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Pancreatic cancer is one of the malignant tumors with the worst prognosis in the world. As
a new way of programmed cell death, ferroptosis has been proven to have potential in
tumor therapy. In this study, we used the TCGA-PAAD cohort combined with the
previously reported 60 ferroptosis-related genes to construct and validate the
prognosis model and in-depth analysis of the differences in the function and immune
characteristics of different RiskTypes. The results showed that the six-gene signature
prognostic model that we constructed has good stability and effectiveness. Further
analysis showed that the upregulated genes in the high-risk group were mainly
enriched in extracellular matrix receptor-related pathways and other tumor-related
pathways and the infiltration of immune cells, such as B, T, and NK cells, was
suppressed. In short, our model shows good stability and effectiveness. Further
studies have found that the prognostic differences between different RiskTypes may
be due to the changes in the ECM-receptor pathway and activation of the immune system.
Additionally, ICI drugs can treat pancreatic cancer in high-risk groups.
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INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is one of the most aggressive and malignant tumors in humans.
The prognosis of PAAD patients is inferior, with a median survival time of less than 6 months
(Maisonneuve, 2019). Although pancreatic cancer is not common, owing to its high mortality rate,
PAAD has become the seventh leading cause of cancer-related death worldwide, and the incidence of
PAAD increases yearly (Rahib et al., 2014; Guarneri et al., 2019). Although surgical treatment,
radiotherapy, and chemotherapy have made significant progress in decades, the prognosis of PAAD
patients is still not optimistic because the molecular mechanism of this cancer has not been studied
clearly (Jeune et al., 2019; Springfeld et al., 2019). Therefore, it is urgent to explore the pathogenic
mechanism of PAAD from the molecular and genetic level and to find new therapeutic targets.
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Ferroptosis is a new type of iron-dependent programmed cell
death that is different from apoptosis, necrosis, and autophagy
(Dixon et al., 2012). The primary mechanism of ferroptosis is that
under the action of divalent iron or esteroxygenase, unsaturated
fatty acids highly expressed on the cell membrane undergo
liposomal peroxidation, thereby inducing cell death (Stockwell
et al., 2017; Hassannia et al., 2019). Because of the unique role of
ferroptosis in controlling programmed cell death, the role of
ferroptosis in cancer and cancer treatment has been intensively
investigated (Yuan et al., 2016; Liang et al., 2019). Studies have
reported that the depletion of the intracellular iron storage
prevents the oxidative stress induced by sorafenib in HCC
cells, thus affecting the antitumor effect of sorafenib
(Louandre et al., 2013; Louandre et al., 2015). Additionally,
Sun et al. proved that heat shock protein β-1 (HSPB1) is a
negative regulator of ferroptosis in cancer cells. Heat shock
pretreatment and HSPB1 overexpression inhibited erastin-
induced ferroptosis. In short, the unique role of ferroptosis in
cancer is widely accepted by researchers (Friedmann Angeli et al.,
2019). Dozens of genes related to ferroptosis have been identified
(Louandre et al., 2015; Sun et al., 2016). However, the overall role
of these genes in the progression of PAAD and their effect on
prognosis are still unclear.

This study collected 60 ferroptosis-related genes (FRGs)
previously reported in the literature and used the TCGA-
PAAD cohort to construct a prognostic model of FRGs. A
validation of internal and external datasets confirms the
validity and stability of our model. Subsequently, various
functional enrichment analyses were conducted to
determine the underlying mechanism of the ferroptosis
gene in PAAD. Additionally, we analyzed immune
differences in models and explored the role of immunity in
the differential prognosis caused by ferroptosis. Thus, we
believe that this study plays a unique role in fully
understanding the role of FRGs in PAAD and finding
potential therapeutic targets.

MATERIALS AND METHODS

Source of Expression Profile Data
The latest RNA-Seq data and clinical follow-up information were
from the TCGA-PAAD cohort, and the download time was
January 30, 2021. The GEO data were downloaded from Gene
Expression Omnibus (GEO). GSE57495 and GSE71729 chip
datasets with survival time were selected. The download time
was January 30, 2021.

Data Preprocessing
We processed the RNA-Seq data of TCGA-PAAD in the
following steps:

1) Remove samples without clinical follow-up information, 2)
remove samples without survival time, 3) remove samples
without survival status, 4) convert Ensembl to gene symbol,
and 5) take the median expression of genes with multiple gene
symbols.

The following steps were processed for the GEO dataset:

1) Remove samples without clinical follow-up information, 2)
remove samples without survival time and survival status, 3)
convert the probe to gene symbol, 4) if one probe corresponds to
multiple genes, remove the probe needle, and 5) take the median
expression of genes with multiple gene symbols.

After preprocessing the three sets of data, we obtained 176
samples in TCGA-PAAD, 123 samples in the GSE71729 dataset,
and 63 samples in GSE57495.

Construction of a Prognostic Risk Model
Based on Ferroptosis-Related Gene
We divide the 176 samples in TCGA-PAAD into a training set
and validation set. To avoid the bias of random allocation
affecting the stability of subsequent modeling, we
prerandomize all samples 100 times without replacement and
proceed according to the ratio of the training set: validation set �
1:1. The most suitable training set and validation set were selected
according to the following conditions: 1) The two groups were
similar in age distribution, gender, follow-up time, and the
proportion of patient deaths; 2) after clustering the gene
expression profiles of the two randomly grouped datasets. The
number of samples in the two categories is close. Finally, we
determined the best training set (n � 88) and validation set (n �
88). The sample information of the training set and the validation
set was tested using the chi-square test (Table 1). The results
showed that our grouping was reasonable, and there was no
significant difference between the groups (p > 0.05).
Subsequently, the single-factor and LASSO analysis of the
training set was conducted. On the basis of the risk score, we
constructed a risk model.

Functional Enrichment Analysis
Differentially expressed genes were determined on the basis of the
limma package. KEGG pathway analysis and GO functional
enrichment analysis were conducted using R software package
WebGestaltR (v.0.4.2), and the Gene set enrichment analysis
(GSEA) analysis was based on the R software package GSVA
for a single sample. GSVA is a popular R package, which was
extensively utilized in cancer-related studies (Liu et al., 2021a; Liu
et al., 2021b). All steps are shown in Supplementary Figure S1.

RESULTS

Identification of Differentially Expressed
FRGs With Prognostic Differences
We collected existing literature on ferroptosis and obtained 60
FRGs (Supplementary file S1) (Stockwell et al., 2017; Bersuker
et al., 2019; Doll et al., 2019; Hassannia et al., 2019).
Subsequently, for each FRG, the training set and survival
data were used to construct a univariate Cox proportional
hazard regression model using the R package survival coxph
function, and p < 0.05 was considered a significant difference.
As a result, seven differentially expressed FRGs with prognostic
significance were identified: CD44, FANCD2, MT1G, PTGS2,
SAT1, TFRC, and STEAP3.
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TABLE 1 | Differences in clinical characteristics between training set and validation set.

Clinical
features

TCGA-PAAD train TCGA-PAAD text P Clinical features TCGA-PAAD train TCGA-PAAD text P

OS 0 39 45 0.4505 Stage I 7 14 0.3832
1 49 43 II 75 70

T stage T1 5 2 0.09 III 1 2
T2 7 17 IV 3 1
T3 73 67 X 2 1
T4 1 2 Grade G1 14 16 0.5703
TX 2 0 G2 46 48

N stage N0 23 26 0.812 G3 27 21
N1 62 60 G4 0 2
NX 3 2 GX 1 1

M stage M0 35 44 0.2791 Gender Male 47 49 0.8797
M1 3 1 Female 41 39
MX 50 43 Age ≤65 47 46 1

>65 41 42

FIGURE 1 | LASSO based on ferroptosis-related genes and prediction effect in the training set. (A) The changing trajectory of each independent variable; the
horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable. (B) The
confidence interval of each lambda. (C)RiskScore, survival time and status, and six-gene expression trend in the training set. (D)ROC curve of the prognostic model. (E)
KM survival curve of the six-gene signature model in the training set.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7466963

Yu et al. Ferroptosis-Related Genes Roles in Pancreatic Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Regression Analysis of Least Absolute
Shrinkage and Selection Operator
The above seven genes were identified as related to the prognosis
of PAAD patients. To further screen for key genes associated with
the development and prognosis of PAAD, LASSO regression
analysis was used to screen the above seven FRGs using the R
software package “glmnet.” The trajectory of the coefficient of
each gene with a value of −ln (lambda) is shown in Figure 1A.
With the gradual increase in the lambda value, the number of
coefficients of FRGs tending to 0 also gradually increased. We
built the model by fivefold cross-validation, and the confidence
interval under each lambda is shown in Figure 1B. The model
was optimal when lambda � 0.033. Thus, we chose six genes when
lambda � 0.033 as the model’s gene signature. Multifactor COX
analysis on six genes was performed, and it calculated the risk
coefficient of each gene and obtained the risk score calculation
formula as follows:

RiskScore � 0.340 × CD44 + 0.216 ×MT1G + 0.050 × PTGS2

+ 0.225 × SAT1 + 0.186 × TFRC + 0.207

× STEAP3

Construction of a Prognostic Model Based
on LASSO
We calculated the risk score of each sample based on the
expression levels of the six genes identified by LASSO and
plotted the distribution of risk scores (Figure 1C). Most
samples in the training set had high-risk scores. The
distribution of the survival status also showed that higher risk
scores were associated with more death events. Interestingly, as
the risk score increased, the expression levels of these six genes
had a significant upward trend. Combined with the above
formula, these results verified the tumor-promoting effect of
FRGs in PAAD and the effectiveness of the six genes that we
screened.

Further, we used the R software package timeROC to perform
ROC analysis of prognostic predictions on the risk scores of the
training set. The classification efficiency of prognostic predictions
of 1, 2, and 3 years was analyzed (Figure 1D). The prediction
performance of the classification model reached 0.66 (1 year),
0.78 (2 years), and 0.77 (3 years), which shows that our model had
good classification performance.

To verify further the effectiveness of our model, we performed
Z-score on risk score, divided the training set samples into high-
risk groups (risk score >0) and low-risk groups (risk score <0),
and showed the survival curve between the groups (Figure 1E).
The results showed that the high-risk group had a significantly
lower survival probability (p � 0.00076).

The Validation Set in TCGA Verifies the
Robustness of the Prognostic Model
To verify the robustness of the six-gene signature model, we
calculated the risk score of each sample in the TCGA verification

set based on the same model and coefficients as the training set
and plotted the RiskScore distribution. Similar to the training set,
higher risk scores correspond to more death events. The
expression trends of these six genes were consistent with the
training set (Figure 2A). ROC analysis showed that the model’s
1-, 2-, and 3-years AUCs in the validation set were 0.62, 0.6, and
0.79, respectively (Figure 2B). Finally, the prognosis of the high-
risk group was significantly worse than that of the low-risk group
(p � 0.036, Figure 2C).

We verified the above results in all samples of the TCGA-
PAAD cohort. As we expected, as the risk score increased, the
deaths of patients increased, and the expression levels of the
six signature genes increased consistently (Figure 2D). The 1-
, 2-, and 3-years AUCs of this model in all samples were 0.66,
0.69, and 0.77, respectively, showing an excellent long-term
survival rate prediction (Figure 2E). The prognosis of the
high-risk group was significantly worse than that of the low-
risk group (p � 0.0032, Figure 2F). 106 samples were classified
as high-risk groups, and 70 samples were classified as low-risk
groups.

External Dataset Verifies the Robustness of
the Six-Gene Signature Model
To determine further the validity and stability of our model, we
conducted model verification on the GSE57495 and GSE71729
datasets. All parameters and tools were consistent with those in
the training set. The RiskScore distribution of the independent
verification dataset GSE57495 is shown in Figure 3A. Like the
TCGA-PAAD cohort, most samples have high-risk scores, and
these high-scoring samples have more death events and higher
expression of the six signature genes. ROC analysis showed that
the 1-, 2-, and 3-years AUCs of this model in GSE57495 were
0.55, 0.57, and 0.83, respectively, showing a good long-term
survival prediction performance (Figure 3B). Survival analysis
showed that consistent with the above results, there was a
significant prognostic difference between the two groups
(Figure 3C).

Subsequently, we conducted the above analysis in the
GSE71729 dataset. The analysis results showed that the
survival status of PAAD patients had an obvious relationship
with the risk score, and the expression trends of the six signature
genes have a strong consistency (Figure 3D). ROC analysis
indicated that the 1-, 2-, and 3-years AUCs in the GSE71729
dataset were 0.7, 0.65, and 0.6, respectively (Figure 3E).
Meanwhile, the survival analysis of the high-risk group and
the low-risk group also showed significant differences. Like the
performance in other datasets, the prognosis of the high-risk
group was significantly worse (Figure 3F). However, most
patients in this dataset had low-risk scores, perhaps due to the
batch effect.

Correlation Between Risk Score and
Clinical Characteristics
To explore further the characteristics of the risk score, we
conducted an exploratory analysis of the risk score and clinical
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features. The results showed that there was no significant
relationship between the risk score and T stage, M stage,
gender, and age, and patients with different N stage, Stage,
and grade have significantly different risk scores (Figures
4A–G). There was a clear trend here: higher risk scores were
associated with a higher stage, and more differentiated samples
have higher risk scores. Stage III and Grade 4 are inconsistent
with other stages mainly because of the small sample size of these
two stages, which results in large deviations.

Single-Factor and Multivariate Analysis of
Six-Gene Signature
To identify the independence of the six-gene signature model in
clinical application, we performed single-factor and multifactor
Cox regression analysis based on the clinical follow-up
information of the TCGA database. These clinical indicators
include age, gender, T stage, N stage, M stage, stage, grade,
and our RiskType grouping information. Single-factor cox

analysis results showed that T stage, N stage, and RiskType (p
� 0.004, HR � 1.95) were significant risk factors for prognosis
(Figure 4H). Multifactor Cox regression analysis showed that
RiskType was an independent risk factor for prognosis (p � 0.01,
HR � 1.52, Figure 4I). The above results indicate that our model
has good predictive power in predicting the clinical prognosis of
PAAD patients.

Identification of Differentially Expressed
Genes and Functional Enrichment Analysis
We identified DEGs between the groups to understand the
underlying mechanism of high- and low-risk groups with
different prognoses. A total of 1,287 upregulated genes and 42
downregulated genes were identified in the high-risk group
(Figure 5A). DEGs in the high-risk group were mainly
upregulated expressed genes.

Subsequently, functional enrichment analysis on DEGs was
performed using the R software package WebGestaltR (v0.4.2).

FIGURE 2 | Validation of the prognostic model of the internal dataset. (A)RiskScore, survival time and status, and six-gene expression trend in the validation set. (B)
ROC curve of the prognostic model in the validation set. (C) KM survival curve of the six-gene signature model in the validation set. (D) RiskScore, survival time and
status, and six-gene expression trend in all sample sets (TCGA, 176 samples). (E) ROC curve of the prognosis model in all samples. (F) KM survival curve of the six-gene
signature model in all samples.
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With FDR <0.05 as the threshold, 1057 GO terms were annotated
to biological processes (BP), 62 terms were annotated to
molecular functions (MF), and 126 terms were annotated to
cellular components (CC). The results showed that multiple
pathways related to cell migration and tumor progression were
enriched, including angiogenesis and epidermal development.
Interestingly, pathways such as cell–cell and cell–substrate
junctions were enriched in multiple categories. This may mean
that the connection between tumor cells and cells or tissues is
disturbed, which affects the tumor’s ability to migrate.
Additionally, KEGG pathway enrichment analysis results
showed that tumor-related pathways such as ECM-receptor
interaction, focal adhesion, and PI3K-Akt signaling pathway
were significant. We respectively showed the 10 most
significantly enriched terms in each category (Figures 5B–E).

GSEA of DEGs
We performed GSEA on the high-risk and low-risk groups, and
the thresholds for the enrichment pathway selection were p < 0.05

and FDR <0.25 (Figure 6A). As we expected, multiple tumor-
related pathways were enriched in the high-risk group, such as
MISMATCH_REPAIR, NOTCH_SIGNALING_PATHWAY,
CELL_CYCLE, and PANCREATIC_CANCER, which may
imply that the poor prognosis of the high-risk group was a
combination of multiple tumor pathways.

Gene Expression Difference in
Tumor-Related Pathways Between Groups
Furthermore, we performed a single-sample GSEA on the TCGA-
PAAD cohort samples and calculated the ssGSEA score of each
sample on different pathways. Correlation analysis of ssGSEA
and risk scores was performed, and pathways with a correlation
coefficient >0.5 were displayed (Figure 6B). A total of 32
pathways were screened, of which the ssGSEA of 29 pathways
was positively correlated with the risk score, and the remaining
three pathways were negatively correlated with the risk score.
After consulting related literature, we found that multiple tumor-

FIGURE 3 | Validation of the prognostic model of the external dataset. (A) RiskScore, survival time and status, and six-gene expression trend in GSE57495. (B)
ROC curve of prognosis model 1, 2, and 3 years. (C) KM survival curve of the six-gene signature model in GSE57495. (D) RiskScore, survival time and status, and six-
gene expression trend in GSE71729. (E) ROC curve of prognosis model 1, 2, and 3 years. (F) KM survival curve of the six-gene signature model in GSE71729.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7466966

Yu et al. Ferroptosis-Related Genes Roles in Pancreatic Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


related pathways, including KEGG_PROSTATE_CANCER,
KEGG_ECM_RECEPTOR_INTERACTION, and KEGG_FOCAL_
ADHESIO, increased with the increase of RiskScore score whereas
KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT,
KEGG_OLFACTORY_TRANSDUCTION, and KEGG_CARDIAC_
MUSCLE_CONTRACTION had an opposite trend. Interestingly,
the ECM-receptor pathway has been identified in multiple
functional enrichment analyses. The expression of related
genes in this pathway tended to increase as the risk score
increased. Thus, the ECM-receptor pathway may be potentially
linked to FRGs.

Differences in Immune Infiltration Between
Groups
To explore the differences in immune infiltration between the
high-risk and low-risk groups that we identified, we assessed the
differences in overall immune infiltration and immune cells using
ESTIMATE, MCPcounter, and CIBERSORT tools. The results
showed no significant differences in Stromal Score, Immune

Score, and ESTIMATE Score between groups (Figure 7A).
However, in the MCP method, monotypic lineage and
neutrophils were significantly increased in the high-risk group
(p < 0.05), which implies that the high-risk group has a stronger
inflammatory response (Figure 7B). In the results of
CIBERSORT, native B cells, activated NK cells, and Tregs
infiltrate in the high-risk group were lower than those in the
low-risk group, which implies that compared to low-risk group,
the specific and nonspecific immune responses of the high-risk
group were suppressed (Figure 7C).

Subsequently, we compared the expression differences in
some immune checkpoints in the high- and low-risk groups.
As we expected, almost all immune checkpoint genes were
upregulated in the high-risk group. CD274, CD276, CD44,
CD80, IDO1, and PDCD1LG2 had significant statistical
differences (Figure 7D). This indicates that immune
checkpoint-related pathways play an essential role in the
poor prognosis of the high-risk group, suggesting that
immune checkpoint inhibitors (ICIs) are effective for this
type of pancreatic cancer.

FIGURE 4 |Correlation between RiskScore and clinical characteristics, and single-factor and multifactor analysis. (A)Correlation between RiskScore and T. stage.
(B) Correlation between RiskScore and N. stage. (C) Correlation between RiskScore and M. stage. (D) Correlation between RiskScore and Stage. (E) Correlation
between RiskScore and Grade. (F) Correlation between RiskScore and Gender. (G) Correlation between RiskScore and Age. (H) Clinical features and RiskScore’s
single-factor analysis results. (I) Clinical features and RiskScore’s multivariate analysis results.
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Comparison of Risk Models and Existing
Models
To verify further the effectiveness of our model, by consulting
relevant literature, we compared the predictive performance of
three prognostic-related risk models (seven-gene signature
(Cheng), six-gene signature (Stratford), and nine-gene
signature (Xu)) and our model. To make the models
comparable, we calculated the Z-score risk score of each
PAAD sample based on the signature genes in these three
models using the same method and divided the samples into
the high-risk (risk score >0) and low-risk (risk score <0)
groups. The ROC results of the seven-gene signature
(Cheng) risk model showed that the 1-, 2-, and 3-years
AUCs of the model were 0.72, 0.68, and 0.68, respectively
(Figure 8A) (Cheng et al., 2019). The AUCs of the six-gene
signature (Stratford) risk model were 0.61, 0.67, and 0.73,
respectively (Figure 8C), and the AUCs of the nine-gene
signature (Xu) risk model were 0.67, 0.69, and 0.74,
respectively (Figure 8E) (Stratford et al., 2010; Xu et al.,
2021). The prognosis of the three models is significantly
different between the groups (Figures 8B,D,F). We found

that the 1-, 2-, and 3-years AUCs of these three models on
the TCGA data were lower than those of our model, indicating
that our model had a good predictive performance.

DISCUSSION

Owing to the unique cell death mechanism of ferroptosis and
its potential therapeutic prospects in cancer, ferroptosis has
attracted the attention of many researchers (Yang et al., 2014;
Conrad et al., 2016). Although the execution of ferroptosis
requires the oxidation of polyunsaturated fatty acids, the
underlying mechanism of the sensitivity of carcinogenic
mutations and other noncarcinogenic cancer-related states
to ferroptosis remains largely unclear. The latest research
suggests that the tumor suppressor genes p53 and BCRA
may be associated with increased sensitivity to ferroptosis
(Li et al., 2012; Jiang et al., 2015; Wang et al., 2016).
Additionally, Liu et al. found that in clear cell renal cell
carcinoma, the deletion of the von-Hippel-Lindau gene
makes this type of tumor sensitive to ferroptosis caused by

FIGURE 5 | Functional enrichment analysis between RiskTypes. (A) Volcano plot of differentially expressed genes between high- and low-risk groups; the red dots
represent upregulated genes in the high-risk group. (B) Top 10 BP terms of differentially upregulated genes between RiskTypes. (C) Top 10 CC terms of differentially
upregulated genes between RiskTypes. (D) Top 10 MF terms of differentially upregulated genes between RiskTypes. (E) Top 10 KEGG pathways of differentially
upregulated genes between RiskTypes.
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glutathione depletion (Yang et al., 2014; Miess et al., 2018).
Additionally, reports have pointed out that ferrophilic cancer
cells may release immunomodulatory signals, such as lipid
mediators, to attract immune cells, such as macrophages, for
effective phagocytosis (Elliott and Ravichandran, 2016;
Kloditz and Fadeel, 2019; Liu et al., 2021c). Although we
have made positive progress in the mechanism that drives
ferroptosis, ferroptosis in tumors and its regulatory
mechanism are still contradictory (Friedmann Angeli et al.,
2019). It is necessary to identify further the difference between
ferroptosis that inhibits tumor growth and ferroptosis that
drives cancer progression.

In this study, we used the TCGA-PAAD cohort to perform
univariate cox regression combined with the previously
reported 60 FRGs and identified seven prognostic-related
ferroptosis genes. Subsequently, the LASSO algorithm was
used to reduce dimensionality and construct a six-gene
signature prognostic model. We verified the effectiveness of
the model in the training set, the validation set, and all
samples. The model’s long-term prognosis predicted that
AUC reached 0.79. Additionally, to verify the stability of

the model on different sequencing platforms, we confirmed
it in GSE57495 and GSE71729. The results showed that
whether it is an internal dataset or an external dataset, the
model showed convincing stability and effectiveness.
Subsequently, we analyzed the correlation between different
risk groups and clinical characteristics. There were significant
differences in N stage, Stage, and Grade between the risk
groups. Additionally, there was a trend that the high-risk
group has a higher degree of differentiation. Both univariate
and multivariate COX regression analyses showed that
RiskType was significantly related to prognosis. To validate
further the prognostic model, three pre-existing PAAD
prognostic models were compared with our model. The 1-,
3-, and 5-years AUCs of these three models on the same
dataset were lower than those of our model. This also verifies
that our model has prognostic prediction ability.

Further functional enrichment analysis showed that the
ECM-receptor pathway and the cell–cell and cell–matrix
connection pathways were enriched by multiple categories.
The extracellular matrix (ECM) is composed of a complex
mixture of structural and functional macromolecules and

FIGURE 6 | RiskScore-related pathways and GSEA results. (A) GSEA results between high-risk and low-risk groups. (B) Clustering correlation coefficients
between the KEGG pathway and RiskScore with correlation >0.5.
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plays a vital role in the formation of tissues and organs and the
maintenance of the structure and function of cells and tissues
(Mohan et al., 2020). Cells interact with ECM through ECM
receptors to control cell migration, differentiation, and
apoptosis (Eble and Niland, 2019; Mohan et al., 2020). A
study by Brown et al. found that ECM detachment is an
essential factor in triggering the ferroptosis of cancer cells
(Buchheit et al., 2014; Brown et al., 2017; Dixon, 2017). The
activation of Src mediated by α6β4 contributes to resistance to
ferroptosis. In the absence of α6β4, cell ECM detachment is
prone to ferroptosis. Our research results corroborate this
conclusion. However, there is also evidence that ECM

detachment can increase intracellular reactive oxygen
species (ROS) and cause ROS-dependent cell death (Schafer
et al., 2009). It is essential to determine the difference between
apoptosis and ferroptosis, which may determine the outcome
of the cell, which requires more rigorous experiments.

Additionally, ferroptosis regulates the antitumor response
of the immune system. There is evidence that different types of
ferritic cancer cells can release HMGB1, a damage-related
molecule, in a ferroptosis-dependent manner, and can then
obtain the characteristics of immune stimulation and act as an
adjuvant (Yamazaki et al., 2014; Yu et al., 2015; Wen et al.,
2019). This molecule can promote the activation of innate and

FIGURE 7 | Differences in immune infiltration characteristics between RiskTypes. (A) Differences in Stromal Score, Immune Score, and ESTIMATE Score among
RiskTypes. (B) Differences in 10 immune cells assessed by MCPcounter among RiskTypes. (C) The difference of 22 immune cell scores between RiskTypes using
COBERSORT. (D) Differences in immune checkpoint genes between high- and low-risk groups.
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adaptive immune systems by binding with pattern recognition
receptors. This conclusion is consistent with our research
results (Liu et al., 2021d). We found that various
immune cells, including B cells, helper T cells, and NK
cells, were upregulated in the low-risk group. This implied
that compared to the high-risk group, samples from the
low-risk group could activate the specific and non-specific
immune systems through the above pathways, then stimulate
the anti-tumor response of immune system. Interestingly, we
found a significant difference in the expression of immune
checkpoints between the high-risk group and the low-risk
group. Almost all immune checkpoint genes were
upregulated in the high-risk group. This may mean that
pancreatic cancer in the high-risk group suppresses the
immune response by “hijacking” the immune checkpoint
pathway to obtain immune escape (Liu et al., 2021e). This
suggests that ICIs is an effective treatment for this type of
pancreatic cancer with a worse prognosis.

Although many studies have explored the mechanism of
ferroptosis and the biological processes that it causes, it cannot
be ignored that ferroptosis is a kind of programmed cell death
induced by multifactorial stress. We should explain this
phenomenon from multiple perspectives. In our pancreatic
cancer research, FRGs are involved in various tumor-related

pathways. The differential prognosis of our model is the result
of multiple tumor-related pathways, including the ECM-receptor
pathway and tumor immune regulation. These results lay the
foundation for further exploration of the role and mechanism of
ferroptosis in pancreatic cancer.

CONCLUSION

We constructed a six-gene signature prognostic model based on
FRGs. After extensive verification, this model has been proven to be
stable and effective in predicting the prognosis of pancreatic cancer.
Further research showed that the prognostic differences between
different RiskTypes may be due to the changes in the ECM-receptor
pathway and activation of the immune system. ICI drugs can treat
pancreatic cancer in the high-risk group in our model.
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