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The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of
factors affecting disease progression and severity. The identification of prognostic
biomarkers and physiological processes associated with disease symptoms is relevant
for the development of new diagnostic and therapeutic interventions to contribute to the
control of this pandemic. To address this challenge, in this study, we used a quantitative
proteomics together with multiple data analysis algorithms to characterize serum protein
profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital
discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases
with increasing systemic inflammation in comparison with healthy individuals sampled
prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins
and associated biological processes and disorders associated to COVID-19. These
results corroborated previous findings in COVID-19 studies and highlighted how the
representation of dysregulated serum proteins and associated BPs increases with
COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis
was then focused on novel disease processes and biomarkers that were correlated with
disease symptomatology. To contribute to translational medicine, results corroborated
the predictive value of selected immune-related biomarkers for disease recovery
[Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity
[Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)]
using protein-specific ELISA tests. Our results contributed to the characterization of
SARS-CoV-2–host molecular interactions with potential contributions to the monitoring
and control of this pandemic by using immune-related biomarkers associated with
disease symptomatology.
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INTRODUCTION

Coronavirus disease 19 (COVID-19) is a pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also
referred as hCoV-19) with immunological dysregulation associated
with disease severity (1, 2). The incidence of this pandemic is still
increasing worldwide and posts a challenge for the understanding of
host and virus-derived factors affecting disease severity and the
identification of prognostic biomarkers and physiological processes
related to COVID-19 symptomatology and relevant for the
development of new diagnostic and therapeutic interventions to
contribute to the control of this pandemic (3–6).

To address this challenge, proteomics constitutes a high-
resolution method for the study of host response to infectious
diseases, including those caused by RNA viruses (7). Quantitative
proteomics has been used for the study of SARS-CoV-2 infection
in various samples (e.g., serum, plasma or urine), tissues (e.g.,
lung), and cells (e.g., peripheral blood mononuclear or Caco-2
cells). This experimental approach has been used for the study of
host anti-viral responses and the identification of biomarkers for
COVID-19 disease severity, diagnostics, and treatment. Examples
of these biomarkers are serum amyloid A-1 (SAA1), serum
amyloid A-2 (SAA2), C-reactive protein (CRP), gelsolin (GSN),
interleukins (IL-1, IL-6), serine protease inhibitors (SERPINs),
progranulin (GRN), apolipoproteins (APOs), complement and
pro-inflammatory factors, coagulation system, and vascular cell
adhesion protein 1 (VCAM-1) (4–23). Results of proteomics
analyses have shown a correlation of disease severity with
inflammatory, immunological, and cancer biomarkers, metabolic
suppression, neutrophil activation, hepatic and lung injury and the
dysregulation of lipid transport, macrophages, platelet degranulation,
and complement system pathways (4–6, 8–13, 18, 20–22, 24).

However, due to the complexity of COVID-19 symptomatology,
it is important to characterize host response to SARS-CoV-2
infection in different cohorts from asymptomatic individuals to
severe patients to better understand disease mechanisms and
symptoms with possible medical complications at different levels,
and the identification of potential diagnostic markers and drug
targets (22–25). Quantitative proteomics approaches alone or in
combination with other omics technologies are key to achieve this
goal (24–27). To contribute in addressing this objective, herein we
used a sequential window acquisition of all theoretical mass spectra
(SWATH-MS) quantitative proteomics to characterize serum
protein profiles in five cohorts of healthy (pre-pandemic sampling)
and SARS-CoV-2-infected asymptomatic, recovered (hospital
discharge), nonsevere (hospitalized), and severe [intensive care
unit (ICU)] individuals. The results advanced our understanding of
the molecular mechanism-driven host–SARS-CoV-2 interactions
and identified immune-related prognostic biomarkers and
physiological processes related to COVID-19 symptomatology.

MATERIALS AND METHODS

Samples From Healthy Individuals and
COVID-19 Patients
A retrospective case–control study was conducted in patients
suffering from COVID-19 and healthy controls sampled at the
Frontiers in Immunology | www.frontiersin.org 2
University General Hospital of Ciudad Real (HGUCR), Spain
(28, 29). Blood samples from control individuals were collected
prior to the COVID-19 pandemic in April 2019. COVID-19
patients were confirmed as SARS-CoV-2-infected by IgG
antibody titers or reverse transcriptase-polymerase chain
reaction (RT-PCR) and sampled between March and May
2020 (28) (Figure 1). Clinical symptoms and laboratory
determinations associated with COVID-19 were obtained from
patient’s medical records to create cohorts of asymptomatic,
nonsevere (hospitalized), recovered (hospital discharge), and
severe (ICU) individuals (28). Patients were hospitalized for
developing a moderate-severe clinical condition with
radiologically demonstrated pneumonia and failure in blood
oxygen saturation. Patients with acute respiratory failure who
needed mechanical ventilation support were admitted to a
hospital ICU. The patients were discharged from the hospital
due to the clinical and radiological improvement of pneumonia
caused by the SARS-CoV-2, along with the normalization of
analytical parameters indicative of inflammation. Data can be
found at Urra et al. (28) and Supplementary Table 1. Blood
samples were drawn in a vacutainer tube without anticoagulant.
The tube remained at rest for 15–30 min at room temperature
(RT) for clotting. Subsequently, the tube was centrifuged at 1500 × g
for 10 min at RT to remove the clot and obtain serum. Serum
samples were heat-inactivated for 30 min at 56°C and conserved at
−20°C until used for analysis. The use of samples and individual
data was approved by the Ethical and Scientific Committees
(University Hospital of Ciudad Real C-352 and SESCAM C-73).

Serum Proteomics
Serum samples from healthy controls (n = 25) and asymptomatic
(n = 16), nonsevere (n = 28), recovered (n = 26), and severe (n =
25) COVID-19 individuals were randomly clustered in three
biological pools per group (n = 5–10 samples per pool). Protein
concentration in samples was determined using the BCA Protein
Assay with BSA (Sigma-Aldrich) as standard. Protein serum
samples (100 µg per sample) were trypsin digested using the
FASP Protein Digestion Kit (Expedeon Ltd., UK) and sequencing
grade trypsin (Promega, Madison, WI, USA) following the
manufacturer’s recommendations. The resulting tryptic peptides
were desalted onto OMIX Pipette tips C18 (Agilent Technologies,
Santa Clara, CA, USA), dried down, and stored at −20°C until mass
spectrometry analysis. The desalted protein digests were resuspended
in 2% acetonitrile and 5% acetic acid in water and analyzed by
reverse-phase liquid chromatography coupled to mass spectrometry
(RP-LC-MS/MS) using an Ekspert™ nanoLC 415 system coupled
online with a 6600 TripleTOF mass spectrometer (AB SCIEX;
Framingham, US) through Information-Dependent Acquisition
(IDA) followed by Sequential Windowed data independent
Acquisition of the Total High-resolution Mass Spectra (SWATH-
MS). The peptides were concentrated in a 0.1 × 20 mm C18 RP
precolumn (Thermo Scientific) with a flow rate of 5 µl/min during 10
min in solvent A. Then, peptides were separated in a 0.075 × 250mm
C18 RP column (New Objective, Woburn, MA, USA) with a flow
rate of 300 nl/min. Elution was done in a 120-min gradient from 5%
B to 30% B followed by a 15-min gradient from 30% B to 60% B
(Solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in
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acetonitrile) and directly injected into the mass spectrometer
for analysis.

For IDA experiments, the mass spectrometer was set to scan
full spectra from 350 m/z to 1400 m/z (250 ms accumulation
time) followed by up to 50 MS/MS scans (100–1500 m/z).
Candidate ions with a charge state between +2 and +5 and
counts per second above a minimum threshold of 100 were
Frontiers in Immunology | www.frontiersin.org 3
isolated for fragmentation. One MS/MS spectrum was collected
for 100 ms, before adding those precursor ions to the exclusion
list for 15 s (mass spectrometer operated by Analyst TF 1.6,
ABSciex). Dynamic background subtraction was turned off. Data
were acquired in high sensitivity mode with rolling collision
energy on and a collision energy spread of 5. A total amount of
4 µg of total proteins was injected.
FIGURE 1 | Individual cohorts and study design. COVID-19 patients included cohorts of asymptomatic (n = 16), recovered (hospital discharge; n = 26), nonsevere
(hospitalized; n = 28), and severe (ICU; n = 25) cases with increasing systemic inflammation. Healthy individuals sampled before the COVID-19 pandemic were
included in the analysis (n = 25). Female-to-male (F/M) ratio and average ± S.D. age (y/o) are shown. Additional information can be found in Urra et al. (28). A
SWATH-MS proteomics approach was used for data acquisition and analysis. A retrospective case–control study was conducted in patients suffering from COVID-
19 and healthy controls sampled at indicated dates using standard procedures. Serum from three pools of 5–10 individuals each with three technical replicates were
used for proteomics using SWATH-MS protein identification and quantitation and data analysis using Metascape and networks of interactions between proteins and
BPs using Graph Theory algorithms to identify dysregulated proteins in response to COVID-19.
September 2021 | Volume 12 | Article 730710
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For SWATH quantitative analysis, 45 independent samples
(three technical replicates from each of the three biological
replicates for each of the five experimental groups) (8 mg each)
were subjected to the cyclic data independent acquisition (DIA)
of mass spectra using the SWATH variable windows calculator
(V 1.0, AB SCIEX) and the SWATH acquisition method editor
(AB SCIEX), similar to established methods (30). A set of 50
overlapping windows was constructed (containing 1 m/z for the
window overlap), covering the precursor mass range of 400–1250
m/z. For these experiments, a 50-ms survey scan (350–1400 m/z)
was acquired at the beginning of each cycle, and SWATH-MS/
MS spectra were collected from 100 to 1500 m/z for 70 ms at high
sensitivity mode, resulting in a cycle time of 3.6 s. Collision
energy for each window was determined according to the
calculation for a charge +2 ion-centered upon the window with
a collision energy spread of 15.

To create a spectral library of all the detectable peptides in the
samples, the IDA MS raw files were combined and subjected to
database searches in unisonusing ProteinPilot software v. 5.0.1 (AB
SCIEX) with the Paragon algorithm. Spectra identification was
performed by searching against the UniProt human proteome
database (75,074 entries in October 2020) with the following
parameters: iodoacetamide cysteine alkylation, trypsin digestion,
identification focus on biological modification, and thorough ID as
search effort. The detected protein threshold was set at 0.05. To
assess the quality of identifications, an independent FalseDiscovery
Rate (FDR) analysis with the target-decoy approach provided by
Protein Pilot was performed. Positive identifications were
considered when identified proteins reached a 1% global FDR.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (31) partner
repository with the dataset identifier PXD024549 and
10.6019/PXD024549.

Quality Control of Proteomics Data
Quality of proteomics data was controlled at multiple levels.
First, a rat ileum digest was used for the evaluation of instrument
performance. Buffer A samples were run as blanks every three
injections to prevent carryover. Three technical replicates were
injected for each sample. For validation of serum proteomics
data, protein representation for previously identified biomarkers
for COVID-19 and proteomics studies were used to show
correlation with disease severity (Supplementary Figures 3, 4).
An enrichment analysis was conducted using the Coronascape
COVID database (https://metascape.org/COVID) (32) to identify
proteins found in our study as differentially represented in response
to COVID-19 and reported in previous COVID-19 omics datasets.

Data Analysis
For SWATH processing, up to 10 peptides with seven transitions
per protein were automatically selected by the SWATH
Acquisition MicroApp 2.0 in the PeakView 2.2 software with
the following parameters: 15 ppm ion library tolerance, 5 min
XIC extraction window, 0.01 Da XIC width, and considering
only peptides with at least 99% confidence and excluding those
that were shared or contained modifications. However, to ensure
Frontiers in Immunology | www.frontiersin.org 4
reliable quantitation, only proteins with three or more peptides
available for quantitation were selected for XIC peak area
extraction and exported for analysis in the MarkerView 1.3
software (AB SCIEX). Global normalization according to the
Total Area Sums of all detected proteins in the samples was
conducted (Supplementary Data 1).

The Student’s t-test (p < 0.05) was used to perform two-sample
comparisons between the averaged area sums of all the transitions
derived for each protein across the nine replicate runs for each group
under comparison, in order to identify proteins that were
significantly differentially represented between groups
(Supplementary Data 1). Protein representation was also
compared between groups by Welch’s unpaired t-test (p < 0.05;
https://www.graphpad.com/quickcalcs/ttest1/?Format=C) and by
one-way ANOVA test followed by post-hoc Bonferroni and Holm
multiple comparisons (p < 0.05; https://astatsa.com/OneWay_
Anova_with_TukeyHSD/) (4). Proteins with significant differences
between healthy individuals and one of the COVID-19 cohorts only
were selected for heatmap analysis of z-score using complete linkage
and Spearman rank correlation (http://www.heatmapper.ca/
expression/). Data were separately analyzed for overrepresented
and underrepresented proteins using the Metascape gene
annotation and analysis resource (https://metascape.org/gp/index.
html#/main/step1) (Supplementary Figure 1).

To evaluate the network of interactions between proteins and
BPs, a network was built using data for each protein and the BPs in
which it is involved (Supplementary Data 2). This network
reflects the importance of each protein on each BP according to
its representation. The purpose was to obtain a general framework
based on previous network developments using Graph Theory
algorithms, which were revealed to be adequate for the purpose of
representing these relationships (33). Networks exhibit nodes and
the relationships between these components (links). Each node
represents a protein or a BP. The network is directed, as each edge
links each protein “to” one or multiple BPs. Several indices
measure network properties from which the relationships
among proteins and BPs are derived. The weighted degree
(WG) is one of the most basic measures of a network,
representing the number of links leaving (or arriving at) a given
node after weighting by the total number of records containing
this interaction. In this context, a protein always links to a BP with
a “strength” derived from its representation. The WG provides an
estimation of the strength of the association but does not evaluate
the importance of each node in the context of the network. We
used the Page Rank (PR) index to calculate the importance of each
node in the complete network (34). This index calculates the
number of links of each protein to one or several BPs, together
with its weighted degree. The PR of each protein is calculated
according to the authority (i.e., the relative importance) of each
BP. The PR is an index that assigns a universal rank to nodes based
on the importance of the other nodes to which it is linked and the
WG. We calculated PR for each cohort (healthy, asymptomatic,
recovered, nonsevere, and severe COVID-19 cases) and built
separate networks for each condition. Then, we calculated how
PR of both proteins and BPs changed in each group. We were
looking for prominent changes in the nodes of the network, using
September 2021 | Volume 12 | Article 730710

https://metascape.org/COVID
https://www.graphpad.com/quickcalcs/ttest1/?Format=C
https://astatsa.com/OneWay_Anova_with_TukeyHSD/
https://astatsa.com/OneWay_Anova_with_TukeyHSD/
http://www.heatmapper.ca/expression/
http://www.heatmapper.ca/expression/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Villar et al. Prognostic Biomarkers for COVID-19 Symptomatology
an approach based on the distribution of values and the semantic
rules of Fuzzy Logic (35). For each node of the network, we
selected all the nodes that were in the first quintile (i.e., lowest
values) of the PR’s distribution of groups “healthy” and
“asymptomatic” and that were in the last quintile (i.e., high
values) of distribution of groups “nonsevere” and “severe”. The
opposite selection (highest versus lowest) was also carried out.
After relating these queries by the operator “AND” according to
Fuzzy Logic rules, each node was ranked between 0 (no change)
and 1 (maximum change). We arbitrarily removed the nodes with
values lower than 0.5. We also evaluated the weighted nestedness
of each network as a measure of structuring. A network is more
coherent and robust (i.e., resilient to node removal) if structuring
is high. Nestedness is a measure in ecological system networks that
emanates from the way elements are linked. It should be noted
that the absence of nestedness does not mean the absence of a
pattern. Nestedness is not a feature of the network, but a
consequence of the WD sequences (36). Since most of the
available algorithms evaluate the nestedness using only the
pattern presence/absence (i.e., interaction/not interaction), we
adhered to the approach provided by the software WINE (37)
since it also accounts for the weights of the interactions in
quantitative data matrices (proteins and BPs in our application)
that include the number of events of each interaction and the
strength of such interaction, or the representation of the proteins
involved in each BP.

Determination of IL-1 and IL-4 Serum Levels
Serum levels of IL-1 and IL-4 were determined by ELISA
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions. Briefly, 96-microwell plates coated in duplicate with
anti-human IL-1b or IL-4 were washed twice with 400 µl/well of
wash buffer and 100 µl of human IL-1b or IL-4 standard (20.00
pg/ml) at serial dilutions (1:2, 1:4, 1:8, 1:16, and 1:32), 100 µl/well
of sera at 1:2 dilution, and 100 µl/well of sample diluent as
negative control. Then, 50 µl/well of biotin conjugate were added
to all wells. After incubation for 2 h at RT and three washes with
400 µl/well of wash buffer, 100 µl/well of streptaviding-HRP were
added to all wells. After incubation for 1 h at RT and three
washes with 400 µl/well of wash buffer, 100 µl/well of 3,3′,5,5′-
Tetramethylbenzidine or TMB substrate solution were added to
all wells. As soon as the Standard 1 well reached an O.D. of 0.9 at
620 nm, the colorimetric reaction was stopped with 100 µl/well
of stop solution and the absorbance was measured in a
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) at an O.D. of 450 nm; 0.05 Human IL-1b or IL-4
concentration (pg/ml) in each sample was calculated from the
obtained standard curve. The results were compared between
different groups by one-way ANOVA test with post-hoc Tukey
Honestly Significant Difference (HSD) (https://astatsa.com/
OneWay_Anova_with_TukeyHSD/; p = 0.05).
Validation of Selected Serum
Protein Biomarkers
Serum samples from cohorts included in the proteomics analysis
plus additional samples of healthy controls (n = 37) and
Frontiers in Immunology | www.frontiersin.org 5
asymptomatic (n = 18), nonsevere (n = 29), recovered (n =
27), and severe (n = 25) COVID-19 individuals were used for
validation analysis. Serum levels of PZP, SELENOP, CBP2, and
PON1 were determined by ELISA (MyBioSource, Inc., San
Diego, CA, USA, provided by bioNova Cientıfíca S.L., Madrid,
Spain) following the manufacturer’s protocol available online
(PZP, MBS2706073, https://www.mybiosource.com/human-
elisa-kits/pregnancy-zone-protein-pzp/2706073; SELENOP,
MBS163893, https://www.mybiosource.com/human-elisa-kits/
selenoprotein-p-se-p/163893; CPB2, MBS703133, https://www.
mybiosource.com/cpb2-human-elisa-kits/carboxypeptidase-b2-
plasma/703133; PON1, MBS2883206, https://www.mybiosource.
com/pon1-human-elisa-kits/serum-paraoxonase-arylesterase-1/
2883206). The results were compared between different groups
by one-way ANOVA test with post-hoc Tukey HSD (https://
astatsa.com/OneWay_Anova_with_TukeyHSD/; p = 0.05).
Proteomics and ELISA data were compared by Spearman’s
Rho (rs) correlation analysis (https://www.socscistatistics.com/
tests/spearman/default2.aspx; p = 0.05).
RESULTS

Variations in Differential Serum Protein
Profiles and Affected Biological Processes
According to COVID-19 Disease
Symptomatology
The study was conducted using a SWATH-MS quantitative
proteomics to characterize serum protein profiles in COVID-
19 patient cohorts from asymptomatic to recovered (hospital
discharge), nonsevere (hospitalized), and severe (ICU) cases with
increasing systemic inflammation in comparison with healthy
individuals sampled prior to the COVID-19 pandemic
(Figure 1). A total of 189 proteins were identified in serum
samples from all cohorts included in the study (Supplementary
Data 1). Of them, 49, 113, 124, and 129 proteins were
significantly dysregulated in asymptomatic, recovered,
nonsevere, and severe cases when compared to healthy
controls, respectively (Figure 1; Supplementary Figure 1 and
Data 1). As expected, immunoglobulins, high-density
lipoproteins (HDL) and complement cascade represented 32%
(60/189), 23% (44/189), and 12% (22/189) of identified serum
proteins, respectively (Supplementary Data 1).

Of the significantlydysregulatedproteins,Pregnancyzoneprotein
(PZP) and Alpha-1-antitrypsin (SERPINA1) were identified as
underrepresented in asymptomatic cases only (Figures 2A, B).
These proteins are involved in biological processes (BPs) of female
pregnancy and tissue protection. In recovered COVID-19 cases, 11
proteins were exclusively significantly dysregulated and grouped in
two clades of overrepresented (n = 8) and underrepresented (n = 3)
proteins (Figures 2C, D). Patient’s recovery was associated with
dysregulation of immune response; increased complement
activation, inflammatory response, and oxidant defense; and
decrease in cholesterol transfer/esterification.

The exclusively significantly dysregulated serum proteins in
nonsevere (n = 9) and severe (n = 15) patients affected multiple
September 2021 | Volume 12 | Article 730710
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BPs (Figures 3A–D). In nonsevere cases, overrepresented proteins
(n = 7) are involved in complement activation, immune response,
and blood coagulation while underrepresented proteins (n = 2)
reduce protection against oxidative damage and disease. Severe
cases showed dysregulation of BPs such as immune response,
metabolic processes, complement activation, and response to
carbohydrate associated with overrepresented proteins (n = 12).
Exclusively underrepresented proteins in severe cases (n = 3) are
involved in immune response and complement activation.
Proteins with multiple differential representation in sera from
COVID-19 cases when compared to healthy controls (n = 128)
were grouped into two clades of proteins with a tendency towards
Frontiers in Immunology | www.frontiersin.org 6
increase (n = 93) and decrease (n = 35) in representation
according to disease severity (Figure 4).

Of the multiple BPs affected by significantly dysregulated serum
proteins, somewere only enriched in symptomatic cases while others
were enriched in asymptomatic cases (Figures 5A–D and 6A–D).
For overrepresented proteins, enrichment increased with disease
severity for BPs such as negative regulation of epithelial cell
proliferation, FOXA1 transcription factor network (HNF3A
pathway M285) coordinating function of primary airway epithelial
cells, IL-6-mediated signaling events (M183), response to inorganic
substance, blood coagulation, acute-phase response, cytolysis,
binding and uptake of ligands by scavenger receptors, and reactive
A B

D

C

FIGURE 2 | Exclusive differential representation of proteins in sera from COVID-19 asymptomatic and recovered cases. (A) Heatmap of proteins significantly dysregulated
(Z-scored original value) in asymptomatic cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological process (BP) is shown for each protein. (B) Change in levels of
two selected proteins with significant differences between asymptomatic cases and healthy controls (*p < 0.05; unpaired two-sided Welch’s t-test). (C) Heatmap of proteins
significantly dysregulated (Z-scored original value) in recovered cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster
of proteins differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (D) Change in levels of two selected proteins with
significant differences between recovered cases and healthy controls (*p < 0.05, **p < 0.01; unpaired two-sided Welch’s t-test).
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oxygen species metabolic process (Figure 5A). Underrepresented
proteins were enriched only in both asymptomatic (e.g., common
pathway of fibrin clot formation, acute-phase response,
complement and coagulation cascade, hyaluronan metabolic
process, positive regulation of lipase activity, renal system
process, positive regulation of immune effector process and
M5884 ensemble of genes encoding core extracellular matrix
Frontiers in Immunology | www.frontiersin.org 7
including ECM glycoproteins, collagens, and proteoglycans) and
symptomatic (e.g., regulation of plasma lipoprotein oxidation,
response to nutrient levels, tissue homeostasis, positive regulation
of cell death, and phagocytosis) cases (Figure 6A).

The network of interactions between proteins and BPs was
characterized using Graph Theory algorithms (Supplementary
Figure 2 andData 2). While visually similar, networks have deep
A
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C

FIGURE 3 | Exclusive differential representation of proteins in sera from COVID-19 nonsevere and severe cases. (A) Heatmap of proteins significantly dysregulated
(Z-scored original value) in nonsevere cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster of proteins
differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (B) Change in levels of three selected proteins with
significant differences between nonsevere cases and healthy controls (*p < 0.05, **p < 0.01; unpaired two-sided Welch’s t-test). (C) Heatmap of proteins significantly
dysregulated (Z-scored original value) in severe cases only (p < 0.05; unpaired two-sided Welch’s t-test). Biological processes (BPs) are shown for each cluster of
proteins differentially represented in response to COVID-19 (cluster 1, overrepresented; cluster 2, underrepresented). (D) Change in levels of two selected proteins
with significant differences between severe cases and healthy controls (***p < 0.001, ****p < 0.0001; unpaired two-sided Welch’s t-test).
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differences in their structure. Other than obvious changes of the
proteins involved (presence/absence and representation), therefore
affecting the BPs, nestedness showed a decreasing magnitude
according to the patient cohorts. Nestedness is maximum for
healthy and asymptomatic individuals (nestedness of 12.2 and
12.1, respectively), which reflects a high structuring of the clusters
(Figure 7 and Supplementary Data 2). However, networks built
using proteins and BPs for nonsevere and severe patients show a
clear de-structuring (nestedness of 5.1 and 3.8, respectively). The
networking built with data of recovered patients shows an
intermediate structure without clear differences with other cohorts
in this analysis (nestedness of 10.1). These results point to a clear
pattern in which some proteins (rate of change > 0.900;
Supplementary Data 2) such as neutrophil defensin 3, serum
amyloid A (SAA) SAA2-SAA4 readthrough, Apolipoprotein C-
IV, and Fibrinogen gamma chain are associated with nonsevere and
severe COVID-19 patients, therefore increasing the PR index value
of the BPs. It seems that overrepresentation of selected proteins in
patients with higher COVID-19 symptomatology is blocking the
normal regulation of these BPs, which resulted in higher PR values
in these cohorts. Networks resulting from these cohorts are de-
structured, and the structure with clear clusters observed in healthy
individuals is not evident. Therefore, the networks produced with
proteins and the BPs in the five cohorts show critical changes. These
Frontiers in Immunology | www.frontiersin.org 8
changes include the overrepresentation of some BPs such as
negative regulation by a host of viral processes, negative
regulation of mononuclear cell proliferation, positive regulation of
interleukins, positive regulation of chemokine production, and
positive regulation of respiratory burst involved in inflammatory
response that remained unaltered in healthy and recovered
individuals. These results support the idea that a network
construct, based on pure statistical rules, reflects the clinical status
commonly observed in critical COVID-19 patients.

In correspondence with these BPs, the network of enriched
terms showed that the most represented processes in proteins
overrepresented in COVID-19 cohorts are protein activation
cascade, phagocytosis, receptor-mediated endocytosis, platelet
degranulation, blood coagulation, acute-phase response, negative
regulation of proteolysis, Staphylococcus aureus infection,
cytolysis, regulation of insulin-like growth factor (IGF), binding
and uptake of ligands by scavenger, opsonization, cell killing,
antimicrobial humoral response, platelet activation, activation of
complement C3 and C5, plasma lipoprotein assembly, regulation of
endocytosis, and reactive oxygen species metabolic process
(Figures 5B, C). For underrepresented proteins, the most enriched
processes were protein activation cascade, enzymes and their
regulators involved in the remodeling of the extracellular matrix
(NABA ECM regulators), platelet degranulation, complement and
FIGURE 4 | Multiple differential representation of proteins in sera from COVID-19 cases. Heatmap of proteins significantly dysregulated (Z-scored original value) in
multiple COVID-19 cohorts (p < 0.05; unpaired two-sided Welch’s t-test). Clusters of proteins differentially represented in response to COVID-19 (cluster 1,
overrepresented; cluster 2, underrepresented) are shown. Protein levels of four selected proteins with significant differences on each cluster were compared between
groups by one-way ANOVA test followed by post-hoc Bonferroni and Holm multiple comparisons (f-values and p-values are shown) and unpaired two-sided Welch’s
t-test (*p < 0.05, **p < 0.01, (***p < 0.001, ****p < 0.0001).
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FIGURE 5 | Enrichment ontology clusters for differentially overrepresented proteins in sera from COVID-19 cases. (A) Statistically enriched terms (GO/KEGG
biological processes; GO : BP). Accumulative hypergeometric p-values and enrichment factors were calculated and used for filtering. Remaining significant terms
were then hierarchically clustered into a tree based on Kappa-statistical similarities among their protein memberships (as used in DAVID Bioinformatics Resources
6.8; https://david.ncifcrf.gov). A 0.3 Kappa score was applied as the threshold to cast the tree into term clusters. The term with the best p-value within each cluster
was selected as its representative term and displayed in a dendrogram. The heatmap cells are colored by their p-values; white cells indicate the lack of enrichment
for that term in the corresponding gene list. BPs in which enrichment increased with disease severity only in symptomatic cases are shown. (B) Network of enriched
terms. We selected a subset of representative terms from the full cluster and convert them into a network layout. More specifically, each term is represented by a
circle node, where its size is proportional to the number of input genes that fall into that term, and its color represents its cluster identity (i.e., nodes of the same color
belong to the same cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). The network is
visualized with Cytoscape (v3.1.2) with “force-directed” layout and with edge bundled for clarity. One term from each cluster is selected to have its term description
shown as label. (C) Network of enriched terms colored by p-value. The same enrichment network has its nodes colored by p-value, as shown in the legend. The
darker the color, the more statistically significant the node is (see legend for p-value ranges). (D) Quality control and association analysis. Protein lists were identified
in the ontology categories Transcription_Factor_Targets. All genes in the genome were used as the enrichment background. Terms with a p-value < 0.01, a
minimum count of 3, and an enrichment factor (ratio between the observed counts and the counts expected by chance) > 1.5 were collected and grouped into
clusters. The algorithm used here is the same as that used in the other enrichment analyses.
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FIGURE 6 | Enrichment ontology clusters for differentially underrepresented proteins in sera from COVID-19 cases. (A) Statistically enriched terms (GO/KEGG
biological processes; GO : BP). Accumulative hypergeometric p-values and enrichment factors were calculated and used for filtering. Remaining significant terms
were then hierarchically clustered into a tree based on Kappa-statistical similarities among their protein memberships (as used in DAVID Bioinformatics Resources
6.8; https://david.ncifcrf.gov). A 0.3 Kappa score was applied as the threshold to cast the tree into term clusters. The term with the best p-value within each cluster
was selected as its representative term and displayed in a dendrogram. The heatmap cells are colored by their p-values; white cells indicate the lack of enrichment
for that term in the corresponding gene list. BPs enriched only in symptomatic or asymptomatic cases are shown. (B) Network of enriched terms. We selected a
subset of representative terms from the full cluster and convert them into a network layout. More specifically, each term is represented by a circle node, where its
size is proportional to the number of input genes that fall into that term, and its color represents its cluster identity (i.e., nodes of the same color belong to the same
cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). The network is visualized with Cytoscape
(v3.1.2) with “force-directed” layout and with edge bundled for clarity. One term from each cluster is selected to have its term description shown as label.
(C) Network of enriched terms colored by p-value. The same enrichment network has its nodes colored by p-value, as shown in the legend. The darker the color,
the more statistically significant the node is (see legend for p-value ranges). (D) Quality control and association analysis. Protein lists were identified in the ontology
categories Transcription_Factor_Targets. All genes in the genome were used as the enrichment background. Terms with a p-value < 0.01, a minimum count of 3,
and an enrichment factor (ratio between the observed counts and the counts expected by chance) > 1.5 were collected and grouped into clusters. The algorithm
used here is the same as that used in the other enrichment analyses.
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coagulation cascades, regulation of IGF, protein–lipid complex
remodeling, phagocytosis, scavenging of heme from plasma,
regulation of plasma lipoprotein oxidation, acute-phase response,
terminal pathway of complement, pathway of fibrin clot formation,
FOXA2 and FOXA3 transcription factor networks (HNF3B pathway
M106), positive regulation of cytokine production, tissue homeostasis,
hyaluronan metabolic process, positive regulation of lipase activity,
response to nutrient levels, renal system process, and positive
regulation of cell death (Figures 6B, C). The quality control and
association analysis showed that network representation of nuclear
receptor subfamily 1, group H, member 4 (NR1H4) target genes
increased with disease severity (Figures 5D, 6D). Protein–protein
interaction enrichment analysis resulted in complement, coagulation,
and clotting cascades for overrepresented proteins and lipoprotein
particle remodeling, reverse cholesterol transport, and peptide ligand-
binding receptors for underrepresented proteins (Supplementary
Figure 1).

Identification of Prognostic Biomarkers in
Proteins Associated With COVID-19
Disease Symptomatology
For validation of serum proteomics data, an enrichment analysis
was conducted using the Coronascape COVID database (https://
metascape.org/COVID) to identify proteins found in our study
Frontiers in Immunology | www.frontiersin.org 11
as differentially represented in response to COVID-19 and
reported in previous COVID-19 omics datasets as a correlate
of disease severity (Supplementary Figures 3, 4). This analysis
also identified proteins dysregulated in COVID-19 patients
and potentially not previously associated with disease
symptomatology (Supplementary Figure 5). Of these proteins,
several were previously identified as biomarkers of severe
COVID-19 in non-omics studies and were not included in
further analyses (Supplementary Figure 5).

However, other proteins not previously identified in COVID-
19 patients or with differences in the representation profile
compared to our study were proposed as novel in relation to
disease symptomatology and were used for prognostic
biomarkers identification (Table 1 and Supplementary Figure
5). Of them, coagulation factor XII (F12) and transmembrane
protein 198 (TMEM198) showed an unsupportive profile for
biomarker prediction (Table 1 and Figure 7). TMEM198 has
been associated with diabetes as observed in comorbidities of
COVID-19 symptomatic cohorts included in the study
(Supplementary Table 1).

Selected identified candidate prognostic immune-related
biomarker proteins, PZP, Selenoprotein P (SELENOP),
Carboxypeptidase B2 (CPB2), and Serum paraoxonase/
arylesterase 1 (PON1) (Table 1), were validated by ELISA
FIGURE 7 | Prognostic biomarker proteins related to COVID-19 symptomatology. Network analysis of interactions between proteins and BPs reflects nestedness or
structuring of the cluster’s magnitude decreasing with COVID-19 symptomatology. SWATH-MS quantitative serum proteomics identified proteins involved in
physiological disorders and processes associated with COVID-19 and novel biomarker proteins with potential implications for the development of new diagnostic and
therapeutic interventions to contribute to the control of this pandemic. *Unsupportive protein profile for prognostic biomarker. Selected serum biomarkers (PZP,
SELENOP, CBP2, and PON1) were validated by ELISA. Change in protein serum levels with significant differences in comparison to healthy controls (*p < 0.05, **p <
0.01; one-way ANOVA test with post-hoc Tukey HSD). Proteomics and ELISA data were compared by Spearman’s Rho (rs) correlation analysis (ŏp < 0.05, ŏŏp < 0.01).
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using sera from individuals of all cohorts included in the study
(Figure 7). The results corroborated the predictive value of these
biomarkers for disease recovery (SELENOP and PON1), severity
(CBP2), and symptomatology (PZP).

Characterization of Differentially
Represented Proteins in Response to
COVID-19 and Associated to Other Human
Diseases and Conditions to Monitor Risk
Factors for Disease Symptomatology
An enrichment analysis was conducted using the DisGeNET
discovery platform (https://www.disgenet.org) provided by
Metascape (https://metascape.org) to identify proteins
differentially represented in response to COVID-19 and
associated to other human diseases and conditions with major
affected physiological processes resulting in macrophage
activation and coagulopathy (Figure 7 and Supplementary
Figure 6). The results showed two main types of pathologies
enriched with disease severity, renal insufficiency (acute kidney
injury, acute kidney insufficiency, proteinuria, and nephrotic
syndrome) and blood coagulation alterations (factor V Leiden
mutation, activated protein C resistance, and lupus anticoagulant
disorder). Alterations in blood coagulation are a consequence of the
SARS-CoV-2 infection and the associated pro-inflammatory
processes (52, 53). Three of the identified pathologies (factor V
Leiden mutation, activated protein C resistance, and lupus
anticoagulant disorder) are related to pro-coagulant alterations
and have been clinically associated with COVID-19 coagulopathy
(54). Renal insufficiency has been associated with poor COVID-19
Frontiers in Immunology | www.frontiersin.org 12
prognosis (55), and the results correlated with renal disease
comorbidity in COVID-19 symptomatic cohorts included in the
study (Supplementary Table 1). Drug toxicity and adverse
reaction to drug are likely associated with the patient’s response
to drugs, which were supplied to all symptomatic patients
(Supplementary Table 1). Hyperlipidemia but not complement
deficiency disease correlated with clinical conditions in COVID-19
cohorts (Supplementary Table 1). Inflammation is a common
condition in COVID-19 patients with increasing symptomatology
with disease severity (Figure 1). Several of these disorders and
COVID-19 disease severity are associated with positive regulation of
interleukins (e.g., IL-6) (56) (Supplementary Figure 5A,
Supplementary Data 2). However, in this study, we did not
identify interleukins in the serum proteomics dataset, likely due to
low protein levels in healthy and asymptomatic cases and
interventions to control the so-called “cytokine storm” in
symptomatic COVID-19 patients (Supplementary Figure 7).
Other identified diseases such as amyloidosis, complement
deficiency disease, age-related macular degeneration, and glycogen
storage disease type II have not been previously directly associated
with COVID-19 at least as evidenced in this study. These diseases
and conditions may be used to monitor risk factors for COVID-19
disease symptomatology.
DISCUSSION

In this study, SWATH-MS quantitative serum proteomics
together with multiple data analysis algorithms was used to
TABLE 1 | Candidate prognostic biomarker proteins related to COVID-19 disease symptomatology.

Proteins Results of our study Previous findings Biomarker predictor Refs

Selenoprotein P (SELENOP) Overrepresented in recovered cases Lower levels in COVID-19
patients

Disease recovery
Validated by ELISA

(38)

Coagulation factor IX (F9) Overrepresented in all COVID-19 patients. Correlation with
symptomatology

Decrease in protein levels from
nonsevere to severe patients

Disease progression (22,
39,
40)

Coagulation factor XII (F12) Overrepresented in all but nonsevere COVID-19 patients Not identified Unsupportive profile (40)
Carboxypeptidase B2 (CPB2) Overrepresented in all but asymptomatic COVID-19

patients
Not identified Disease severity

Validated by ELISA
(41)

Transmembrane protein 198 (TMEM198) Underrepresented in asymptomatic and severe COVID-19
patients

Not identified Unsupportive profile (42,
43)

ATP-binding cassette sub-family F
member 1 (ABCF1)

Overrepresented in asymptomatic and underrepresented
in nonsevere and severe COVID-19 patients

Not identified Symptomatology and
disease progression

(44)

Insulin-like growth factor-binding protein
complex acid labile subunit (IGFALS)

Underrepresented in all COVID-19 patients Increase in protein levels from
nonsevere to severe patients

SARS-CoV-2 infection (22,
44)
(45)
(46)
(47)

Serum paraoxonase/
arylesterase 1 (PON1)

Underrepresented in nonsevere and recovered COVID-19
patients

Increase in protein levels from
nonsevere to severe patients

Disease recovery
Reduction in
thyroiditis
Validated by ELISA

(22,
48,
49)

Pregnancy zone protein (PZP) Underrepresented only in asymptomatic cases Not identified Symptomatology
Validated by ELISA

(50)

Vitamin K-dependent protein S (PROS1) Overrepresented in recovered, nonsevere, and severe
COVID-19 patients but with lower levels in severe cases

Associated with COVID-19
coagulopathy

Disease progression
Symptomatology

(51)
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characterize host response to SARS-CoV-2 infection in different
cohorts from asymptomatic individuals to severe patients. Due to
the complexity of COVID-19 symptomatology, this approach
contributed to a better understanding of disease mechanisms and
symptoms with possible medical complications at different levels
and the identification of potential diagnostic/prognostic
biomarkers and drug targets (22–25). The results corroborated
previous findings in COVID-19 studies and highlighted how the
representation of dysregulated serum proteins and associated BPs
increases with COVID-19 disease symptomatology from
asymptomatic to severe cases (4–6, 8–13, 18, 22–25). However,
the analysis was focused on results that provided new insights
into COVID-19 disease symptomatology and potential biomarker
proteins for diagnostic and therapeutic interventions (Figure 7).

Of the significantly dysregulated proteins, selected immune-
related proteins PZP, SELENOP, PON1, and CBP2 were
validated as candidate prognostic biomarkers for COVID-19
symptomatology (Table 1 and Figure 7). Of them, PZP was
underrepresented in asymptomatic cases only. This protein is
a broad-spectrum immunosuppressive protein that suppresses
T-cell function during pregnancy to prevent fetal rejection, and
its overrepresentation correlates with airway infection and
bronchiectasis disease severity (50). Consequently, serum PZP
protein levels may be used as a biomarker for COVID-19 disease
symptomatology and prognosis of asymptomatic carriers.
Selenoprotein levels related to selenium (Se) status affect
immune defense and tissue homeostasis through its effect on the
trafficking of tissue macrophages (57, 58), and thus SELENOP
may be used as a biomarker for disease recovery. PONs have the
capacity to protect cells from oxidative stress and are implicated in
the pathogenesis of inflammatory diseases (59, 60). Findings
suggest a role for PON1 against atherosclerosis and obesity and
protective capacity against bacterial, parasitic, and viral infectious
diseases (59). Regarding COVID-19, PON1 has been shown to
increase in protein levels from nonsevere to severe patients (22)
and we found the protein underrepresented in nonsevere and
recovered patients, thus suggesting a biomarker for disease
recovery. CPB2 appears to have a role in innate immunity
through inactivation of complement component C5a, which can
induce inflammatory pathways via C5aR receptor (41, 61). In our
study, CPB2 was overrepresented in all but asymptomatic
COVID-19 patients, thus providing a candidate biomarker for
disease severity. As expected, the serum levels of these biomarkers
correlated with the anti-SARS-CoV-2 Spike IgG levels previously
shown to significantly increase from asymptomatic to severe
cohorts included in this study (28).

Enrichment analyses were used to identify prognostic
biomarker proteins and association to other human diseases
and conditions (Figure 7 and Supplementary Figure 6). The BP
enrichment and association analyses showed that network
representation of nuclear receptor subfamily 1, group H,
member 4 (NR1H4) target genes increased with COVID-19
disease severity (Figure 7). The farnesoid X receptor (FXR,
NR1H4) encodes a ligand-activated transcription factor, which
shares structural features in common with nuclear hormone
receptor family that functions as a receptor for bile acids (BA)
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and regulation of the expression of genes involved in bile acid
synthesis and transport, lipid and glucose homeostasis, and
innate immune and inflammatory responses (62). NR1H4 is
essential for BA homeostasis while FXR and its hepatic and
intestinal target genes transcriptionally regulate BA synthesis,
detoxification, secretion, and absorption in the enterohepatic
circulation. Furthermore, FXR agonists as well as a fibroblast
growth factor 19 (FGF19) analogue are currently tested in
clinical trials for different cholestatic liver diseases (57). The
FOXA1 transcription factor network (HNF3A pathway M285)
BP with overrepresented proteins in response to COVID-19
increased in enrichment with disease severity (Figure 7). This
pathway (https://www.gsea-msigdb.org/gsea/msigdb/cards/PID_
HNF3A_PATHWAY) coordinates function of primary airway
epithelial cells (63) and has been associated with more aggressive
breast (64) and prostate cancer (65). Accordingly, considering
disorders and processes associated with COVID-19, these
proteins may be proposed as candidate prognosis biomarkers
for disease progression and severity (Figure 7).

The network of interactions between proteins and BPs
characterized using Graph Theory algorithms reflected patterns
in correlation with COVID-19 disease severity (Figure 7 and
Supplementary Figure 2). A distinctive finding using this
approach was the acute-phase response SAA2–SAA4 (SAA2–4)
readthrough proteins, whose overrepresentation was associated
with nonsevere and severe COVID-19 patients (Figure 7). The
SAA2 has been used to monitor the severity of COVID-19 and as
a biomarker for SARS-CoV-2 infection (4). However, the
increase in the expression of SAA2–4 coding acute-phase
reactant genes or serum protein levels has not been directly
associated with COVID-19 patients but with clear cell renal
carcinoma (66) and lung cells (67). Therefore, these proteins
constitute biomarkers for SARS-CoV-2 infection and prognosis
of disease severity (Figure 7).

Other novel prognostic biomarker proteins related to COVID-
19 disease symptomatology were identified (Table 1 and Figure 7)
(22, 68). These biomarkers included potential prognostic tools for
SARS-CoV-2 infection, disease symptomatology, progression and
recovery, and reduction in thyroiditis. To contribute to the
application of these findings in the clinic, some of these
prognostic biomarkers were validated using protein-specific
ELISA tests (Figure 7) and could be incorporated into the daily
routine for disease diagnosis/prognosis. Recently, the glycoprotein
Galectin-9 (Gal-9) involved in innate immunity and associated
with cytokine release syndrome was identified as a surrogate
diagnostic biomarker in SARS-CoV-2 infection (69). In our
proteomics study, Gal-9 was not identified, but in accordance
with these results, the Galectin-3-binding protein (Gal-3BP)
with a role in innate immune response to viruses (70) was
significantly overrepresented in all symptomatic COVID-19
cohorts (Supplementary Data 1).

At the level of other human diseases and conditions, findings
revealed potential disorders associated with COVID-19
(Figure 7 and Supplementary Figure 6). Hyperlipidemia and
other forms of dyslipidemia have been associated with COVID-
19 severity (71) and may be related to FXR and NR1H4 BP
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enrichment. Amyloidosis in its different forms is caused by
deposition of immunoglobulin light chains and have not been
previously associated with COVID-19 except for the
management of patients with this condition (72). Accordingly,
immunoglobulin lambda and kappa variable light chains were
overrepresented in nonsevere and severe patients when
compared to healthy individuals (Figures 3A, C). Another
interesting finding was the complement deficiency disease
(Figure 7). The complement cascade that is directly associated
with blood coagulation alterations (73, 74) has been implicated
in COVID-19 pathology (Supplementary Figure 4) (75).
However, in our study, complement, coagulation, and clotting
cascades were clearly directly associated with COVID-19
severity, which may explain the association with complement
deficiency disease and thrombosis disorders. One of the
pathologies identified in our analysis was the age-related
macular degeneration (Figure 7). This pathology is directly
associated with dysregulation of complement regulators such
as factor H, which is treated with these factors as therapeutic
interventions (76) and has not been associated with COVID-19
but with the primary systemic amyloidosis identified here as
enriched with disease severity (Figure 7) (77). Another
pathology identified as a correlate of disease severity was
glycogen storage disease type II, a lysosomal disease not
previously related to COVID-19. The immunity to glycan
Gala1-3Galb1-(3)4GlcNAc-R (a-Gal), which was recently
related to tick bites and allergic reactions to mammalian meat
consumption (alpha-gal syndrome) (78, 79), has been implicated
in the protective response to COVID-19 (28, 80). Complement
component C3 and hemoglobin subunit beta (HBB) were
associated with the immune response to a-Gal in the zebrafish
animal model (81) and were both significantly overrepresented
in COVID-19 patients when compared to healthy individuals
(Supplementary Data 1). In humans, the endogenous source of
a-Gal is gut bacteria (78), and glycan metabolism has a key role
in shaping microbiota composition (82). Therefore, the
dysregulation in C3 and HBB serum protein levels observed in
COVID-19 cohorts and previously reported in response to a-
Gal51 may be due to gut microbiota dysbiosis associated to SARS-
CoV-2 infection and COVID-19 severity (83, 84) (Supplementary
Figure 8). Apolipoprotein A (APOA) isoforms A-I, A-II, and A-
IV were significantly dysregulated in COVID-19 patients and
serum protein levels decreased with disease symptomatology
(Figure 4 and Supplementary Data 1). Lipoprotein(a)-
containing APOAs are endogenous triggers of innate immunity
and can induce trained immunity (TRIM) (85), thus suggesting
that TRIM associated with bacillus Calmette-Guérin (BCG)
vaccination may be affected in COVID-19 patients (86, 87)
(Supplementary Figure 8). Altogether, these disorders and
physiological processes should be considered to improve
monitoring of COVID-19 symptomatology and as potential
targets for therapeutic interventions to reduce the risk for severe
symptoms and mortality (23, 24).

A better understanding of COVID-19 on human molecular
pathophysiology is required for the identification of new
biomarkers and diagnostic and therapeutic targets. By August
Frontiers in Immunology | www.frontiersin.org 14
9, 2021, 56 publications appear in PubMed with search keywords
“covid AND serum AND proteomic” (https://pubmed.ncbi.nlm.
nih.gov/?term=covid+serum+proteomic&sort=date). These
publications confirmed previous results in studies with
different cohorts, populations, and settings and/or provided
new serum biomarkers related to disease progression and
symptomatology. For example, among the latest publications
on this list, Pavel et al. (88) confirmed the association between
Th2/Th1 cytokine imbalance and COVID-19 risk mortality;
Singh et al. (89) confirmed the increase in serum inflammatory
markers in COVID-19 patients; Mitamura et al. (90) confirmed
cytokine storm in severe COVID-19 patients; Lazari et al. (91)
confirmed and validated SAA1 and SAA2 proteins as biomarkers
in low- and high-risk COVID-19 patients; Völlmy et al. (92)
proposed various serum proteins as biomarkers to predict
mortality in COVID-19 patients; Geyer et al. (93) showed a
functional association between serum proteins, biological
processes, and clinical parameters between COVID-19 patients
and symptomatic but PCR-negative individuals; Laudanski et al.
(94) identified serum proteins with potential role in COVID-19
pathology; and Gutmann et al. (95) found mannose binding
lectin 2 and pentraxin-3 (PTX3) of the innate immune system as
positively associated with COVID-19 mortality.

Our study is the first to provide serum proteomic profiles of
cohorts of SARS-CoV-2-infected recovered (hospital discharge),
nonsevere (hospitalized), and severe (ICU) cases with increasing
systemic inflammation in comparison with healthy individuals
sampled prior to the COVID-19 pandemic. The results not only
confirmed previous results but provided new serum biomarkers,
BPs, and physiological disorders related to disease progression
and symptomatology (Figure 7). The confirmation of previous
results in studies conducted with different cohorts and
populations as shown here for the first time in Spain is
important to validate diagnostic and therapeutic interventions
at a global scale affecting this pandemic. The new prognostic
biomarkers associated with COVID-19 reported here not only
serve in conjunction with diagnostic RNA, antigen, and antibody
detection tests to complement other previously identified
biomarkers such as IL-6, but also provide the possibility of
using highly abundant serum proteins for prognosis of disease
severity (e.g., CBP2, up to 0.1 mg/ml), asymptomatic carriers
(e.g., PZP, up to 350 ng/ml), or disease recovery (e.g., PON1, up
to 160 ng/ml). The disorders and processes associated with the
new biomarkers identified in this study provide clinical tools for
the evaluation and treatment of SARS-CoV-2 infection and
disease symptomatology and progression (Figure 7). For
example, detection of high HNF3A levels in nonsevere or
severe patients suggests their diagnosis and treatment to
reduce airway dilatation with production of large cysts
associated with function of airway epithelial cells (96).

The main limitations of this study include the following (a)
possible effect on serum protein representation of
immunosuppressive treatments to control the cytokine storm in
symptomatic COVID-19 patients (Supplementary Table 1); (b)
impact of comorbidities associated or not to COVID-19
(Supplementary Table 1); (c) serum samples were collected when
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the main circulating SARS-CoV-2 variant was WIV04/2019 and
thus possible differences with other variants in the serum protein
response to infection and caused pathologies should be considered;
(d) although serum proteomics analysis was conducted with
samples on each cohort including three pools of 5–10 individuals
each (Figure 1), studies with a larger number of samples and/or on
individual cases may provide case-by-case differences in serum
protein representation; and (e) as samples were collected from a
retrospective study (28), the effect of some factors such as age (oldest
in nonsevere cases; Figure 1) but not sex ratio (similar in all groups;
Figure 1) may affect protein representation. However, because age
did not show significant differences between severe and
asymptomatic or heathy cohorts, possible differences in age-
related serum protein representation should not affect the main
results of the study.

In conclusion and despite these limitations, the SWATH-MS
quantitative serum proteomics used in our study together with
multiple data analysis algorithms contributed to the
characterization of SARS-CoV-2–host molecular interactions
and advanced translational medicine by identifying prognostic
biomarker proteins and physiological disorders with potential
implications for disease diagnosis/prognosis contributing to the
control of the COVID-19 pandemic. The identified biomarkers
for disease recovery (SELENOP and PON1), severity (CBP2),
and symptomatology (PZP) could be used for disease prognosis.
For example, in some cases, hospitalized nonsevere patients
could progress to disease recovery (hospital discharge) or
severity (ICU). In our study, the results showed that some of
these biomarkers may be used to evaluate the risk of hospitalized
patients to develop severe symptoms.
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