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Abstract

Objectives

To retrospectively investigate the added value of quantitative 3D shape analysis in differen-
tiating encapsulated from invasive thymomas.

Materials and Methods

From February 2002 to October 2013, 53 patients (25 men and 28 women; mean age,
53.94 £ 13.13 years) with 53 pathologically-confirmed thymomas underwent preoperative
chest CT scans (slice thicknesses < 2.5 mm). Twenty-three tumors were encapsulated thy-
momas and 30 were invasive thymomas. Their clinical and CT characteristics were evaluat-
ed. In addition, each thymoma was manually-segmented from surrounding structures, and
their 3D shape features were assessed using an in-house developed software program. To
evaluate the added value of 3D shape features in differentiating encapsulated from invasive
thymomas, logistic regression analysis and receiver-operating characteristics curve (ROC)
analysis were performed.

Results

Significant differences were observed between encapsulated and invasive thymomas, in
terms of cystic changes (p=0.004), sphericity (p=0.016), and discrete compactness
(p=0.001). Subsequent binary logistic regression analysis revealed that absence of cystic
change (adjusted odds ratio (OR) = 6.636; p=0.015) and higher discrete compactness
(OR =77.775; p=0.012) were significant differentiators of encapsulated from invasive thy-
momas. ROC analyses revealed that the addition of 3D shape analysis to clinical and CT
features (AUC, 0.955; 95% CI, 0.935-0.975) provided significantly higher performance in
differentiating encapsulated from invasive thymomas than clinical and CT features (AUC,
0.666; 95% Cl, 0.626—0.707) (p<0.001).
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Conclusion

Addition of 3D shape analysis, particularly discrete compactness, can improve differentia-
tion of encapsulated thymomas from invasive thymomas.

Introduction

Thymomas originate from epithelial cells of the thymus [1], and are the most common primary
neoplasm in the anterior mediastinum, representing 47-50% of all anterior mediastinal tumors
[2-4]. For tumor staging of thymomas, Masaoka-Koga staging is most commonly used since it
has been shown to be well correlated with patients’ survival. Accordingly, treatment plans have
also generally been determined using this staging system [5]. The Masaoka-Koga staging sys-
tem is based on gross and microscopic invasion of thymomas into adjacent structures, i.e.,
stage I tumors designate completely encapsulated tumors; stage II tumors show only micro-
scopic invasion into capsules (Ila) or macroscopic invasion into perithymic fat (IIb); and stage
III tumors invade neighboring organs such as the pericardium, great vessel, or lung. Stage IV
tumors show metastasis, which can be limited to pleural or pericardial dissemination (IVa) or
lymphatic or hematogenous metastasis (IVb).

Pre-operative differentiation of encapsulated thymomas (Masaoka-Koga stage I) from inva-
sive thymomas (equal to or greater than Masaoka-Koga stage IT) has an important clinical sig-
nificance in that it guarantees complete resection without potential seeding and allows surgical
planning such as minimally invasive surgery. Moreover, it can help to predict excellent progno-
sis in patients with encapsulated thymomas. In fact, there have been many studies in which
preoperative CT morphologies of thymomas could be used as differentiators of encapsulated
from invasive thymomas, including tumor shape, irregularity of tumor contour, hemorrhage,
necrosis, and cystic change [1, 2, 4-15]. However, despite of the usefulness of these morpholog-
ic features, there exists primary concern regarding visually-determined features owing to po-
tential interpretation variability between observers and even within the same observer.

In this context, computer-aided quantitative three-dimensional (3D) shape analysis can be a
promising differentiating tool as it can provide a more detailed and, importantly, reproducible
quantitative assessment of lesion characteristics compared to visual analysis by human observ-
ers. To our knowledge, however, there have been no studies evaluating the usefulness of quanti-
tative 3D shape features in differentiating encapsulated from invasive thymomas. Thus, the
purpose of this study was to investigate the added value of quantitative 3D shape analysis to
clinical and CT features in differentiating encapsulated from invasive thymomas.

Subjects and Materials and Methods

This retrospective study was approved by the institutional review board of Seoul National Uni-
versity Hospital (IRB number: 1406-008-585) and the requirement for informed consents
was waived.

Study population

One author (J.H.L.) searched the electronic medical records and the radiology information sys-
tems of our hospital, and found 255 patients who had undergone surgical resection for thymo-
mas in our institution between February 2002 and October 2013. We selected all cases that met
the following criteria: 1) Patients with pathologically-confirmed thymomas via surgical
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resection; 2) patients without a history of chemotherapy or radiation therapy prior to surgical
resection of thymomas; and 3) patients who had available preoperative thin-slice chest CT im-
ages with a slice thickness < 2.5 mm. A total of 202 patients were excluded due to the following
reasons: Patients who had 1) preoperative chest CT for thymoma with a slice thickness
>2.5mm (n = 123) or 2) history of neoadjuvant chemotherapy or radiation therapy (n = 62) or
3) surgical resection at outside hospital without detailed surgical or pathological reports

(n =17). Finally, a total of 53 patients (mean age, 53.94 + 13.13 years; range, 22-84 years) with
53 thymomas were included in this study. Among these 53 patients, 25 were men (mean age,
54.96 + 14.35 years; range, 22-84 years) and 28 were women (mean age, 53.04 + 12.13 years;
range, 23-74 years). As for thymoma staging, 23 (43.4%) were pathologically confirmed as en-
capsulated thymomas and 30 (56.6%) as invasive thymomas. Among the 30 invasive thymo-
mas, 26 were determined to be Masaoka-Koga stage II (49.1%) and 4 as stage IV (7.5%).
Among the 53 patients, three patients had type A thymomas (5.7%), 10 type AB (18.9%), 22
type B1 (41.5%), 11 type B2 (20.7%) and 7 had type B3 (13.2%) according to the WHO histo-
logical classification of thymoma [5, 11-12].

CT technique and image acquisition

Forty-nine patients underwent preoperative CT scans with 75-90 ml of nonionic iodinated
contrast material (370 mg I/mL Iopromide; Ultravist 370; Bayer Shering Pharma AG, Berlin,
Germany), while 4 underwent preoperative CT scans without contrast material. All CT exami-
nations were performed using one of six available CT scanners: Sensation-16, Somatom Defini-
tion (Siemens Medical Systems, Erlangen, Germany), Brilliance-64, Ingenuity (Phillips
Medical Systems, Best, The Netherlands), and Discovery CT750 HD, LightSpeed Ultra (GE
Healthcare, Milwaukee, WI, USA). Scanning parameters for chest CT were as follows: detector
collimation, 1.0-1.25 mm; beam pitch, 0.75-1.0; reconstruction slice thickness, 0.7-2.5 mm
(0.7mm (n=1), 1.0 mm (n=28), 1.25mm (n =22), 1.5 mm (n=1), 2.5 mm (n = 1)); recon-
struction interval, 1.0-1.25 mm; rotation time, 0.4-0.5 s; tube voltage, 120 kVp; tube current,
40-120 mAs; and reconstruction kernel, a sharp reconstruction algorithm. All CT scans were
performed during patients’ inspiration in the supine position.

The mean time interval between preoperative CT scans and surgical resections was
13.91 £ 13.63 days (range, 1-58 days).

Image interpretation and computerized 3D shape analysis

Characteristic CT image features of thymomas were reviewed in terms of tumor size, cystic
change, and calcification. Cystic change was designated when there were definite focal circum-
scribed areas of low attenuation within tumors on CTs [11, 12]. In addition, each thymoma
was manually segmented from surrounding structures on all CT images containing tumors,
and their 3D shape features were automatically calculated using an in-house developed soft-
ware program (Fig 1) [16]. Manual segmentation of the 53 thymomas was performed by one
radiologist (J. H. L with 2 years of experience in chest CT) and confirmed by one chest radiolo-
gist (C. M. P. with 15 years of experience in chest CT). Quantitative 3D shape features included:
(a) log_volume, (b) surface area (cm?), (¢) sphericity, (d) discrete compactness, and (e) 3D
roundness. We used natural logarithms (log_volume) of tumor volume instead of tumor vol-
ume as the data of natural logarithms of tumor volume follows a normal distribution according
to the Kolmogorov-Smirnov test. The formulas as well as further detailed explanation of these
3D shape features are provided in S1 File.

For inter-observer variability, 16 thymomas were randomly selected. The sample size calcu-
lation in this variability test was based on the ability to establish correlation coefficient of at
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Fig 1. 3D shape analysis software program. Each thymoma was manually segmented from surrounding

structures on all CT images and their 3D shape features were automatically calculated using an in-house
developed software program.

doi:10.1371/journal.pone.0126175.g001

least 0.60 (probability of type I error (a), 0.05; power, 0.8). Thereafter, another radiologist

(J. S. B. with 2 years of experience in chest CT) independently performed manual segmentation
of the selected 16 thymomas (8 encapsulated and 8 invasive thymomas) for this inter-observer
test. Finally, inter-observer variability of 3D shape features obtained with manual segmentation
was investigated using intraclass correlation coefficients (ICC) (agreement) [17-20]. ICC

of < 0.40, signified poor agreement; 0.41-0.60, moderate agreement; 0.61-0.80, good agree-
ment; and 0.81 or greater, excellent agreement [21].

Statistical analyses

To identify significant differentiating variables between encapsulated and invasive thymomas,
univariate analyses were performed using Pearson's chi-square test, Fisher's exact test and Stu-
dent's t-test, as appropriate. Subsequent binary logistic regression analysis was performed to
evaluate independent differentiating factors. In total, three separate logistic regressions were
performed: 1) clinical and CT features alone, 2) 3D shape features alone, and 3) combination
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of clinical, CT and 3D shape features. In binary logistic regression analysis, variables with a P-
value < 0.1 at univariate analysis were used as input variables for each model, and backward
stepwise selection mode was employed with iterative entry of variables based on test results

(p < 0.05). The removal of variables was based on likelihood ratio statistics with a probability
0f 0.10.

Three binary logistic regression models using backward stepwise selection mode were used
to build a differentiating models of encapsulated from invasive thymomas. Significant differen-
tiators were used as input data for these three models, respectively. We utilized the leave-one-
out cross-validation method to train and test our binary logistic regression models. The leave-
one-out cross-validation method is an extreme form of the k-fold cross-validation method, and
all subjects except one are used as the training set and excepted one is used for testing set for
the model. The algorithm continues iteratively with each subject in the cohort until all subjects
are used exactly once for testing [21]. Receiver operating characteristic curve (ROC) analysis
[22] were performed to determine the differentiating performance of three established logistic
regression models, and their differentiating performances were compared to assess the signifi-
cant added value of 3D shape features in differentiating encapsulated from invasive thymomas.

All statistical analyses were performed using SPSS ver. 20.0 (SPSS Inc., Chicago, IL, USA),
MedCalc ver. 12.0 (MedCalc Software, Mariakerke, Belgium), and STATA ver. 12.0 (College
Station, Tex).

Results
Patient and Disease Characteristics

Among the 53 patients, 11 patients (2 with encapsulated thymomas; 9 with invasive thymo-
mas) complained of symptoms such as chest pain and cough, and 11 patients (4 with encapsu-
lated thymomas; 7 with invasive thymomas) were diagnosed with myasthenia gravis.

Analysis of CT features and 3D shape analysis

Nineteen thymomas showed cystic change (3 encapsulated thymomas; 16 invasive thymomas)
and 11 thymomas showed internal calcification (4 encapsulated thymomas; 7 invasive
thymomas).

On univariate analysis, significant differences were observed in cystic change (encapsulated
thymomas, 3/23; invasive thymomas, 16/30; p = 0.004), sphericity (0.677 vs. 0.604; p = 0.016),
and discrete compactness (0.825 vs. 0.691; p = 0.001). The results of univariate analysis dis-
criminating encapsulated from invasive thymomas are summarized in Tables 1 and 2 (Fig 2).

Subsequent binary logistic regression analysis with all significant input variables of clinical,
CT features, and 3D shape revealed that absence of cystic change (adjusted odds ratio (OR) =
6.636; p = 0.015) and higher discrete compactness (OR = 77.775; p = 0.012) were significant
discriminating factors of encapsulated from invasive thymomas (Table 3). As for multi-
collinearity, there were no variables which showed variance inflator factor (VIF) more than 10.

Finally, ROC analyses revealed that the addition of 3D shape analysis to CT features (AUC,
0.955; 95% CI, 0.935-0.975) provided significantly higher discriminating performance than
clinical and CT features alone (AUC, 0.666; 95% CI, 0.626-0.707) (difference between AUC
values, 0.289; p < 0.001). For reference, ROC analysis with 3D shape analysis alone showed an
AUC of 0.896 (95% CI, 0.868-0.923) (Fig 3).

Inter-observer variability analysis of 3D shape features

The results of inter-observer variability for 3D shape feature analysis between the two radiolo-
gists are presented in Table 4. All 3D shape features calculated from two different sets of ROIs
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Table 1. Univariate analysis of clinical and CT features of encapsulated and invasive thymomas.

Variable Encapsulated thymomas Invasive thymomas P-value
Age (year) 52.0+12.7 55.3+13.6 0.368
Presence of symptoms 2 9 0.089
Presence of myasthenia gravis 4 7 0.738
Presence of cystic change 3 16 0.004
Presence of calcification 4 7 0.738
Diameter (cm) 4.9 1.7 (range, 2.1-7.8) 4.2 +1.8 (range, 1.7-9.1) 0.187
WHO A(n=1) A(n=2) 0.325
classification AB (n=7) AB (n = 3)

B1 (n=10) B1(n=12)

B2 (n = 3) B2 (n =8)

B3 (n=2) B3 (n =5)

Note—Data are numbers or mean + standard deviation of each variable.

doi:10.1371/journal.pone.0126175.t001

Table 2. Univariate analysis of 3D shape features of encapsulated and invasive thymomas.

Variable Encapsulated thymomas Invasive thymomas P-value
Log_Volume 1.631 + 0.529 (range, 0.879-3.201) 1.335 + 0.604 (range, 0.402-3.076) 0.530
Surface area (cm?) 89.989 + 59.312 (range, 25.773-248.384) 83.552 + 86.609 (range, 11.469-452.633) 0.761
Sphericity 0.677 £ 0.106 (range, 0.48-0.81) 0.604 + 0.104 (range, 0.434-0.795) 0.016
Discrete compactness 0.825 + 0.106 (range, 0.472—0.928) 0.691 + 0.160 (range, 0.37-0.900) 0.001
Roundness 0.699 + 0.068 (range, 0.546—0.811) 0.685 + 0.074 (range, 0.569-0.818) 0.486

Note—Data are mean + standard deviation.

doi:10.1371/journal.pone.0126175.t002

Fig 2. CT images of encapsulated and invasive thymomas. (a) A 61 year old female who underwent surgical resection of an encapsulated thymoma
(arrow) (discrete compactness, 0.925; sphericity, 0.703). (b) A 40 year old female who underwent surgical resection of an invasive thymoma (arrow) (discrete
compactness, 0.722; sphericity, 0.646). Note that although these two kinds of thymomas cannot be easily differentiated grossly owing to similar CT features,
there is a distinct difference in 3D shape features, particularly in discrete compactness, between the encapsulated thymoma and invasive thymoma.

doi:10.1371/journal.pone.0126175.9002
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Table 3. Binary logistic regression analysis in differentiating encapsulated from invasive thymomas.

Models Significant features
Clinical and CT features, alone Cystic change

3D shape features, alone Discrete compactness
Clinical and CT features + 3D shape features Cystic change

Discrete compactness

TOR = odds ratio
TTCI = confidence interval

doi:10.1371/journal.pone.0126175.1003

Sensitivity

Adjusted ORt
7.619

92.110
6.636

77.775

95% Cltt

1.861-31.196
3.828-2216.460
1.452-30.335
2.595-2331.333

= Combination

- Clinical and CT features

- 3D shape

1-Specificity

P-value

0.005
0.005
0.015
0.012

Fig 3. ROC plot of binary logistic regression analysis with backward stepwise selection, using leave-
one-out cross-validation method. Receiver operating characteristics (ROC) curve analysis of binary
logistic regression models, using leave-one-out cross-validation method, in differentiating encapsulated from
invasive thymomas. The graph shows that the combination of 3D shape analysis and CT features (blue line,
AUC, 0.955; 95% Cl, 0.935-0.975) has significantly higher discriminating performance in differentiating
encapsulated from invasive thymomas compared to clinical and CT features (red line, AUC, 0.666; 95% ClI,
0.626-0.707) (difference between AUC values, 0.289; p<0.001). For reference, ROC analysis with 3D shape
analysis alone is also demonstrated (green line, AUC, 0.896; 95% CI,0.868—0.923).

doi:10.1371/journal.pone.0126175.g003
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Table 4. Interobserver variability of shape features of thymomas.

Variables ICCt 95% Cltt P-value
Log_Volume 0.994 0.983-0.998 <0.001
Surface area (cm?) 0.984 0.955-0.994 <0.001
Sphericity 0.936 0.816-0.978 <0.001
Discrete compactness 0.969 0.911-0.989 <0.001
Roundness 0.992 0.978-0.997 <0.001

Note—ICCs of less than 0.40 signifies poor agreement; 0.41-0.60, moderate agreement; 0.61-0.80, good
agreement; and 0.81 or greater, excellent agreement.

TICC = intraclass correlation coefficients.

TtCI = confidence interval

doi:10.1371/journal.pone.0126175.t004

independently segmented by two radiologists showed excellent agreement (ICC range, 0.936—
0.994).

Discussion

The Masaoka-Koga staging system is based on the degree of thymomas’ invasiveness and has
been widely used since it has been reported to be well correlated with prognosis and utilized to
dictate treatment planning [5]. There have been many attempts to identify variables able to dif-
ferentiate encapsulated from invasive thymomas prior to treatment in the radiologic field [1,
10, 13]. Tomiyama, et al. [10] reported CT features of thymomas in 50 patients and suggested
that invasive thymomas were more likely to have a cystic or necrotic portion, calcification, a
lobulated or irregular contour and larger size than encapsulated thymomas. Priola, et al. [13]
also reported that invasive thymomas had significantly larger size, more lobulated or irregular
contours, cystic or necrotic portions, and foci of calcifications than encapsulated thymomas.
These two studies also suggested that partial or complete obliteration of fat planes around the
tumor was not helpful in distinguishing invasive from encapsulated thymomas. In another
study, Qu, et al. [1] suggested that the invasiveness of thymomas were significantly associated
with variables such as tumor size, irregular shape, uneven density, incompleteness of capsules,
or involvement of surrounding tissues. However, visual shape analysis including that of the
tumor contour is subjective and thus susceptible to inter or intra-observer interpretation vari-
ability, warranting a need for an objective and reproducible method in evaluating the shape

of thymomas.

In the present study, we adopted computerized 3D shape features such as sphericity, discrete
compactness and roundness of thymomas and found that encapsulated thymomas showed sig-
nificantly different values in terms of sphericity (p = 0.016) and discrete compactness
(p =0.001) as well as cystic change (p = 0.004) from invasive thymomas. Subsequent binary lo-
gistic regression analysis confirmed that higher discrete compactness (OR = 77.775; p = 0.012)
as well as the absence of cystic change (OR = 6.636; p = 0.015) were independent discriminators
of encapsulated from invasive thymomas. In addition, ROC analyses revealed that a combina-
tion of 3D shape features and conventional clinical and CT features significantly enhanced the
discriminating performance of encapsulated from invasive thymomas (AUC, 0.955; 95% CI,
0.935-0.975) compared with clinical and CT features alone (AUC, 0.666; 95% CI, 0.626-0.707)
(difference between AUC values, 0.289; p < 0.001).

The discrete compactness of an object is defined as the ratio between the actual contact sur-
face area and the theoretically calculated maximum contact surface area [23]. In other words,
to obtain a constant value of volume for an object, an increased value of the actual contact
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surface of an object provides higher discrete compactness. Intuitively, the increased value of
the actual contact surface is proportional to the circularity of the object, representing higher
discrete compactness. Thus, it is not surprising that encapsulated thymomas have higher values
of discrete compactness, compared with invasive thymomas, which tend to show lobulated or
irregular contours more frequently than encapsulated thymomas owing to invasion beyond the
tumor’s capsule. Indeed, Braumann et al. [16] suggested in their study that discrete compact-
ness was correlated with the invasion of uterine cervical carcinoma.

Sphericity, on the other hand, did not turn out to be an independent differentiating feature
of encapsulated thymomas from invasive thymomas according to binary logistic regression
analysis even though encapsulated thymomas showed significantly higher sphericities than in-
vasive thymomas on univariate analysis. As sphericity of the tumor can be correlated with con-
tour irregularity or lobulation and it is known that invasive thymomas have significantly more
lobulated or irregular contours [1, 10, 13], further research with a larger study population is
warranted to determine the relationship between sphericity and the invasiveness of thymomas
with high confidence. We also found that a combination of 3D shape features, particularly dis-
crete compactness, and conventional clinical and CT features significantly enhanced the dis-
criminating performance of encapsulated from invasive thymomas. With the use of this 3D
shape feature, more precise preoperative staging may be accomplished and many clinicians can
precisely distinguish patients who can have surgical resection without preoperative chemother-
apy from patients who must undergo preoperative chemotherapy prior to surgical resection. In
addition, with the precise diagnosis of encapsulated thymomas, minimally invasive surgery
such as video-assisted thoracic surgery can be planned more confidently without concern of in-
complete resection or pleural seeding.

We believe that standardization of image acquisition and maintenance of analyzable image
quality, as well as selection of robust shape features, can be critical for this kind of computer-
ized analytic method because it can be substantially influenced by image quality (e.g., spatial
resolution, motion artifact due to respiration and heart pulsation, and image blurring) and var-
ious scan parameters. We believe that the utilization of raw imaging data without processing or
normalization may be one of way overcoming obstacles related to variability and standardiza-
tion issues [24].

Our study had several limitations. First, our study was of retrospective design, and thus was
susceptible to potential selection bias. Second, the relatively small number of our study popula-
tion might have limited the significance of other 3D shape features such as sphericity. Further
studies with larger study populations are warranted to confirm our results. Thirdly, 3D shape
feature analysis was performed, based on data from a number of different CT systems and
image acquisition settings instead of uniformly controlled CT system and image acquisition
setting. In this circumstance, the measured values of 3D shape feature analysis may be influ-
enced by different scan parameters. Fourthly, the performance of our logistic regression model
may be overly optimistic due to the potential over-fitting of model and lack of separate valida-
tion set, even though we utilized leave-one-out cross-validation method to overcome this limi-
tation and to improve generalizability of the model. We hope further external validation
studies could confirm our findings. Fifthly, 3D shape features in the present study were ex-
tracted from the results of manual segmentation by radiologists, which can be potentially influ-
enced by observers’ subjective trends. However, fortunately, inter-observer variability tests in
our study revealed that each 3D shape feature showed very excellent agreement between ob-
servers. Nevertheless, we believe that a reliable and robust automatic boundary extraction
method can obviate this variability issue and enhance the clinical applicability of 3D shape
analysis in daily clinical practice.

PLOS ONE | DOI:10.1371/journal.pone.0126175 May 4, 2015 9/11
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In conclusion, the addition of quantitative analysis of 3D shape features, particularly dis-
crete compactness, to CT features provides higher predictive performance in the differentiation
of encapsulated thymomas from invasive thymomas.

Supporting Information

S1 File. Formulas used to obtain quantitative 3D shape features. Tumor volume, Surface
area, Sphericity, Discrete compactness, and 3D roundness.
(DOCX)

Acknowledgments

One of the authors has significant statistical expertise. Professor Dr. Chang Min Park (Seoul
National University Hospital) provided statistical advice in this study.

Author Contributions

Conceived and designed the experiments: CMP. Performed the experiments: JHL CMP JSB.
Analyzed the data: JHL CMP. Contributed reagents/materials/analysis tools: CMP SJP. Wrote
the paper: JHL CMP SJP JSB SML JMG.

References

1. QuY-j, Liu G-b, ShiH-s, Liao M-y, Yang G-f, Tian Z-x. Preoperative CT findings of thymoma are corre-
lated with postoperative Masaoka clinical stage. Acad Radiol. 2013; 20(1):66—72. doi: 10.1016/j.acra.
2012.08.002 PMID: 22981603

2. Marom EM, Milito MA, Moran CA, Liu P, Correa AM, Kim ES, et al. Computed tomography findings pre-
dicting invasiveness of thymoma. J Thorac Oncol. 2011; 6(7):1274—-1281. doi: 10.1097/JTO.
0b013e31821c4203 PMID: 21623235

3. LiuG-B,QuY-J,Liao M-Y, Hu H-J, Yang G-F, Zhou S-J. Relationship Between Computed Tomography
Manifestations of Thymic Epithelial Tumors and the WHO Pathological Classification. Asian Pac J Can-
cer Prev. 2012; 13(11):5581-5585. PMID: 23317221

4. Ruffini E, Filosso PL, Mossetti C, Bruna MC, Novero D, Lista P, et al. Thymoma: inter-relationships
among World Health Organization histology, Masaoka staging and myasthenia gravis and their indepen-
dent prognostic significan a single-centre experience. Eur J CardioThorac Surg. 2011; 40(1):146-153.
doi: 10.1016/j.ejcts.2010.09.042 PMID: 21093283

5. Benveniste MF, Rosado-de-Christenson ML, Sabloff BS, Moran CA, Swisher SG, Marom EM. Role of
imaging in the diagnosis, staging, and treatment of thymoma. Radiographics. 2011; 31(7):1847—1861.
doi: 10.1148/rg.317115505 PMID: 22084174

6. Marom EM. Advances in thymoma imaging. J Thorac Imaging. 2013; 28(2):69-83. doi: 10.1097/RTI.
0b013e31828609a0 PMID: 23422781

7. Marom EM. Imaging thymoma. J Thorac Oncol. 2010; 5(10):5S296—S303. doi: 10.1097/JTO.
0b013e3181f209ca PMID: 20859123

8. Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H. The Thymus: A Comprehensive
Review. Radiographics. 2006; 26(2):335-348. PMID: 16549602

9. Sadohara J, Fujimoto K, Miller NL, Kato S, Takamori S, Ohkuma K, et al. Thymic epithelial tumors:
comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas, and thymic car-
cinomas. Eur J Radiol. 2006; 60(1):70-79. PMID: 16766154

10. Tomiyama N, Muller NL, Ellis SJ, Cleverley JR, Okumura M, Miyoshi S, et al. Invasive and noninvasive
thymoma: distinctive CT features. J Comput Assist Tomogr. 2001; 25(3):388-393. PMID: 11351188

11. Tomiyama N, Johkoh T, Mihara N, Honda O, Kozuka T, Koyama M, et al. Using the World Health Orga-
nization Classification of thymic epithelial neoplasms to describe CT findings. AUJR Am J Roentgenol.
2002; 179(4):881-886. PMID: 12239030

12. JeongYJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ. Does CT of thymic epithelial tumors enable us to
differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004; 183(2):283-289.
PMID: 15269013

PLOS ONE | DOI:10.1371/journal.pone.0126175 May 4, 2015 10/11


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126175.s001
http://dx.doi.org/10.1016/j.acra.2012.08.002
http://dx.doi.org/10.1016/j.acra.2012.08.002
http://www.ncbi.nlm.nih.gov/pubmed/22981603
http://dx.doi.org/10.1097/JTO.0b013e31821c4203
http://dx.doi.org/10.1097/JTO.0b013e31821c4203
http://www.ncbi.nlm.nih.gov/pubmed/21623235
http://www.ncbi.nlm.nih.gov/pubmed/23317221
http://dx.doi.org/10.1016/j.ejcts.2010.09.042
http://www.ncbi.nlm.nih.gov/pubmed/21093283
http://dx.doi.org/10.1148/rg.317115505
http://www.ncbi.nlm.nih.gov/pubmed/22084174
http://dx.doi.org/10.1097/RTI.0b013e31828609a0
http://dx.doi.org/10.1097/RTI.0b013e31828609a0
http://www.ncbi.nlm.nih.gov/pubmed/23422781
http://dx.doi.org/10.1097/JTO.0b013e3181f209ca
http://dx.doi.org/10.1097/JTO.0b013e3181f209ca
http://www.ncbi.nlm.nih.gov/pubmed/20859123
http://www.ncbi.nlm.nih.gov/pubmed/16549602
http://www.ncbi.nlm.nih.gov/pubmed/16766154
http://www.ncbi.nlm.nih.gov/pubmed/11351188
http://www.ncbi.nlm.nih.gov/pubmed/12239030
http://www.ncbi.nlm.nih.gov/pubmed/15269013

@’PLOS ‘ ONE

Differentiation of Thymomas with 3D Shape Analysis

13.

14.

15.

16.

17.

18.
19.

20.

21.

22,

23.

24,

Priola A, Priola S, Di Franco M, Cataldi A, Durando S, Fava C. Computed tomography and thymoma:
distinctive findings in invasive and noninvasive thymoma and predictive features of recurrence. Radiol
Med. 2010; 115(1):1-21. doi: 10.1007/s11547-009-0478-3 PMID: 20017005

Takahashi K, Al-dJanabi NJ. Computed tomography and magnetic resonance imaging of mediastinal tu-
mors. J Magn Reson Imaging. 2010; 32(6):1325—-1339. doi: 10.1002/jmri.22377 PMID: 21105138
Nasseri F, Eftekhari F. Clinical and Radiologic Review of the Normal and Abnormal Thymus: Pearls
and Pitfalls. Radiographics. 2010; 30(2):413-428. doi: 10.1148/rg.302095131 PMID: 20228326
Braumann U-D, Kuska J-P, Einenkel J, Horn L-C, Héckel M. How to quantify cervical carcinoma inva-
sion fronts in 3D. Bulletin. 2004; 1:9-11.

Bankier AA, Levine D, Halpern EF, Kressel HY. Consensus Interpretation in Imaging Research: Is
There a Better Way? Radiology. 2010; 257(1):14—17. doi: 10.1148/radiol.10100252 PMID: 20851935
Lew R, Doros G. Design based on intra-class correlation coefficients. Am J Biostat. 2010; 1(1):1.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics.
1977:159-174. PMID: 843571

Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;
86(2):420. PMID: 18839484

Chae H-D, Park CM, Park SJ, Lee SM, Kim KG, Goo JM. Computerized Texture Analysis of Persistent
Part-Solid Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Invasive Pulmonary Ade-
nocarcinomas. Radiology. 2014; 273(1):285-293. doi: 10.1148/radiol.14132187 PMID: 25102296

DelLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated re-
ceiver operating characteristic curves: a nonparametric approach. Biometrics. 1988: 44(3):837-845.
PMID: 3203132

Bribiesca E. An easy measure of compactness for 2D and 3D shapes. Pattern Recognition. 2008;
41(2):543-554.

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour
phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5.

PLOS ONE | DOI:10.1371/journal.pone.0126175 May 4, 2015 11/11


http://dx.doi.org/10.1007/s11547-009-0478-3
http://www.ncbi.nlm.nih.gov/pubmed/20017005
http://dx.doi.org/10.1002/jmri.22377
http://www.ncbi.nlm.nih.gov/pubmed/21105138
http://dx.doi.org/10.1148/rg.302095131
http://www.ncbi.nlm.nih.gov/pubmed/20228326
http://dx.doi.org/10.1148/radiol.10100252
http://www.ncbi.nlm.nih.gov/pubmed/20851935
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://www.ncbi.nlm.nih.gov/pubmed/18839484
http://dx.doi.org/10.1148/radiol.14132187
http://www.ncbi.nlm.nih.gov/pubmed/25102296
http://www.ncbi.nlm.nih.gov/pubmed/3203132

