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Abstract: Anesthetic agents cause unique electroencephalogram (EEG) activity resulting from actions
on their diverse molecular targets. Typically to produce balanced anesthesia in the clinical setting,
several anesthetic and adjuvant agents are combined. This creates challenges for the clinical use of
intraoperative EEG monitoring, because computational approaches are mostly limited to spectral
analyses and different agents and combinations produce different EEG responses. Thus, testing
of many combinations of agents is needed to generate accurate, protocol independent analyses.
Additionally, most studies to develop new computational approaches take place in young, healthy
adults and electrophysiological responses to anesthetics vary widely at the extremes of age, due to
physiological brain differences. Below, we discuss the challenges associated with EEG biomarker
identification for anesthetic depth based on the diversity of molecular targets. We suggest that by
focusing on the generalized effects of anesthetic agents on network activity, we can create paths for
improved universal analyses.
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1. The Broad Molecular Targets of Anesthetics

Anesthetic agents target and disrupt a variety of molecular receptors [1,2]. The
diversity of these molecular actions has inhibited the identification of accurate, universal
electrophysiological biomarkers to better monitor patients (Table 1). The large-scale, system-
level disruption in brain activity is underpinned by diverse perturbations of various
sleep-promoting and arousal networks in the brain. Here, we summarize the clinical
challenges that impede electrophysiological biomarker discovery including anesthetics that
target unique molecular cascades, multimodal general anesthesia [3], and age-dependent
brain changes. We also suggest a unique opportunity to explore “final common pathway”
electrophysiological biomarkers by deepening our understanding of how agents with
diverse targets may converge on similar endpoints (e.g., disrupting large-scale brain
activity). We review our previously published research [4–7], which highlights monitoring
challenges and proposes new directions for anesthetic depth electroencephalogram (EEG)
measures. Building computational tools that capture the broad network level disruptions
that occur with all anesthetic agents, regardless of their molecular targets, will lead to EEG
analytical tools being more predictive of anesthetic depth.
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Table 1. Summary of uses, mechanisms of action, electroencephalogram (EEG) effects, advantages, and disadvantages of all anesthetic agents mentioned in this review.

Anesthetic Agent Uses Mechanism of
Action EEG Effects Advantages Disadvantages

Propofol
Common general anesthetic.
Can be administered at low

doses as a sedative.
GABA agonist [8].

Alpha and beta oscillations during
sedation. Sleep-like EEG pattern
during general anesthesia. Burst

suppression to isoelectricity at higher
doses [8].

Rapid onset and offset.

Hard-to-monitor without
EEG. Can decrease blood

pressure and cause breathing
difficulties.

Halogenated Ethers
(e.g., Sevoflurane) Common general anesthetic.

Predominately suppresses
glutamate-mediated

excitation.

Sleep-like EEG pattern during
general anesthesia. Burst

suppression to isoelectricity at
higher doses.

Rapid onset and offset.
Easy-to-monitor with MAC

values.

May lead to extended burst
suppression and

peri-operative neurocognitive
decline in geriatric patients.

Nitrous Oxide Supplemental anesthetic
agent. Used for analgesia. NMDA antagonist.

Maintenance of wake-like EEG
activity in beta and gamma

range [8–10].

Rapid onset and offset. Few
drug interactions.

Weak anesthetic agent.
Increased risk of nausea [11].

Ketamine

Can be used for sedation, as a
supplemental anesthetic

agent, and for
antinociception.

Many molecular targets,
including NMDA
receptors [1,12].

Beta and gamma oscillations at
sedation [8]. Maintenance of

wake-like EEG activity.

Bronchodilator, protects
patients with reactive

airways, preserves
spontaneous respirations and

airway [12].

Frequent use could cause
memory impairment.
Increases muscle tone.

Airway compromise may
occur [12]

Dexmedetomidine
Used as a supplemental
anesthetic agent and for

analgesia.

Alpha-2-adrenoceptor
agonist. Blocks

norepinephrine release which
activates GABA and other
inhibitory projections [8].

Maintenance of wake-like
EEG activity.

Anesthetic sparing. Preserves
respiratory function and

reduces delirium.
Cardiovascular sparing [13].

May cause bradycardia,
hypotension, hypertension,
nausea, and dry mouth [13].

Remifentanil
Used as a supplemental
anesthetic agent [14] and

for analgesia.

Mu-type-opioid
receptor agonist.

Sleep-like EEG pattern during
general anesthesia [15].

Rapid onset and offset
compared to other opioids.

Can decrease overall general
anesthesia needs [15].

May increase nausea,
respiratory depression, and

hypoxia [16].

All agents listed are used clinically in pediatric, adult, and geriatric patients; however, their use is guided by the clinical need and patient comorbidities and medications. This table includes several details about
these agents, but is not inclusive. GABA stands for gamma-aminobutyric acid. NMDA stands for N-Methyl-D-aspartate.
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2. The Challenge of Finding Common Electrophysiology Biomarkers

Electroencephalogram (EEG) activity is measured using noninvasive, scalp electrodes.
A single electrode contact represents a summation of tens of millions of neurons integrated
over an area of 10 cm2 [17–19]. Research as early as the 1970s has noted the diversity of
anesthetic agent influence on EEG signals in humans [20], and several articles have sum-
marized and elaborated on these changes [8]. The most commonly used anesthetic agents,
propofol and the halogenated ethers (e.g., sevoflurane, isoflurane), promote sleep-like
electrophysiological patterns as anesthetic depth increases (Figure 1); intravenous agents
primarily increase GABAergic inhibition, while volatile agents mainly depress glutamate-
mediated excitation throughout the brain to produce a depression of signaling [1,21]. In
addition to the loss of higher frequency activity and increase in lower frequency activity,
there is also an alpha frequency (8–12 Hz) that appears in the EEG signal in unconscious
states [8,22,23] (Figure 1). The appearance of a dominant alpha-rhythm is suggested to arise
from disruption of thalamo-cortical communication [3,23,24]. Unlike sleep, the administra-
tion of higher doses of these anesthetic agents can drive patients to a more profound level
of unconsciousness characterized by long periods of cortical suppression with punctate
bursting activity (Figure 1), known as burst suppression. This suppression period extends
as the level of anesthetic depth increases (Figure 1).

Figure 1. Patient electroencephalogram (EEG) signals change with increasing anesthetic depth when administered propofol,
traces from frontal electrode site (F7) from a patient anesthetized with propofol. High frequency, low amplitude activity
slows to include predominantly alpha and slow oscillations with anesthetic administration. Activity slows more to include
a slow-wave dominant pattern, much like during natural sleep. At profound levels of unconsciousness (bottom two
traces) a burst suppression pattern emerges, and suppressed periods extend as patients reach more profound levels of
unconsciousness. Note the electrical activity from heart beats (electrocardiogram, EKG) which can be seen in the prolonged
suppressed period.

Given the pronounced changes in spectral activity following loss of response (LOR)
using propofol and the halogenated ethers, traditional spectral analyses show a strong
relationship with—and have therefore been extensively used to quantify—anesthetic
depth [8,22,23].

As signals slow and the brain oscillations take on more redundant and repetitive
patterns, an additional way to quantify changes in the EEG signal is by calculating its
complexity. A common method to calculate complexity comes from a nonlinear dynamic
technique to extract dynamical attractors from the EEG signals. Here, a single EEG channel
can be used to generate an attractor. An attractor is created by plotting EEG signal ampli-
tudes at different time delays, each on a different axis. Interestingly, when this is done with
electrophysiological signals from different anesthetic depths, shape changes occur [25,26].
Specifically, three dimensional attractors derived from electrophysiological signals change
from inflated spheres during awake states, to flattened ellipsoids as individuals are sedated,
and flatten even more during periods of unresponsiveness. Figure 2 shows these changes
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from extracellular local field potentials from rodent prefrontal cortex during awake (red),
sedated (black), and unresponsive (blue) states. Unresponsiveness was assessed using the
loss of righting reflex, a surrogate measure for loss of responsiveness in rodents [27].

Figure 2. EEG attractors from rodent prefrontal cortex, showing how the geometrical shape changes
with anesthesia exposure. Three-dimensional, time-delayed embeddings (attractors) change shape as
rodents are exposed to deepening levels of anesthesia. Attractors flatten from inflated spheres during
awake states (red), to flatter ellipsoids as anesthetic depth increases during sedation (black) and
flatten even further during unresponsive (blue) states. Adapted with permission from Reference [4].

Sleep within the brain involves the orchestration of several sleep-promoting and
arousal systems with diverse molecular targets underpinning these networks [28]. Sleep
causes widespread changes in brain activity, and most species cycle through several stages
of sleep. Human sleep can be subdivided into non rapid eye movement (NREM) sleep,
which includes stages 1 and 2 (light sleep), and stages 3 and 4 (deep sleep or slow-wave
sleep), and rapid eye movement (REM, dream) sleep. Stages 3 and 4 are the deepest level
of sleep, where high amplitude delta activity predominates (Figure 3). GABAergic agents
such as propofol and the halogenated ethers (e.g., isoflurane and sevoflurane) also produce
a delta dominated anesthetic state (Figure 3). When local field potential signals from rodent
prefrontal cortex are expressed as 3D attractors (shown in 2D Figure 3), flattening and a
more ellipsoidal shape is observed when the animal is asleep; however, more dramatic
shape change is observed following loss of the righting reflex with isoflurane anesthesia
administration (Figure 3).

Figure 3. Rodent prefrontal local field potential activity and three-dimensional attractors during
natural sleep and anesthesia. Local field potentials show less high frequency activity and more
pronounced delta activity during anesthesia with isoflurane (blue) compared to natural sleep (black).
Additionally, attractors generated from this activity show more pronounced flattening during isoflu-
rane unresponsiveness (blue) compared to natural sleep (black), in the same animal. Adapted here
with permission from Reference [4].

Similar attractor shape changes occur in human patients exposed to propofol for clini-
cal procedures (Figure 4). EEG data shown in Figure 4 was collected from patients receiving
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slow infusions; the before and after clips used for analysis immediately surrounding loss
of responsiveness (LOR) are not as dramatic as the effects seen with bolus infusions.

Figure 4. Example of frontal activity from patient EEGs before and after loss of response with propofol. (a) EEG activity
from electrode location F7 (inset) before (red) and after (blue) loss of response (LOR, indicated with dashed line) in patient
anesthetized with a slow infusion of propofol. (b) Normalized spectrogram of EEG activity starting from 2 min before to
2 min following LOR. (c) Attractors from EEG activity from patients before (red) to after (blue) LOR. Following LOR, a
geometric shape change occurs where attractors become more ellipsoidal. (d) Same attractors from (c), fitted with ellipsoid
solid of revolution for subsequent analysis. Reproduced with permission from Reference [7].

On average, when GABAergic agents are administered, there is a loss in high frequency
activity, increase in low frequency activity, and higher alpha-band activity following LOR
(Figure 5, left). The opposite trend occurs upon recovery of response (ROR) (Figure 5, right).
These results are aligned with previous reports of propofol loss and recovery dynamics from
frontal lobe sites [8,23]. Note that individual patients can have varying electrophysiological
response dynamics around LOR and ROR given their individual dynamic responses to the
anesthetic agents (Figure 5). Differences in response dynamics may occur because of the
molecular binding dynamics of diverse agents or between individuals themselves [29,30].
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Figure 5. Individual variability in EEG response dynamics to propofol anesthesia. Spectrograms from four patients’ frontal
EEGs surrounding loss of response (LOR) and recovery of response (ROR) with propofol anesthesia. LOR and ROR
timepoints indicated with dashed lines. Decreases in high frequency activity, increases in low frequency and alpha band
activity occur with LOR, and vice versa for ROR. However, individual EEG response dynamics around these time points
differ between individuals. Reproduced with permission from Reference [7].

When the same time-delayed embedding procedure was applied to 20s EEG clips
before and after LOR and before and after ROR, consistent shape changes were observed
(Figure 6).

When this shape change was quantified using a traditional nonlinear dynamic mea-
sure, correlation dimension (CD), and using a geometric phase–space analysis, termed
the ellipse radius ratio (ERR), significant differences were observed between before and
after the LOR and ROR states (Figure 7). Correlation dimension is a nonlinear dynamic
technique to compute the non-integer (fractal) dimensionality of irregular objects [31,32].
For the geometric phase–space analysis, the 3D attractor was fitted with an ellipsoid solid
of revolution [33], and then the ratio of the minor and major axes were computed [5–7].
Ratios closer to 1 occurred with more spheroidal attractors, and smaller fractions occurred
with more ellipsoidal attractors. We have demonstrated that this geometric phase–space
analysis is correlated with other complexity measures [6,7].



Int. J. Mol. Sci. 2021, 22, 495 7 of 18

Figure 6. EEG attractors consistently demonstrate shape changes with changes in responsiveness. Attractors from 20 s EEG
clips from four patients (the same patients as shown in Figure 5) before and after LOR and ROR when anesthetized with
propofol. Awake, responsive states are shown in red, and anesthetized, unresponsive states are shown in blue. Attractors
from awake, responsive states are more spherical; whereas attractors from anesthetized, unresponsive states are more
ellipsoidal. Attractors are auto-scaled to illustrate the shape changes that occur with LOR and ROR. The axes are shown to
demonstrate that these are 2D projections of 3D attractors. Reproduced with permission from Reference [7].

Differences in spectral content (Figure 5) and complexity measures (Figure 7) are
observed between immediately after LOR and immediately before ROR. This is anticipated
because the brain’s response to anesthetic agents is asymmetrical across induction and
emergence. That is, the concentration of anesthetic agents is not the same when patients
lose responsiveness and regain it, and their brain electrophysiological response is not
the same at these two time points [34–36]. Interestingly, we observed similar differences
in dynamics in patients exposed to propofol (Figure 8). Specifically, complexity measures
exhibited more gradual changes around LOR and more abrupt changes with ROR (Figure 8).
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Figure 7. Attractor measures before and after LOR and ROR in patients exposed to propofol anesthe-
sia. (a) Geometric phase–space analysis (ellipse radius ratio) significantly differs from before to after
LOR, and before to after ROR. (b) Correlation dimension significantly differs from before to after
ROR, and decreases (although not significantly in our sample) from before to after LOR. The p-values
shown here are uncorrected. Adapted with permission from Reference [7].

Figure 8. Attractor measures exhibit differing dynamics around loss and recovery of response. Induction of anesthesia
and emergence from anesthesia produces an asymmetrical dynamic, known as hysteresis. Complexity measures, both the
ellipse radius ratio (ERR) and the correlation dimension (CD), track these different dynamics at loss of response (LOR) and
recovery of response (ROR). LOR and ROR timepoint areas are indicated with dashed lines. Dynamics are more gradual
during LOR and more abrupt during ROR. Differences in dynamics observed here support existing paradigms that these
brain state transitions are unique. Solid black lines represent the mean complexity values at each time point for all patients,
and the shaded area is the standard error of the mean. Adapted with permission from Reference [7].

For anesthetic agents that predominately influence GABAergic networks, we have
demonstrated that complexity measures readily distinguish between the electrophysio-
logical changes that occur before and after loss and recovery of response, in rodents [4]
and humans [7]. Complexity measures capture how much the signal varies through
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time. Similar measures of complexity and information carried by the signal have demon-
strated high utility, distinguishing between responsive and unresponsive states when
using similar agents in rodents [37] and humans [38–41]. These measures capitalize on
the widespread disruptions of network activity that occur with anesthesia as functional
connectivity changes and brain activity becomes more synchronous and periodic [42–46].
These measures also capture the asymmetrical brain response to anesthetic transitions,
such as that which occurs with hysteresis for GABAergic agents. However, the network
modulation we have discussed only occurs in a few select agents and these agents are not
usually administered alone.

3. Unique Anesthetic Combinations Influence Diverse Molecular Targets

Not all anesthetic agents promote sleep-like activity when administered, and often
several anesthetic agents are administered in parallel to achieve balanced anesthesia. A
multimodal general anesthesia approach [3] utilizes multiple agents with complementary
effects to reduce the total anesthetic administered from each anesthetic class and reduce the
side effects from individual agents. Monitoring multimodal general anesthesia produces
further challenges, because different classes of agents have distinct molecular targets and
generate unique downstream effects on the resulting EEG activity [1–3,8,28]. For instance,
some adjuvant agents such as nitrous oxide (an NMDA antagonist), ketamine (which has
many molecular targets, including NMDA receptors [47,48]), and dexmedetomidine (an
alpha-2 adrenoceptor agonist) have paradoxical influences on brain activity; high frequency
activity in the brain is maintained when these agents are administered, even as patients
become less responsive, even when combined with other agents [8,9,49–54]. However, the
complex EEG activity that is produced provides the opportunity to test computational tools
that may capture network disruption generally. We tested whether complexity measures
could discriminate before and after LOR and ROR when patients were administered a
combination of remifentanil and nitrous oxide (N2O) [5].

Remifentanil is a mu-type-opioid receptor agonist and is often used as an adjuvant
anesthetic agent to provide analgesia and overall decrease the administered anesthetic
dosages [14]. The effects of remifentanil are potent and fast-acting, and a similar slowing
of brain activity, similar to that caused by GABAergic agents, occurs with remifentanil
administration [15]. Nitrous oxide (N2O) is an NMDA antagonist and is often used to
supplement other general anesthetic agents. When co-administered with other agents, such as
sevoflurane, N2O administration has been shown to increase slow oscillations [55]. However,
N2O administration alone maintains [9,49,50]—and at times even enhances [10,56]—high
frequency EEG activity. N2O addition to propofol anesthesia can increase bispectral (BIS)
indices, incorrectly indicating wakefulness when patients are even more unresponsive [57].

We calculated spectral and complexity measures of EEG signals from At1 (a location
between the temporal and frontal lobes) in which the remifentanil blood concentrations
for anesthesia were determined when used in combination with a steady background
of 66% N2O [58]. Interestingly, slowing of the EEG activity similar to that observed by
administering remifentanil alone [15] predominated, following co-administration of these
agents (Figure 9). The attractor shapes also flattened and became more ellipsoidal following
LOR and before ROR, similar to the changes seen with the GABAergic agent administration
in the previously discussed experiments (Figure 9).
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Figure 9. Example of patient EEG frontotemporal activity from before and after loss of response
from remifentanil and nitrous oxide anesthesia. (a) EEG activity from electrode location At1 (inset)
before and after loss of response (LOR, indicated with the dashed line) in patient anesthetized with
a combination of remifentanil and 66% nitrous oxide (N2O). (b) Normalized spectrogram of EEG
activity starting from 2 min before LOR to 2 min following LOR. (c) Attractors from 20 s EEG activity
from patients before LOR (red, from red line shown in (a)) to after LOR (blue, from blue line shown
in (b)) fitted with ellipsoid solid of revolution. Following LOR, a geometric shape change occurs
where attractors become more ellipsoidal and flatten. (d) Same attractors from (c), auto-scaled to
show geometric shape changes. Reproduced here with permission from Reference [5].

Interestingly, the geometrical attractor shape changes were consistent across subjects
before and after loss and recovery of response (Figure 10).
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Figure 10. Attractor shapes consistently change across patients anesthetized with remifentanil and
nitrous oxide. Attractors generated from 20 s EEG clips before and after loss of response (LOR)
and recovery of response (ROR) from six patients show flattening and more ellipsoidal shapes
following LOR, and more spherical shapes following ROR consistently across patients anesthetized
with remifentanil and nitrous oxide. Awake, responsive states are shown in red, and anesthetized,
unresponsive states are shown in blue. Reproduced with permission from Reference [5].

For this study, we applied the geometric phase–space analysis (ellipse radius ratio, ERR)
measure, which showed significant differences before and after LOR and ROR (Figure 11).
We also tested whether differences could be seen between post-LOR and pre-ROR and
the deepest level of anesthesia when the highest concentrations of remifentanil were
administered (High-Remi, Figure 11). The ERR measure showed non-inferiority to the BIS
index to distinguish between these clinically relevant time points.
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Figure 11. Ellipse radius ratio discriminates clinically relevant states as well as the bispectral index. (a)
The bispectral index (BIS) significantly differs between the clinical loss and recovery of consciousness
when a combination of remifentanil and 66% N2O is administered. Significant differences in BIS
also occur between post-LOR and pre-ROR and deep levels of anesthesia (High-Remi, during which
the highest concentration of remifentanil was administered). (b) Similar significant differences are
observed using the geometric phase-space analysis (ellipse radius ratio). Uncorrected p-values are
shown here. Box and whisker plots show the median (red line), 25th and 75th quartiles (bottom and
top edges of the blue box, respectively), most extreme data points (error bars), and outliers (red plus
signs). Adapted with permission from Reference [5].

We have thus far demonstrated the utility of complexity measures to capture EEG
changes that occur with the anesthetic administration of diverse agents. In addition
to the challenges that arise from using multiple agents to achieve balanced anesthesia,
patients at the extremes of age present unique challenges to monitoring given structural
and metabolic differences.

4. Certain Patient Cohorts Provide Additional Challenges Given Physiological and
Metabolic Brain Changes

Pediatric (<18 years of age) and geriatric (aged 65 years or older) patients present
challenges for EEG monitoring because of age-dependent differences in brain structure and
physiology. Neurodevelopmental factors including glucose metabolism, myelination, and
synaptogenesis across cortical regions underlie the unique EEG spectral changes that occur
with anesthesia in infants [59]. Spectral EEG differences with anesthetic administration
are also seen from infancy through young adulthood [60,61]. Given these differences, it is
not surprising that pediatric patients present unique monitoring challenges for existing
commercial brain monitors [62].

At the other end of the human lifespan, many regulatory systems that maintain home-
ostatic balances dramatically slow or become impaired, which impedes drug clearance and
increased drug sensitivity [63,64]. Additionally, overall power decreases [65], complexity
decreases [66], and noise level increases [67] are evident in geriatric brains due to the loss
of brain white matter [68] and metabolic rate changes [69]. It is not surprising that geriatric
patients also present unique challenges to monitoring anesthesia [70].

We evaluated spectral and complexity measures in EEGs collected from geriatric sur-
gical patients on beta-adrenergic blockades who were anesthetized with a combination of
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fentanyl and propofol [6,71]. Geriatric patients on beta-adrenergic blockades are more sensitive
to the effects of anesthetics and have altered cardiovascular and EEG responses [72–74]. We
found that spectral and attractor shape changes were evident from before to after LOR in
geriatric patients (Figure 12).

Figure 12. Example of geriatric patient EEG frontal activity from before and after loss of response
with fentanyl and propofol. (a) EEG activity from electrode location F7 (inset) before (red line) and
after (blue line) loss of response (LOR) in geriatric patient anesthetized with a combination of fentanyl
and propofol. (b) Spectrum from 20 s EEG clip from before (red) and after (blue) LOR. (c) Normalized
spectrogram of EEG activity starting from 2 min before LOR to 2 min following LOR. For both (b)
and (c), it is difficult to see the spectral differences between before and after LOR, given the overall
loss in power in the EEG signal commonly observed in geriatric patients. (d) Attractors from 20 s
EEG clips from patients before LOR (red) to after LOR (blue). Following LOR, the same geometric
shape change occurs where attractors become more ellipsoidal and flatten, as shown in previous
examples. (e) Same attractors from (c), fitted with ellipsoid solid of revolution which was used for
subsequent analysis. Reproduced with permission from Reference [6].

We found that the ERR measure, but not correlation dimension measure, significantly
differed between the before and after LOR states (Figure 13).
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Figure 13. Consistent changes in geriatric patient EEG attractors occur with a loss of response.
(a) Attractors generated from 20 s clips of EEG activity from before (red) and after (blue) loss of
response (LOR) show consistent flattening and more ellipsoidal shapes following LOR. (b) Correlation
dimension attractor measure did not capture the change in activity following LOR. (c) However,
the geometric phase–space measure (ellipse radius ratio) significantly decreases following LOR.
Attractors are auto-scaled to illustrate the shape changes that occur with LOR. The axes are shown to
demonstrate that these are 2D projections of 3D attractors. The * indicates significance for the Holm–
Bonferroni corrected p-value shown here, n.s. indicates a not significantly different comparison.
Adapted with permission from reference [6].

5. Discussion

We have described the unique challenges that arise in anesthesia monitoring, given the
diverse molecular targets of anesthetic agents, the practice of combining agents to produce
balanced anesthesia, and the challenges presented with brain structure and function in
older patients. We have reviewed our previous work, demonstrating that complexity
measures that capture the disruption of cortical processing generally show high utility in
distinguishing clinically relevant states produced by anesthetics with different molecular
mechanisms [5,7], in hard-to-monitor age cohorts [6] in humans and in rodents [4].

A great deal of work has uncovered the disruptions of functional connectivity in
the brain from diverse molecular cascades that steal away consciousness [42–45,52,75].
The loss of functional connectivity imposes regularity, and loss of complexity in EEG
signals, which the measures we have tested were able to capture [76,77]. EEG complexity
provides a measure of degraded synaptic connections that accumulate with increasing
anesthetic concentrations, and increased degradation leads to reduced complexity. As
cortico-cortical excitatory synapses begin to fail [76], and circuit timing is slowed by GABA
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inhibitory postsynaptic current prolongation, complex rhythmic oscillations degrade into
slow wave activity [78]. At the loss of consciousness, increased slow wave activity exhibited
a corresponding loss of complexity in the EEG signal. Finding commonalities in network
level disruption from interacting anesthetic agents that target diverse molecular receptors
may lead to a deeper understanding of anesthetic mechanisms and help to generate
clinically useful computational tools to serve as biomarkers to monitor anesthetic depth.
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