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The role that choice of model plays 
in predictions for epilepsy surgery
Leandro Junges1,2,3,4, Marinho A. Lopes   1,2,3,4, John R. Terry1,2,3,4 & Marc Goodfellow   1,2,3,4

Mathematical modelling has been widely used to predict the effects of perturbations to brain networks. 
An important example is epilepsy surgery, where the perturbation in question is the removal of brain 
tissue in order to render the patient free of seizures. Different dynamical models have been proposed to 
represent transitions to ictal states in this context. However, our choice of which mathematical model 
to use to address this question relies on making assumptions regarding the mechanism that defines the 
transition from background to the seizure state. Since these mechanisms are unknown, it is important 
to understand how predictions from alternative dynamical descriptions compare. Herein we evaluate to 
what extent three different dynamical models provide consistent predictions for the effect of removing 
nodes from networks. We show that for small, directed, connected networks the three considered 
models provide consistent predictions. For larger networks, predictions are shown to be less consistent. 
However consistency is higher in networks that have sufficiently large differences in ictogenicity 
between nodes. We further demonstrate that heterogeneity in ictogenicity across nodes correlates with 
variability in the number of connections for each node.

Mathematical models are increasingly being used to study the emergence of large-scale, spatiotemporal brain 
dynamics, which are typically recorded using techniques such as electroencephalography (EEG) or functional 
magnetic resonance imaging (fMRI)1–3. A common approach is to formulate models based upon large-scale brain 
networks in order to understand how dynamics are shaped by network connectivity and intrinsic node proper-
ties4–6. There is an extensive literature for this kind of modelling7–11, but a popular approach is to use ordinary or 
stochastic differential equations to model the temporal evolution of nodes (i.e. regions of brain tissue) in com-
bination with an estimate of network structure and coupling equations, which define how nodes interact with 
one another3,12–15. Thus, physiological mechanisms that are incorporated into these models include the presence 
(or absence) and weight of large-scale connections. The choice of model for nodes can be broadly split into two 
categories. So-called “physiological” models incorporate intrinsic node mechanisms that are derived from the 
properties of large regions of brain tissue1,9,16,17. On the other hand, “phenomenological” models do not explicitly 
model the physiological mechanisms of node dynamics but represent pertinent features of brain dynamics using 
more abstract or canonical forms. Nevertheless, they retain mechanisms relating to network connectivity18–22. 
Both approaches have been widely used to study the emergence of large-scale brain dynamics, either to better 
understand healthy brain functioning or the effects of disruptions associated with neurological conditions like 
epilepsy8,23–29.

In addition to a fundamental understanding of spontaneous brain dynamics, models of the response of the 
brain to perturbations are also crucial in order to better understand sensory processing and responses to treat-
ment30,31. For example, in order to design optimal treatments for neurological and neuropsychiatric disorders, 
we should seek to use models to understand the effects of treatment perturbations on healthy and abnormal 
brain dynamics29. A prototypical example is epilepsy, which affects approximately 50 million people worldwide32. 
Around a third of people with epilepsy do not respond to antiepileptic drugs or other treatments33, and for these 
people epilepsy surgery can be the only way to eliminate or mitigate seizures. However, long-term post-operative 
seizure freedom is only achieved in around 50% of patients34. In addition, many patients are not referred to sur-
gery due to difficulties in identifying the epileptogenic focus35. Mathematical models of seizures have the potential 
to help us improve our understanding of epilepsy and provide quantitative prognoses for treatment outcome36,37.
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In the particular case of resective surgery in epilepsy, the perturbation of interest is the removal of brain tissue, 
which can be approximated in models by removing nodes from networks25. A quantity of interest in these net-
works is the propensity to transition between “healthy” and “seizure” states. From a mathematical perspective, the 
transitions between healthy and epileptiform rhythms have been modelled using different dynamical scenarios, 
particularly as a bistable or as an excitable system38,39. Whilst in a bistable system the two attractors represent-
ing the healthy and pathological states coexist, in an excitable system the states are separated in the parameter 
space. However, in both systems noise and other perturbations may drive the transitions. Models based on these 
different dynamical mechanisms have been used to describe seizure transitions25,40–42, however the fundamental 
mechanisms underlying the emergence of ictal (seizure) oscillations in the epileptic brain are still unknown.

Recently, these models have been used in the study of the effects of resective surgery25,42–44. For example, 
Goodfellow et al.25 used a neural mass model1 and functional networks derived from ECoG recordings to evaluate 
the influence of different macroscopic cortical regions (nodes) on the overall ictogenicity of the brain network, 
predicting the effect of the removal of each of these nodes on the emergence of epileptiform rhythms. This work 
extended the concept of Brain Network Ictogenicity (BNI)40,45, which describes the propensity of a network to 
generate seizures, to account for changes in BNI caused by node removal. When a node is removed, the BNI of 
the remaining network can be different to that of the unperturbed network. In Goodfellow et al.25 the change in 
BNI caused by the removal of a node was termed Node Ictogenicity (NI), which quantifies how much a node influ-
ences the emergence of epileptiform activity in the brain network. This method was retrospectively validated in a 
cohort of epilepsy patients who underwent resective surgery, and it was shown that the framework could predict 
post-surgical seizure freedom with an accuracy of approximately 90%25,46. In addition, the peri-ictal time course 
of BNI has been shown to be able to further optimize predictions of post-operative seizure freedom47.

In a subsequent approach, Sinha et al.43 used a phenomenological model capable of generating transitions 
between a steady state and oscillations due to bistability40,43 to model the dynamics of network nodes. The authors 
showed that nodes with the shortest “escape time” between these attractors were associated with nodes that were 
removed during surgery. This study confirmed the findings of Goodfellow et al.25 and the two approaches were 
compared in Goodfellow et al.46. In another application of phenomenological models to this problem, Lopes et al.42  
demonstrated that an abstraction of neural mass model dynamics, namely the Theta model48, could be used to 
approximate the neural mass formulation. Having elucidated in simulations that rich-clubs should be targeted for 
surgery, it was shown that functional networks derived from ECoG recordings of people with epilepsy considered 
for surgery contain rich-club organization, and that patients with higher proportions of rich club removed were 
more likely to achieve post-operative seizure control42.

Although the above approaches have been shown to be potentially useful, it is clear that when trying to under-
stand the response of networks to perturbations, even if network structures are considered fixed, many different 
models for node dynamics may be considered. When constructing person-specific predictive models, constrain-
ing the choice of model for node dynamics is often difficult. There may even be alternative choices of parame-
ters, or different bifurcations, within the same model that lead to plausible dynamics of interest49,50. One could 
conceive of using extended data time courses to fit the model to statistics of interest, but the necessary amount of 
data required for such an approach is rarely available51. Thus, it is crucial to better understand the ways in which 
network-model based predictions may vary upon different choices of node dynamics.

In this study, we examine the effect that the choice of model has on the response of a network to perturba-
tions. We focus on the application to epilepsy surgery and therefore consider node removal perturbations and 
state-switching dynamics. In order to better understand the effect of choosing different dynamical models, we 
study a range of exemplar network structures and assess whether the response to node-removal perturbations 
differs depending on the choice of dynamics for the nodes. We make use of a more comprehensive analysis 
compared to previous studies by mapping the influence of perturbations in large windows in parameter space. 
We show that the existence of discrepancies between model responses depends on the specific network under 
consideration. In spite of the differences in complexity and fundamental mechanisms, we show that there is good 
agreement in ranking network nodes according to their NI between models when the ictogenicity is distributed 
heterogeneously across the network. This provides useful information for the design of decision support tools for 
epilepsy surgery.

Methods
We study dynamical systems that can be described in terms of stochastic differential equations of motion for 
nodes and a network structure connecting the nodes. We focus on models for node dynamics that have the 
inherent capability of switching between states, representing the transitions to seizures in epilepsy. Rather than 
studying the dynamics per se, we focus on the effect of node-removal perturbations, in analogy with epilepsy 
surgery. We study a range of different network topologies, first of all by fully elucidating all networks with 3 and 
4 nodes, and then by studying a sample of networks with 19 nodes, which is a typical size for networks inferred 
from non-invasive clinical recordings in epilepsy (scalp EEG).

Dynamic models of epilepsy.  As described in the Introduction, many different dynamic models have been 
proposed to simulate the sporadic occurrence of seizures in the epileptic brain17,39. Here we focus on three repre-
sentative models that have been previously used to evaluate optimal resection strategies in epilepsy surgery25,42,43. 
In subsequent sections, we present each model.

Physiological model.  The physiologically inspired model we use in this work is a modified version of the 
Jansen-Rit model16, which takes into account the interaction between principal neurons (pyramidal cells), excita-
tory interneurons, and fast and slow inhibitory interneurons. The complete set of equations is given by25,52:
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here, y1 to y11 (odd indices) represent the excitatory and inhibitory post synaptic potential of the different cell 
populations, y2 to y12 (even indices) are auxiliary variables, ξ is Gaussian noise with zero mean and standard devi-
ation σ = 1.8525, S is the sigmoid function
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where αP is the global coupling strength and M is the adjacency matrix of the network representing the interac-
tion between nodes (brain regions). The parameter values used to solve Eq. (1) and their biological interpretation 
are given in Table 1. The output of the model is given by (y3 − y5 − y7), which corresponds to the membrane poten-
tial of pyramidal cells, resulting from the interactions between three populations of interneurons, one excitatory 
and two inhibitory1.

The choice of parameters in this model places the system near a saddle node on invariant circle (SNIC) bifur-
cation52, such that transitions from a fixed point (background state) to a high amplitude oscillation (epileptiform 
dynamics) can arise due to noise. From a dynamical viewpoint, the value of the excitability parameter pP quanti-
fies the distance from the bifurcation point and therefore contributes to the propensity of the system to transition 
from the background to epileptiform dynamics. This propensity is also influenced by the input from other nodes, 
which is quantified here by the coupling strength αP.

Theta model.  As described above, the dynamic mechanism underlying transitions between states in our imple-
mentation of the Physiological model is a SNIC bifurcation. The normal form of this bifurcation is given by the 
Ermentrout-Kopell canonical model, also known as “Theta-Neuron” or simply “Theta” model48,53. Originally 
proposed to describe neuron firing, this model has been used to represent large-scale neural masses embedded in 
networks42. When network connectivity is incorporated, this model can be described as42:

θ θ θ= − + + I1 cos( ) [1 cos( )] (4)i i i i

where

A Average excitatory gain 5 mV

B Average slow inhibitory gain 44 mV

G Average fast inhibitory gain 20 mV

Ad Gain of delayed efferent activity 3.25 mV

a Inverse average time constant - excitatory feedback loop 100 s−1

b Inverse average time constant - slow inhibitory feedback loop 50 s−1

g Inverse average time constant - fast inhibitory feedback loop 500 s−1

ad Inverse average time constant for delayed efferent activity 100 s−1

C1–C7 Connectivity constants C1 = 135, C2 = 0.8 C1, C3 = C4 = C7 = 0.25 
C1, C5 = 0.3 C1, C6 = 0.1 C1

ν0,e0,r Parameters of the sigmoid function ν0 = 6 mV, e0 = 2.5 s −1, r = 0.56 mV−1

Table 1.  Parameter values for the Physiological model and their biological interpretation25.
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In these equations, θi is the phase of node i, ξ is Gaussian noise with zero mean and standard deviation σ = 8, 
M is the adjacency matrix, θs is the steady state of a single (uncoupled) node, given by
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and the parameters αT and pT represent the coupling strength and node excitability, respectively. For uncoupled 
nodes and in the absence of noise, the SNIC bifurcation takes place at pT = 0. When pT < 0 the stable attractor is 
the steady state θs, while for pT > 0 a limit cycle emerges and is the only stable attractor of the system. The phe-
nomenological Theta model presents some important advantages when compared to the physiological model 
described in the previous Subsection. The computational cost can be significantly lower, and the reduction in 
dimensionality and number of independent parameters make it more straightforward to understand and control 
the influence of connectivity and excitability in the emergence of epileptiform dynamics42.

Bistable model.  A phenomenological model that is commonly used to simulate transitions between healthy and 
epileptiform dynamics in brain networks is a modified version of the normal form of the subcritical Hopf bifur-
cation22,40,43,54, which we refer to here as the “bistable model”. The formulation of this model for a single node in 
the deterministic case is given by

ω= + + | | − | |z p i z z z z z( ) 2 (7)B
2 4



where z is a complex variable that defines the two states associated with normal and pathological activity (stable 
fixed point and stable limit cycle, respectively), pB is the excitability parameter, and ω controls the oscillation fre-
quency (we use ω = 20 as in Benjamin et al.54). This model has a globally stable fixed point for p ≤ −1 and a glob-
ally stable limit cycle for pB ≥ 0. In the interval −1 ≤ pB ≤ 0, the stable fixed point (z = 0) and the stable limit cycle 
(| | = + +z p1 1 B

2 ) coexist. In this work, we represent the interaction between nodes through an additive cou-
pling in the real part of z, as used in Petkov et al.40 and Sinha et al.43. For zi(t) = xi(t) + iyi(t), the model is described 
by
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M is the adjacency matrix, αB is the coupling coefficient and ξ represents the Gaussian noise with zero mean and 
standard deviation σ = 1.85 (β = 0.01)54.

Quantification of state-switching dynamics.  The aim of epilepsy surgery is to remove regions of brain 
tissue such that the brain can no longer generate seizures. As mentioned in the Introduction, Goodfellow et al.25 
introduced a model-based framework to quantify the ictogenicity of networks in terms of their propensity to 
generate recurrent state-switching dynamics, and thereby also quantify the reduction in seizures that would result 
from a model surgery. Specifically, Brain Network Ictogenicity (BNI) was used to quantify the propensity of a 
network to transition to the ictal state40,45. BNI can be evaluated in practice in different ways, but a useful method 
is to consider it as the average proportion of time the nodes of the network spend in the ictal state, compared to 
a reference period of time:

=BNI Average time nodes spend in the ictal state
Duration of the reference time (9)

The definition above is most useful when the model of interest displays spontaneous, recurrent transitions 
between the healthy and ictal state, and is therefore applied in this study to the Physiological and Theta models. 
In the use of the Bistable model, an alternative calculation of BNI has been considered, which is to use the escape 
time from steady state to the limit cycle. Specifically, for the case of the Bistable model, we initiate the dynamics 
in the z = 0 fixed point (background state) and define the BNI as:

= −BNI 1 Average time nodes take to transit to the ictal state
Duration of the reference time (10)

When placed into networks, the Physiological, Theta and Bistable models display spontaneous transitions 
between different types of solutions for a subset of model parameters20,25,42. For a given network, it has been 
shown that these state-switching dynamics can be found by varying the global connectivity strength or the intrin-
sic excitability of nodes20,25,42. In this study, we seek to obtain a more comprehensive quantification of the presence 
of different states in each model. To do this, we consider the dynamics of each model over a range of values of 
both the connectivity strength and the intrinsic “excitability” of each node (i.e. its proximity to a bifurcation, see 
Fig. 1). Specifically, we define a range of values of p and α. For a given network, we simulate each model, for each 
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parameter value over a regular grid of 192 × 192 points using an Euler-Maruyama scheme with fixed time step, 
optimized individually for each model (between 1 × 10−3 and 5 × 10−3) and calculate BNI according to Eq. (9) 
(or (10), for the Bistable model), for each set of parameters. The result is a two-dimensional map of BNI values 
(see Fig. 1). This approach allows a more extensive quantification of changes in ictogenicity compared to previous 
studies25,42,43, taking into account the influence of the excitability and connectivity parameters at the same time.

Quantification of the effect of node removals.  The definitions of BNI above provide a starting point to 
quantify the effect of removing nodes from networks, in a way that is pertinent for epilepsy surgery. Specifically, 
we define node ictogenicity (NI) as the change in BNI when a node is removed from the network:

NI BNI BNI
BNI (11)i

i0

0
=

−

The subindices 0 and i refer to the complete network (before the removal of any node) and the network 
after the removal of node i, respectively. In previous work25, the reference state BNI0 was defined to be a state in 
which the unperturbed (complete) network spent half of the time in epilieptiform dynamics (BNI0 = 0.5). This 
value was originally chosen in order to try to optimize detection of changes in BNI. For a network in which the 
intrinsic parameters of every node are equal, such a state can be achieved by increasing the global connectivity 
strength from zero, until a state in which BNI0 = 0.5 is attained. Here, we use a different and more comprehensive 
approach, computing statistics over the 2-dimensional map of BNI to calculate the change in dynamics as a result 
of the removal of a node. Specifically, NI is then calculated as the percentage reduction in average BNI over the 
whole map as follows:

=
〈 〉 − 〈 〉

〈 〉
NI BNI BNI

BNI (12)i
i0

0

where the brackets 〈〉 represent the average over all simulations over the α × p diagram.
The greater the reduction in epileptiform activity after the removal of node i, the greater the value of NIi. The 

ictogenicity of a node can be negative if the removal of this node results in an increase in the average spiking (or 
a reduction in the escape time, for the Bistable model) of the remaining network.

The ranges of coupling and excitability for the three dynamical models are given in Table 2. The size of the 
windows in parameter space where the BNI is calculated for each model might influence the accuracy in captur-
ing changes in the BNI, so we aimed to define regions that are large enough to include parameter values already 
considered in the literature, as well as to include whole regions of interest for the single node cases (like the bista-
bility region for the Bistable model), but at the same time small enough to avoid considering wide regions where 
small or no changes in BNI are seen, consequently “diluting” the effects we wish to observe.

Comparison of perturbation effects.  For each network realization and choice of model, the distribution 
of NI was calculated according to Eq. 12 (i.e. {NIi}, where i indexes nodes in the network). In order to compare 
how these distributions differ for different choices of model within the same network realization, we took into 
account the ranking of NI across nodes as well as their relative values. To do this, we use a weighted Kendall rank 
correlation measure42,55, defined by:

P Q
P Q

,
(13)

τ =
−
+

Figure 1.  Node Ictogenicity estimation. Example of Node Ictogenicity (NI) calculation for a 3-node network. 
The diagrams show the Brain Network Ictogenicity (BNI) calculated for several values of the coupling (α) and 
excitability (p) parameters. NI i represents the effect of the removal of node i in the network’s BNI.
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where P (Q) is the number of pairs of nodes ranked in the same (inverse) order by both models. In order to quan-
tify the differences between models in a more precise way, the sums in P and Q were weighted by the term 
NI NI NI NIi

A
j
A

i
B

j
B| − | × | − |, where i and j refer to the nodes being ranked, and A and B represent the different 

models under comparison. The weighted Kendall rank is a number in the range [−1, 1], where 1 represents total 
agreement and −1 represents total disagreement (rank in the inverse order) between the two compared ranks. It 
is important to point out that the weighted Kendall rank does not take into account nuances of the shape of the NI 
distributions being compared beyond the rank ordering of NI values. However, given that here we are mainly 
interested in identifying the most ictogenic nodes, the rank is our measure of interest.

In this work we analyze binary directed networks with three, four and nineteen nodes. We consider all 13 
3-node and 199 4-node networks that are connected and nonisomorphic (the latter were obtained using the 
software Nauty56). In addition, 125 19-node random networks were selected by varying the probability of node 
connectivity between 0 and 1, choosing connected and nonisomorphic networks with an approximately uniform 
distribution of number of edges in the interval between 18 and 342 (minimum and maximum number of edges 
for 19-node directed connected networks).

Results
Networks with three and four nodes.  In order to systematically analyze the role that the choice of model 
has on the effect of node-removals, we first studied small networks in which the full set of distinct topologies 
could be elucidated. There are 13 3-node networks and 199 4-node networks that are directed, connected and 
topologically distinct (nonisomorphic). For each of these networks, we calculated the distribution of NI (see 
Methods) for each of the three models of interest.

As shown in Fig. 2, the resulting NI distributions for 3-node networks can be divided in four groups. For the 
first network, shown on top of Fig. 2, the three nodes have quite distinct ictogenicity, where node 1 seems to act 
as a “controller” of the dynamics resulting from the interaction between the other two nodes, in a way that when 
this node is removed, the ictogenicity of the remaining network increases. For the second group, one of the nodes 
(node 2) clearly has a larger NI than the other nodes. For the networks in this group, node 2 has a larger degree 
(the sum of in- and out- degrees) than the other nodes, as well as an equal number of connections to nodes 1 and 
3 (Fig. 2, second row). For the third group (Fig. 2, third row), two of the nodes have relatively high NI (nodes 1 
and 3). These networks are characterized by having only one pair of nodes that are mutually connected. Finally, 
for the fourth group (Fig. 2, bottom row), all nodes have a similar value of NI. For each network in the fourth 
group, all nodes have the same number of connections. In each case we observe that the distribution of NI is 
equivalent for the three models, in terms of the ranking of nodes. The similarity between model predictions for 
3-node networks show that, for these networks, the models are characterizing the networks in the same way 
regarding the contribution of each node to the generation of epileptiform dynamics. The NI diagrams presented 
in Fig. 2 are representative examples of each of the network groups. For the individual diagrams associated with 
all 13 networks see Supporting Information.

An analysis of NI distributions in 4-node networks is presented in Fig. 3(a). Since the number of networks in 
this case is large, we studied the average weighted Kendall rank (〈τ〉, see Methods) across all 199 topologically 
distinct networks. Figure 3(a) demonstrates that 〈τ〉 = 1 for all pairwise comparisons of the three models, indi-
cating that, as in the case of 3-node networks, the response to node-removal perturbations is equivalent among 
the considered models.

Networks with a larger number of nodes.  In order to better understand the influence that the choice 
of model has on the effect of node removal for larger networks, which we might consider more in line with those 
derived from clinical data57, we examined the effect of this type of perturbation in a set of 19-node networks. 
Since the number of topologically distinct networks with 19 nodes is too large to systematically explore, given the 
cost of computing NI, we quantified NI for 125 sampled random networks, taking into account a broad spectrum 
of topologies by stratifying our sampling according to the number of edges (see Methods). The average Kendall 
rank 〈τ〉 calculated over all 125 networks is presented in Fig. 3(b). It can be seen that the Physiological and Theta 
models show highest concordance in ranking, having an average τ (〈τ〉) of 0.84. The Physiological and Bistable 
models have 〈τ〉 = 0.72, and the concordance between the Theta and Bistable models is lowest, with 〈τ〉 = 0.56. 
Thus in larger networks, the choice of dynamics of the individual nodes plays a more significant role than in 
smaller networks.

In order to investigate the reasons for this, we examined the distribution of NI across networks and sought 
to assess how this may be associated with similarities in perturbation effects across models. The results in Fig. 2 
highlight that some networks give rise to heterogeneous NI distributions, so we asked whether the agreement 
between the NI distribution of models is related to the extent of this heterogeneity. To quantify NI heterogene-
ity we calculated, for each network and each model, the difference between the highest and lowest values of NI 
(which we denote as ΔNI).

Model Excitability Coupling

Physiological [50, 110] [0, 1000]

Theta [−4, −0.1] [0, 10]

Bistable [−1, 0] [0, 10]

Table 2.  Ranges of the excitability and coupling parameters for the calculation of the bidimensional BNI 
diagrams.
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In Fig. 4, we demonstrate how the agreement between the three models (as quantified by 〈τ〉) varies as a 
function of the heterogeneity in the NI distribution of each model (as quantified by ΔNI). In this analysis, we 
normalize the values of ΔNI across all 125 networks to values between 0 and 1, independently for each model. We 
then considered the networks with normalized ΔNI > 0.05 and split them into four equally sized bins according 
to their value of ΔNI. We used each model in the comparison pair as the reference for this, so that we could miti-
gate potential differences in scaling of NI for different models. For all of the three pair-wise comparisons it is clear 
that the more heterogeneous the NI distribution is, the better the two models being compared agree in ranking 

Figure 2.  Comparison of Node Ictogenicity for 3-node networks. Normalized Node Ictogenicity (NI) for the 
thirteen 3-node nonisomorphic connected networks, calculated using three different dynamical models (see 
Methods). Networks are grouped by similarity in their NI distribution. An examplar distribution is presented 
for each group (indicated by the asterisk). See the Supplementary Information for the NI distribution of all 
networks.

Figure 3.  Comparison of Node Ictogenicity for 4-node and 19-node networks. Average weighted Kendall rank 
coefficient (〈τ〉) estimating the level of agreement between models. The coefficient is calculated (a) over all 199 
4-node networks and (b) over all 125 19-node networks, for pairwise comparisons between the three models.
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NI, independently from which model’s ΔNI is taken as a reference. For example, the average value of τ is highest, 
and close to a value of one, when one only considers networks in the top quartile of ΔNI. We further considered 
whether there is increased concordance in model predictions in subsets of the nodes. To this end we focused on 
networks with τ < 1 and calculated τ when only the 5 or 10 most ictogenic nodes are considered. Figure 4 of the 
Supplementary Material shows that 〈τ〉 is higher when only the 5 nodes with largest NI are considered for com-
parisons involving the Bistable model. However, the value of 〈τ〉 itself is still small in this case.

Since heterogeneity in NI is an important determinant of concordance between models, we sought to bet-
ter understand whether discrepancies between NI distributions occurred for networks with particular topolo-
gies. Figure 5(a,b) show how ΔNI relates to the number of edges in each network and the normalized standard 
deviation of outdegree, for all four models in the case of 19 node networks. Figure 5(a) shows that the greatest 
differences in NI are observed for relatively sparse networks (low number of edges). As the networks become 
progressively more dense, the ictogenicity of its nodes become more homogeneous (lower ΔNI). Figure 5(b) 
indicates the presence of a nonlinear correlation between inhomogeneities in node degree (as quantified by the 
normalized standard deviation of outdegree) and inhomogeneities in NI. We quantified this correlation and 
found Spearman correlation coefficients between σout/<kout> and ΔNI of 0.979 (Physiological), 0.961 (Theta) 
and 0.972 (Bistable) (p < 0.001 for all models). Thus, to summarize, the effect of perturbations (node removal) is 
dependent on the choice of model in 19-node networks, but only when NI is homogeneous. In contrast, networks 
with heterogeneous NI, for example those with a large difference between the minimum and maximum values of 
NI across nodes (as quantified by ΔNI), display good concordance in the effect of perturbations across different 
node dynamics. Furthermore, we find that networks with homogeneous NI distributions correspond to networks 
with low normalized degree variance and greater number of edges.

Discussion
In this study we systematically characterized the effects that different choices of dynamical description have on 
predictions made using network models of epilepsy surgery. We considered three alternative models that have 
been used to understand the emergence of seizures in large-scale brain networks to represent the dynamics of 
nodes1,10,18,25,40,42,43. We used the measure NI to quantify the change in epileptiform dynamics that occurs upon 

Figure 4.  Average weighted Kendall rank as a function of the heterogeneity in the NI distribution. The curves 
show how 〈τ〉 changes as a function of the ΔNI of both models being compared. Ranges of ΔNI for each point 
are defined so that each point shows statistics calculated over the same number of networks. Error bars show the 
standard error of the mean.

Figure 5.  ΔNI as a function of global and local network measures. ΔNI for 19-node networks as a function of 
(a) the number of edges and (b) the normalized standard deviation of outdegree σout/<kout>. Error bars show 
the standard error of the mean.
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removal of a node from the network. Thus, the NI is a prediction for the effect of epilepsy surgery. Our analysis 
points to the importance of heterogeneity of networks as a determinant of the importance of choice of model. 
By this we mean the extent to which properties of each node (for example the NI, or the degree) varies across 
different nodes of a network. We find that when networks are sufficiently heterogeneous, the three models we 
considered give equivalent rankings of nodes in terms of what happens to epileptiform dynamics when they are 
removed. For example, for all possible 13 3-node and 199 4-node networks, all three models produce the same 
ranking of nodes, in terms of their NI (Figs 2 and 3(a)). Therefore, for these small networks our results show that 
the choice of model has no influence on which nodes would be predicted to be targets for epilepsy surgery. As we 
consider larger networks, with 19 nodes, the choice of model dynamics can begin to cause deviations in predic-
tions from each model, i.e. affecting the relative ranking of nodes in terms of their NI values. However, we find 
that networks with a sufficiently heterogeneous distribution of NI, i.e., where at least some nodes contribute very 
differently to the emergence of epileptiform dynamics, the level of agreement between predictions from different 
models improves considerably, yielding high values of the Kendall rank for all models (Fig. 4).

We further show that networks in which nodes differ significantly in NI (i.e. high ΔNI) display greater var-
iability in node degree (Fig. 5). Since we demonstrated predictions from the three models are in better agree-
ment when the NI distribution is heterogeneous, this suggests that networks that contain some highly connected 
nodes (compared to the average), will present an NI distribution which is robust to the choice of model used to 
calculate it. This result corroborates and extends the findings of Lopes et al.42, where the authors show that the 
Physiological and Theta models present good agreement in ranking nodes according to their NI values for ran-
dom networks of 15, 30 and 50 nodes, and higher agreement in 50 nodes scale-free networks (which are highly 
heterogeneous networks).

The contribution of each individual node to the emergence of epileptiform dynamics is, in general, dependent 
on the size of the network. The larger the network is, the smaller contribution we expect each node to make to the 
emergence of epileptiform dynamics, which can lead to a more homogeneous distribution of NI. If differences in 
NI between nodes are very small their rank ordering could be more susceptible to noise, and therefore less robust. 
This is a contributing factor to why we observe reduced concordance between predictions of models when NI is 
homogeneous (low ΔNI). From a practical perspective, we are predominantly interested in identifying which 
brain regions (nodes) are the most ictogenic for the purpose of recommending these for surgical resection. Such 
regions would be more readily distinguishable if the NI distribution is sufficiently heterogeneous. Our results 
suggest that predictions from the three considered models are concordant when there are nodes that are clearly 
more ictogenic than others within the network. Recent studies demonstrate that in fact both functional42 and 
structural58 brain networks derived from epilepsy patients display such network heterogeneity (as demonstrated, 
for example, by the presence of hub nodes), thus suggesting that predictions from the three models should be 
concordant when applied to real brain networks.

It is important to point out that the distribution of NI for any given model emerges from an interplay between 
the node dynamics and the network structure. One can envisage extremes in which the network structure plays 
a very large or very small role in the emergent dynamics. Networks with homogeneous connectivity (i.e. low 
standard deviation in degree, as shown in Fig. 5) present a case in which the connectivity of the network does little 
to facilitate differences in the dynamics of different nodes. Therefore, the distribution of NI is homogeneous (as 
shown in Fig. 5) and the largest determinant of the dynamics of the network is the choice of model for the nodes. 
On the other hand, networks with heterogeneous connectivity are examples for which the network structure itself 
places constraints on the emergent dynamics of nodes since, for example, there will be nodes that can heavily 
influence the dynamics of other nodes due to the nature of their connections. In this case, the network topology, 
rather than the choice of model, plays the biggest role in determining the dynamics of the network.

We also show that ΔNI decreases as the number of edges in networks increases. This would suggest that a 
greater level of agreement between predictions of models is obtained for sparse networks. Networks with fewer 
edges have heterogeneous, rather than homogeneous, connectivity (the extreme case of homogeneous connec-
tivity has full connectivity, i.e. the maximum number of edges). In clinical applications that have used functional 
connectivity networks, thresholding or surrogate methods are typically used to focus on the most significant 
functional connections25,59,60, which can yield sparse networks. This is mainly justified to avoid spurious connec-
tions due to indirect correlations or random effects. Hence, we might expect large-scale brain networks derived 
from clinical data to yield predictions that are robust to the choice of model.

In terms of the methodology we employed, an advance in the current work is the more comprehensive 
approach we used to calculate BNI and NI, where changes in dynamics due to both changing node excitability 
and network connectivity are taken into account. Such an approach avoids setting specific arbitrary choices for 
parameters. Nevertheless, this method depends on the choice of boundaries for these parameters. It is impossible 
to define a priori an optimal parameter window in which heterogeneity in the NI distribution is maximized for 
all models, and a systematic search for such a window would be an extremely demanding numerical task. Our 
strategy was to balance the definition of boundaries in order to include all the dynamical changes of interest (i.e. 
both “healthy” and epileptiform dynamics). In the future, machine learning algorithms and other advanced sta-
tistical tools could be used to search for windows that optimize NI heterogeneity50. In addition, it is interesting 
to note that, in spite of the Bistable model being analyzed using a different definition of BNI (see Methods), the 
NI distributions closely matched those obtained with the Physiological and Theta models. This shows that the 
obtained results are not only robust across different models, but also across alternative definitions of ictogenicity.

Despite various attempts to derive mathematical models for the generation of seizures1,18,29,38 there is still a 
lack of understanding regarding which dynamical description should be used to represent node dynamics in 
models of ictogenic networks. Indeed, it is likely that different dynamic descriptions are appropriate for different 
patients. In order to develop a deep understanding about the fundamental mechanisms generating the dynamics 
observed in real brain networks, and also to optimize these methods for individuals, the understanding of how 
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alternative descriptions compare is paramount. The present work addresses this by clarifying under what circum-
stances alternative dynamical models yield different predictions for the effect of removing nodes from a network, 
as quantified by NI.

Comparisons between different models of node dynamics have been performed in other contexts. Messe et 
al.61 compared seven different computational models, showing that the simplest model considered (simultaneous 
autoregressive model) performed better than the other more sophisticated dynamical descriptions in predict-
ing functional connectivity from structural connectivity using DWI and MRI. In the wider context of systems 
biology, many efforts have been recently undertaken to simplify complex models of biochemical reaction net-
works62,63. Santolini and Barabasi64 analyzed 87 biological models and showed that “Dynamics-Agnostic Network 
Models”, a framework based exclusively on network topology, can provide 65–80% accuracy in predicting the 
impact of specific perturbation patterns when compared to the complete biochemical model. This result high-
lights the importance of understanding the relationship between network topology and model dynamics. In our 
study we focussed on node-removal perturbations and demonstrated that whether choice of model is important 
depends on network topology. In practice, if a network under consideration is sufficiently heterogeneous, our 
analysis shows that we could use any of the three models studied, and the criterion used to choose between the 
three could be computational efficiency. Thus the lower dimensional theta or bistable models would be preferable.

Furthermore, a comprehensive understanding of the effects of alternative dynamical descriptions on the 
spontaneous activity of large-scale networks can help provide additional insights into other more general mod-
elling frameworks used to study responses to perturbations. Computational modelling techniques have been 
used to optimize targeting in Deep Brain Stimulation (DBS)65, to explain changes in brain rhythms induced 
by Transcranial Magnetic Stimulation (TMS)66, and to estimate the influence of electrode displacement on 
Transcranial Direct Current Stimulation (tDCS)67, to mention a few examples. These perturbation techniques 
are becoming increasingly popular in the treatment of several neurological and neuropsychological disorders, 
including epilepsy68–70. We hope the present work can serve to highlight the importance of understanding the 
influence of using alternative dynamical descriptions in predictive modelling, and can serve as a basis for this 
type of systematic analysis.

References
	 1.	 Wendling, F., Bartolomei, F., Bellanger, J. J. & Chauvel, P. Epileptic fast activity can be explained by a model of impaired GABAergic 

dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508, https://doi.org/10.1046/j.1460-9568.2002.01985.x (2002).
	 2.	 Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302, https://doi.org/10.1016/S1053-

8119(03)00202-7 (2003).
	 3.	 Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352, https://doi.org/10.1038/nn.4497 (2017).
	 4.	 Sanz-Leon, P., Knock, S. A., Spiegler, A. & Jirsa, V. K. Mathematical framework for large-scale brain network modelling in The 

Virtual Brain. Neuroimage 111, 385–430, https://doi.org/10.1016/j.neuroimage.2015.01.002 (2015).
	 5.	 Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain, 

https://doi.org/10.1038/nrn2961 (2011).
	 6.	 Bansal, K., Nakuci, J. & Muldoon, S. F. Personalized brain network models for assessing structureâ€“function relationships, https://

doi.org/10.1016/j.conb.2018.04.014 (2018).
	 7.	 Locke, J. C. W. et al. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 

1, E1–E9, https://doi.org/10.1038/msb4100018 (2005).
	 8.	 Sotero, R. C., Trujillo-Barreto, N. J., Iturria-Medina, Y., Carbonell, F. & Jimenez, J. C. Realistically Coupled Neural Mass Models Can 

Generate EEG Rhythms. Neural Comput. 19, 478–512, https://doi.org/10.1162/neco.2007.19.2.478 (2007).
	 9.	 Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: From spiking neurons to neural masses and 

cortical fields. PLoS Comput. Biol. 4, https://doi.org/10.1371/journal.pcbi.1000092 (2008).
	10.	 Goodfellow, M. et al. State transitions in a model of intermittent seizure dynamics. Manch. Inst. for Math. Sci. Sch. Math. The Univ. 

Manch. (2012).
	11.	 Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically evolves on multiple time-scales over a static structural 

connectome: Models and mechanisms, https://doi.org/10.1016/j.neuroimage.2017.03.045 (2017).
	12.	 Lytton, W. W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626–637, https://doi.org/10.1038/nrn2416 (2008).
	13.	 Stefanescu, R. A., Shivakeshavan, R. G. & Talathi, S. S. Computational models of epilepsy, https://doi.org/10.1016/j.

seizure.2012.08.012 (2012).
	14.	 Todaro, C., Marzetti, L., Valdés Sosa, P. A., Valdés-Hernandez, P. A. & Pizzella, V. Mapping Brain Activity with Electrocorticography: 

Resolution Properties and Robustness of Inverse Solutions. Brain Topogr, https://doi.org/10.1007/s10548-018-0623-1 (2018).
	15.	 DemirtaÅŸ, M. et al. A whole-brain computational modeling approach to explain the alterations in resting-state functional 

connectivity during progression of Alzheimer’s disease. NeuroImage: Clin. 16, 343–354, https://doi.org/10.1016/j.nicl.2017.08.006 
(2017).

	16.	 Jansen, B. H. & Rit, V. G. Electroencephalogram and Visual-Evoked Potential Generation in a Mathematical-Model of Coupled 
Cortical Columns. Biol. Cybern. 73, 357–366, https://doi.org/10.1007/BF00199471 (1995).

	17.	 Wendling, F., Benquet, P., Bartolomei, F. & Jirsa, V. Computational models of epileptiform activity. J Neurosci Methods 260, 233–251, 
https://doi.org/10.1016/j.jneumeth.2015.03.027 (2016).

	18.	 Goodfellow, M., Schindler, K. & Baier, G. Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass 
model. NeuroImage 55, 920–932, https://doi.org/10.1016/j.neuroimage.2010.12.074 (2011).

	19.	 Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: The role of nodes and networks. Epilepsia 53, https://doi.
org/10.1111/j.1528-1167.2012.03560.x (2012).

	20.	 Goodfellow, M. & Glendinning, P. Mechanisms of intermittent state transitions in a coupled heterogeneous oscillator model of 
epilepsy. J. Math. Neurosci. 3, 17, https://doi.org/10.1186/2190-8567-3-17 (2013).

	21.	 Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230, 
https://doi.org/10.1093/brain/awu133 (2014).

	22.	 Kalitzin, S., Koppert, M., Petkov, G., Velis, D. & da Silva, F. L. Computational model prospective on the observation of proictal states 
in epileptic neuronal systems. Epilepsy Behav. 22, https://doi.org/10.1016/j.yebeh.2011.08.017 (2011).

	23.	 Freyer, F. et al. Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms. J. Neurosci, https://doi.org/10.1523/
JNEUROSCI.6693-10.2011 (2011).

	24.	 Becker, R., Knock, S., Ritter, P. & Jirsa, V. Relating Alpha Power and Phase to Population Firing and Hemodynamic Activity Using a 
Thalamo-cortical Neural Mass Model. PLoS Comput. Biol. 11, https://doi.org/10.1371/journal.pcbi.1004352 (2015).

https://doi.org/10.1038/s41598-019-43871-7
https://doi.org/10.1046/j.1460-9568.2002.01985.x
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1038/nn.4497
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1038/nrn2961
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.1016/j.conb.2018.04.014
https://doi.org/10.1038/msb4100018
https://doi.org/10.1162/neco.2007.19.2.478
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://doi.org/10.1038/nrn2416
https://doi.org/10.1016/j.seizure.2012.08.012
https://doi.org/10.1016/j.seizure.2012.08.012
https://doi.org/10.1007/s10548-018-0623-1
https://doi.org/10.1016/j.nicl.2017.08.006
https://doi.org/10.1007/BF00199471
https://doi.org/10.1016/j.jneumeth.2015.03.027
https://doi.org/10.1016/j.neuroimage.2010.12.074
https://doi.org/10.1111/j.1528-1167.2012.03560.x
https://doi.org/10.1111/j.1528-1167.2012.03560.x
https://doi.org/10.1186/2190-8567-3-17
https://doi.org/10.1093/brain/awu133
https://doi.org/10.1016/j.yebeh.2011.08.017
https://doi.org/10.1523/JNEUROSCI.6693-10.2011
https://doi.org/10.1523/JNEUROSCI.6693-10.2011
https://doi.org/10.1371/journal.pcbi.1004352


1 1Scientific Reports |          (2019) 9:7351  | https://doi.org/10.1038/s41598-019-43871-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	25.	 Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Reports 6, 29215, https://
doi.org/10.1038/srep29215 (2016).

	26.	 Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain https://
doi.org/10.1093/brain/awx004 (2017).

	27.	 Roberts, J. A., Friston, K. J. & Breakspear, M. Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer, 
https://doi.org/10.1016/j.bpsc.2017.01.010 (2017).

	28.	 Roberts, J. A., Friston, K. J. & Breakspear, M. Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review, 
https://doi.org/10.1016/j.bpsc.2016.12.009 (2017).

	29.	 Jirsa, V. K. et al. The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. NeuroImage 145, 377–388, 
https://doi.org/10.1016/j.neuroimage.2016.04.049 (2017).

	30.	 Aerts, H., Fias, W., Caeyenberghs, K. & Marinazzo, D. Brain networks under attack: Robustness properties and the impact of lesions. 
Brain 139, 3063–3083, https://doi.org/10.1093/brain/aww194 (2016).

	31.	 Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual Cortical Resection Reveals Push-Pull Network Control 
Preceding Seizure Evolution. Neuron, https://doi.org/10.1016/j.neuron.2016.07.039 (2016).

	32.	 WHO | Epilepsy. WHO (2017).
	33.	 Laxer, K. D. et al. The consequences of refractory epilepsy and its treatment, https://doi.org/10.1016/j.yebeh.2014.05.031 (2014).
	34.	 De Tisi, J. et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: A cohort study. The 

Lancet 378, 1388–1395, https://doi.org/10.1016/S0140-6736(11)60890-8 (2011).
	35.	 Fois, C. et al. Predictors for being offered epilepsy surgery: 5-year experience of a tertiary referral centre. J. neurology, neurosurgery, 

psychiatry 87, 209–211, https://doi.org/10.1136/jnnp-2014-310148 (2016).
	36.	 Holt, A. B. & Netoff, T. I. Computational modeling of epilepsy for an experimental neurologist, https://doi.org/10.1016/j.

expneurol.2012.05.003 (2013).
	37.	 Woldman, W. & Terry, J. R. Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. In 

Bhattacharya, B. S. & Chowdhury, F. N. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders, 
chap. 7, 161–188 (2015).

	38.	 da Silva, F. L. et al. Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic 
Activity. Epilepsia 44, 72–83, https://doi.org/10.1111/j.0013-9580.2003.12005.x (2003).

	39.	 Baier, G., Goodfellow, M., Taylor, P. N., Wang, Y. & Garry, D. J. The importance of modeling epileptic seizure dynamics as spatio-
temporal patterns. Front. Physiol. 3 JUL, https://doi.org/10.3389/fphys.2012.00281 (2012).

	40.	 Petkov, G., Goodfellow, M., Richardson, M. P. & Terry, J. R. A critical role for network structure in seizure onset: A computational 
modeling approach. Front. Neurol. 5, https://doi.org/10.3389/fneur.2014.00261 (2014).

	41.	 Hutchings, F. et al. Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations. PLoS 
Comput. Biol, https://doi.org/10.1371/journal.pcbi.1004642 (2015).

	42.	 Lopes, M. A. et al. An optimal strategy for epilepsy surgery: Disruption of the rich-club? PLoS computational biology 13, e1005637, 
https://doi.org/10.1371/journal.pcbi.1005637 (2017).

	43.	 Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332, 
https://doi.org/10.1093/brain/aww299 (2016).

	44.	 Hebbink, J., Meijer, H., Huiskamp, G., van Gils, S. & Leijten, F. Phenomenological network models: Lessons for epilepsy surgery. 
Epilepsia 58, e147–e151, https://doi.org/10.1111/epi.13861 (2017).

	45.	 Chowdhury, F. A. et al. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy. PLoS ONE, 
https://doi.org/10.1371/journal.pone.0110136 (2014).

	46.	 Goodfellow, M. et al. Computer models to inform epilepsy surgery strategies: prediction of postoperative outcome. Brain 140, 
e30–e30 (2017).

	47.	 Lopes, M. A. et al. Elevated Ictal Brain Network Ictogenicity Enables Prediction of Optimal Seizure Control. Front. Neurol. 9, 98, 
https://doi.org/10.3389/fneur.2018.00098 (2018).

	48.	 Ermentrout, G. B. & Kopell, N. Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation. SIAM J. on Appl. Math. 
46, 233–253, https://doi.org/10.1137/0146017 (1986).

	49.	 Marten, F., Rodrigues, S., Suffczynski, P., Richardson, M. P. & Terry, J. R. Derivation and analysis of an ordinary differential equation 
mean-field model for studying clinically recorded epilepsy dynamics. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 79, https://doi.
org/10.1103/PhysRevE.79.021911 (2009).

	50.	 Ferrat, L. A., Goodfellow, M. & Terry, J. R. Classifying dynamic transitions in high dimensional neural mass models: A random 
forest approach. PLOS Comput. Biol. 14, 1–27, https://doi.org/10.1371/journal.pcbi.1006009 (2018).

	51.	 Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant 
epilepsy: A first-in-man study. The Lancet Neurol. 12, 563–571, https://doi.org/10.1016/S1474-4422(13)70075-9 (2013).

	52.	 Blenkinsop, A., Valentin, A., Richardson, M. P. & Terry, J. R. The dynamic evolution of focal-onset epilepsies - combining theoretical 
and clinical observations. Eur. J. Neurosci. 36, 2188–2200, https://doi.org/10.1111/j.1460-9568.2012.08082.x (2012).

	53.	 Gutkin, B. Theta Neuron Model. In Jaeger, D. & Jung, R. (eds) Encyclopedia of Computational Neuroscience, 2958–2965 (2015).
	54.	 Benjamin, O. et al. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in 

idiopathic generalised epilepsy. The J. Math. Neurosci. 2, 1, https://doi.org/10.1186/2190-8567-2-1 (2012).
	55.	 Kendall, M. G. Rank correlation methods (C. Griffin, 1948).
	56.	 McKay, B. D. & Piperno, A. Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112, https://doi.org/10.1016/j.jsc.2013.09.003 

(2014).
	57.	 Niedermeyer, E. & Lopes da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott 

Williams and Wilkins, 1998).
	58.	 Sone, D. et al. Graph Theoretical Analysis of Structural Neuroimaging in Temporal Lobe Epilepsy with and without Psychosis. PLOS 

ONE 11, e0158728 (2016).
	59.	 Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis (2016).
	60.	 Schmidt, H. et al. A computational biomarker of idiopathic generalized epilepsy from resting state EEG. Epilepsia, https://doi.

org/10.1111/epi.13481 (2016).
	61.	 Messé, A., Rudrauf, D., Giron, A. & Marrelec, G. Predicting functional connectivity from structural connectivity via computational 

models using MRI: An extensive comparison study. NeuroImage 111, 65–75, https://doi.org/10.1016/j.neuroimage.2015.02.001 
(2015).

	62.	 Maiwald, T. et al. Driving the model to its limit: Profile likelihood based model reduction. PLoS ONE, https://doi.org/10.1371/
journal.pone.0162366 (2016).

	63.	 Snowden, T. J., van der Graaf, P. H. & Tindall, M. J. Methods of Model Reduction for Large-Scale Biological Systems: A Survey of 
Current Methods and Trends. Bull. Math. Biol., https://doi.org/10.1007/s11538-017-0277-2 (2017).

	64.	 Santolini, M. & Barabási, A.-L. Predicting perturbation patterns from the topology of biological networks. Proc. Natl. Acad. Sci. 
(2018).

	65.	 Sweet, J. A., Pace, J., Girgis, F. & Miller, J. P. Computational Modeling and Neuroimaging Techniques for Targeting during Deep 
Brain Stimulation. Front. Neuroanat. 10, https://doi.org/10.3389/fnana.2016.00071 (2016).

https://doi.org/10.1038/s41598-019-43871-7
https://doi.org/10.1038/srep29215
https://doi.org/10.1038/srep29215
https://doi.org/10.1093/brain/awx004
https://doi.org/10.1093/brain/awx004
https://doi.org/10.1016/j.bpsc.2017.01.010
https://doi.org/10.1016/j.bpsc.2016.12.009
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1093/brain/aww194
https://doi.org/10.1016/j.neuron.2016.07.039
https://doi.org/10.1016/j.yebeh.2014.05.031
https://doi.org/10.1016/S0140-6736(11)60890-8
https://doi.org/10.1136/jnnp-2014-310148
https://doi.org/10.1016/j.expneurol.2012.05.003
https://doi.org/10.1016/j.expneurol.2012.05.003
https://doi.org/10.1111/j.0013-9580.2003.12005.x
https://doi.org/10.3389/fphys.2012.00281
https://doi.org/10.3389/fneur.2014.00261
https://doi.org/10.1371/journal.pcbi.1004642
https://doi.org/10.1371/journal.pcbi.1005637
https://doi.org/10.1093/brain/aww299
https://doi.org/10.1111/epi.13861
https://doi.org/10.1371/journal.pone.0110136
https://doi.org/10.3389/fneur.2018.00098
https://doi.org/10.1137/0146017
https://doi.org/10.1103/PhysRevE.79.021911
https://doi.org/10.1103/PhysRevE.79.021911
https://doi.org/10.1371/journal.pcbi.1006009
https://doi.org/10.1016/S1474-4422(13)70075-9
https://doi.org/10.1111/j.1460-9568.2012.08082.x
https://doi.org/10.1186/2190-8567-2-1
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1111/epi.13481
https://doi.org/10.1111/epi.13481
https://doi.org/10.1016/j.neuroimage.2015.02.001
https://doi.org/10.1371/journal.pone.0162366
https://doi.org/10.1371/journal.pone.0162366
https://doi.org/10.1007/s11538-017-0277-2
https://doi.org/10.3389/fnana.2016.00071


1 2Scientific Reports |          (2019) 9:7351  | https://doi.org/10.1038/s41598-019-43871-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	66.	 Cona, F., Zavaglia, M., Massimini, M., Rosanova, M. & Ursino, M. A neural mass model of interconnected regions simulates rhythm 
propagation observed via TMS-EEG. NeuroImage 57, 1045–1058, https://doi.org/10.1016/j.neuroimage.2011.05.007 (2011).

	67.	 Ramaraju, S., Roula, M. A. & McCarthy, P. W. Modelling the effect of electrode displacement on transcranial direct current 
stimulation (tDCS). J. Neural Eng. 15, 016019, https://doi.org/10.1088/1741-2552/aa8d8a (2018).

	68.	 Laxpati, N. G., Kasoff, W. S. & Gross, R. E. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. 
Neurother.: journal Am. Soc. for Exp. NeuroTherapeutics 11, 508–26, https://doi.org/10.1007/s13311-014-0279-9 (2014).

	69.	 Joo, E. Y. Clinical Application of TMS to Epilepsy. J. Epilepsy Res. 2, 25–28, https://doi.org/10.14581/jer.12007 (2012).
	70.	 San-Juan, D. et al. Transcranial direct current stimulation in epilepsy, https://doi.org/10.1016/j.brs.2015.01.001 (2015).

Acknowledgements
L.J., J.R.T. and M.G. acknowledge funding from the Engineering and Physical Sciences Research Council via grant 
EP/N014391/1. M.A.L., J.R.T. and M.G. acknowledge funding from the Medical Research Council via grant MR/
K013998/1 and Epilepsy Research UK via grant P1505. J.R.T. and M.G. acknowledge funding from a Wellcome 
Trust Institutional Strategic Support Award via grant WT105618MA. M.G. acknowledges funding from the 
Engineering and Physical Sciences Research Council via grant EP/P021417/1. The authors would like to thank 
George Petkov for valuable comments and insights during the development of this study.

Author Contributions
L.J., J.T. and M.G. conceived the study; L.J. conducted the formal analysis; L.J., M.L., J.T. and M.G. analysed the 
results; L.J., M.L., J.T. and M.G. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-43871-7.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-43871-7
https://doi.org/10.1016/j.neuroimage.2011.05.007
https://doi.org/10.1088/1741-2552/aa8d8a
https://doi.org/10.1007/s13311-014-0279-9
https://doi.org/10.14581/jer.12007
https://doi.org/10.1016/j.brs.2015.01.001
https://doi.org/10.1038/s41598-019-43871-7
http://creativecommons.org/licenses/by/4.0/

	The role that choice of model plays in predictions for epilepsy surgery

	Methods

	Dynamic models of epilepsy. 
	Physiological model. 
	Theta model. 
	Bistable model. 

	Quantification of state-switching dynamics. 
	Quantification of the effect of node removals. 
	Comparison of perturbation effects. 

	Results

	Networks with three and four nodes. 
	Networks with a larger number of nodes. 

	Discussion

	Acknowledgements

	Figure 1 Node Ictogenicity estimation.
	Figure 2 Comparison of Node Ictogenicity for 3-node networks.
	Figure 3 Comparison of Node Ictogenicity for 4-node and 19-node networks.
	Figure 4 Average weighted Kendall rank as a function of the heterogeneity in the NI distribution.
	Figure 5 ΔNI as a function of global and local network measures.
	Table 1 Parameter values for the Physiological model and their biological interpretation25.
	Table 2 Ranges of the excitability and coupling parameters for the calculation of the bidimensional BNI diagrams.




