we measured the expression level values (RPKM) for each infection
group by pooling all RxLR effectors. A total of 316 RxLR effector genes were detected by
the digital RNA-seq. The expression of these RxLR effectors was markedly up-regulated
and reached the peak value at 12 hpi, and then gradually decreased over infection time
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(Supplementary Figure S2). Among the detected RxLR effector genes, 93 genes were
differentially expressed. Further analysis of the differentially expressed RxLR effectors
revealed that the expression of these genes changed more significantly at each time point
during the early infection (Supplementary Figure S2), compared to the average expression
of all RxLR effectors. Remarkably, the average expression level of the RxLR effectors at
12 hpi was significantly higher than those at other time points, implying that these genes
may play a very important role in 12 hpi.

To explore genes that regulated the expression of RxLR effectors during the early
stage of infection, we performed a WGCNA by using the 8381 DEGs. WGCNA was
designed to identify highly correlated gene clusters and relate them to biological traits [23].
It modularly investigates the co-expressed genes and extracts intramodular hub genes
from system networks, increasing the sensitivity to recognize the potential of worthwhile
targets for biological regulations [23]. A total of 10 modules were obtained using a soft
threshold of 22 (Figure 2A,B). The expression level of RxLR effectors at 12 hpi was the
highest during early infection, so we focused on the module which was closely related with
12 hpi. The module eigengenes showed that the red module had the highest correlation
with 12 hpi (R2 = 0.62, p < 0.01) (Figure 2C). Interestingly, we found that 41 (44%) RxLR
effector genes were clustered in the red module, which is much more abundant than those
in other modules (Figure 2D). Collectively, these findings suggest that the red module is
closely related to RxLR effectors.

In the network of gene interactions, the key regulators, such as transcription factors, are
usually at the center of the network regulation and are the ‘core’ of the study. Transcription
factor genes with high connectivity represent essential genes that are the center of the net-
work and might be involved in very important functions in co-expression networks. There-
fore, the visualization of the co-expression network for the red module was constructed to
explore high connectivity transcription factor genes by Cytoscape v3.7.2. Two putative tran-
scription factor genes PHYSODRAFT_353615 and PHYSODRAFT_286006 were identified
from the red module according to the Joint Genome Institute website (JGI) transcription
factor database (https://mycocosm.jgi.doe.gov/mycocosm/proteins-browser/browse;p3
YEuM?p=Physo3, accessed on 12 November 2013)). Pfam v32.0 (http://pfam.xfam.org/, ac-
cessed on 11 June 2020) analysis revealed that PHYSODRAFT_353615 contained C2H2-type
zinc finger protein (ZFP) domains, while PHYSODRAFT_286006 possessed a C3HC4-type
zinc finger (RING finger) domain. We named PHYSODRAFT_353615 as PsCZF3 (Genbank
accession number: XP_009516505.1), and PHYSODRAFT_286006 as PsCZF4 (Genbank
accession number: XP_009527011.1). In order to identify the genes regulated by the two
transcription factors, we constructed a co-expression sub-network employing the two
transcription factors as guide genes. We found that 197 genes were highly correlated with
PsCZF3, and 94 genes were highly correlated with PsCZF4. To our surprise, the 94 genes
belonged to the members of the 197 genes, and PsCZF4 was highly associated with PsCZF3
(Figure 3). Closer examination indicated that among the 197 genes, 35 RxLR effector genes
were closely correlated with PsCZF3, including 20 that were correlated with PsCZF4. These
findings suggest that PsCZF3 and PsCZF4 can be two important transcription factors related
to the RxLR effector regulation during the early stage of infection.

As the connectivity of PsCZF3 is higher compared to PsCZF4 in the red module, we
would like to focus on PsCZF3. Given that PsCZF3 is a C2H2-ZFP transcription factor,
we further dissected its protein structure, particularly its DNA-binding sites. PsCZF3 is
composed of 254 amino acids, and contains four conserved C2H2-type zinc finger domains
(Figure 4A). The four zinc finger domains are the DNA binding domain of PsCZF3 and
able to recognize 12-nucleotide DNA sequence (Figure 4B). We also examined the conser-
vation of the PsCZF3 protein across other oomycete species, and found that the protein is
highly conserved among 16 species in six genera of oomycetes (Figure 4C; Supplementary
Table S4), indicating PsCZF3 may be a regulator that widely controls the expression of
RxLR effector genes in different oomycete species.

https://mycocosm.jgi.doe.gov/mycocosm/proteins-browser/browse;p3YEuM?p=Physo3
https://mycocosm.jgi.doe.gov/mycocosm/proteins-browser/browse;p3YEuM?p=Physo3
http://pfam.xfam.org/
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tered genes. Genes within different modules are labeled with different colors according to the 
WGCNA’s conventions. Ten co-expression modules were constructed and shown with distinct col-
ors. The grey module contains all genes that were not involved in clustering and thus were not 
applied to subsequent analysis. (C) Matrix showing a module–trait relationship. Each row corre-
sponds to a module. Each column corresponds to a time result. The module–trait relationship is 
colored based on their correlation, and red and green colors indicate strong positive and negative 
correlations, respectively. (D) Distribution of differentially expressed RxLR effectors in different 
modules. The number of RxLR effectors was counted after all modules filtered by the criteria that 
have weight value greater than 0.15. 
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Figure 2. Construction of weighted gene co-expression network analyses (WGCNA) and module
detection. (A) Analysis of the scale-free topology model fit index for soft threshold powers (β) and
the mean connectivity for soft threshold powers. Left, the scale of the free fit index (y axis) as a
function of the soft thresholding power (x axis). Right, the mean connectivity (degree, y axis) as
a function of the soft thresholding power (x axis). The β value was set to ensure the high-scale
independence (near 0.9) and low mean connectivity (near 0). (B) Module assignment in hierarchical
clustered genes. Genes within different modules are labeled with different colors according to the
WGCNA’s conventions. Ten co-expression modules were constructed and shown with distinct colors.
The grey module contains all genes that were not involved in clustering and thus were not applied to
subsequent analysis. (C) Matrix showing a module–trait relationship. Each row corresponds to a
module. Each column corresponds to a time result. The module–trait relationship is colored based
on their correlation, and red and green colors indicate strong positive and negative correlations,
respectively. (D) Distribution of differentially expressed RxLR effectors in different modules. The
number of RxLR effectors was counted after all modules filtered by the criteria that have weight
value greater than 0.15.
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In addition to the RxLR effector family, we also noticed that other effector families
are present in the aforementioned 197 gene pool, such as N-terminal YxSL[RK] (Tyr-Xaa-
Ser-Leu [Arg/Lys]) motif containing secreted protein (YxSL) [30], protease, necrosis- and
ethylene-inducing-like protein (NLP) [31], small cysteine-rich protein (SCP), elicitin, crin-
kler (CRN) and carbohydrate-active enzymes (CAZymes) (Supplementary Figure S3; Table
S5). The gene ontology analysis of the genes that are highly correlated with PsCZF3 re-
vealed that CAZymes included the “carbohydrate metabolic process”, “hydrolase activity”,
“hydrolyzing O−glycosyl compounds”, “pectate lyase activity” and “carbohydrate bind-
ing” (Figure 5). These enzymes are also secreted proteins that are mainly involved in
the degradation of plant cell walls and promote adhesion, invasion, colonization and the
nutrient absorption of pathogens [32,33]. These findings indicate that PsCZF3 may not only
regulate RxLR effectors, but also regulate some carbohydrate-active enzymes during the
early stage of infection.
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correlation coefficient weighted values in its analysis, making the connections between
genes in the network obey a scale-free network distribution, an algorithm that is more
biologically meaningful. One of the biggest advantages of WGCNA is its ability to divide
thousands of genes from multiple samples into several modules based on their expression
patterns. By analyzing them on a module-by-module basis, the computational workload is
decreased while the accuracy is increased. We discovered a C2H2-type zinc finger protein
transcription factor that is associated with 35 RxLR effector genes and other virulence
factors such as CAZymes. This study advances our understanding of transcriptional
regulation in oomycetes.

In comparison to digital RNA-seq, the traditional RNA-seq method has some con-
straints, mainly due to the library construction step that relies on PCR amplification.
Systemic errors could be magnified by increasing PCR cycles, which is more prominent
in sequencing with the small initial samples. As a result, the sequencing outcomes some-
times do not truly reflect the expression levels of genes or transcripts in different samples.
UID-mRNA-Seq is an absolute quantification of the initial molecule by counting UID, and
therefore, more accurate gene expression results can be observed. In this study, 23,807 genes
of P. sojae were detected in at least one library using digital RNA-seq. In the previous study,
14,969 genes of P. sojae were detected in at least one library using traditional RNA-seq [5].
The number of detected genes increased from 14,969 to 23,807, indicating that the tran-
scriptome profiling by digital RNA-seq is not only more accurate but also more abundant.
In the present study, a total of 316 RxLR effector genes were detected during the early
infection stage of P. sojae to soybean leaves. The expression of these RxLR effectors was
markedly up-regulated and reached the peak value at 12 hpi. The finding is consistent with
the prior studies reported by Ye et al. [5], suggesting that 12 hpi is an important time point
for RxLR effectors.

C2H2-type ZFP is the largest transcription factor superfamily in eukaryotes [36]. The
only remarkable feature of the C2H2-type ZFPs is its DNA binding domain that contains
zinc fingers arranged in tandem [37]. Each zinc finger is able to recognize 3-nucleotide DNA
sequences [38], and with a combination of adjacent zinc fingers, C2H2-type ZFPs recognize
long and complex DNA patterns. C2H2 transcription factors were shown to be important
for pathogenic fungi, such as Aspergillus fumigatus [39,40], Botrytis cinerea [41], Candida
albicans [42], Cryptococcus neoformans [43], Ustilago maydis [44] and Magnaporthe oryzae [45].
The disruption of C2H2 transcription factor in these fungi attenuated fungal virulence. In
P. sojae, the C2H2 transcription factor PsCZF1 was required for growth, development and
pathogenesis. PsCZF1 silenced transformants displayed a deficiency in terms of hyphal
growth and sporulation, and loss of virulence on host soybean cultivars [46]. With the
emerging CRISPR/Cas9 technology [47], it will be of interest to study the function of
PsCZF3 in the future.
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