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Abstract
BAY 94-9027 is an extended-half-life, recombinant factor VIII (rFVIII) product conjugated with a 60-kDa branched polyethylene
glycol (PEG)molecule indicated for use in previously treated patients (aged ≥ 12 years) with hemophilia A. This randomized, open-
label, two-way crossover study compared the pharmacokinetics (PK) of BAY 94-9027 and rFVIII Fc fusion protein (rFVIIIFc) in
patients with hemophilia A. Patients aged 18–65 years with FVIII < 1% and ≥ 150 exposure days to FVIII were randomized to
receive intravenous single-dose BAY 94-9027 60 IU/kg followed by rFVIIIFc 60 IU/kg or vice versa, with ≥ 7-day wash-out
between doses. FVIII activity was measured by one-stage assay. PK parameters, including area under the curve from time 0 to the
last data point (AUClast, primary parameter), half-life, and clearancewere calculated. Eighteen patients were randomized and treated.
No adverse events were observed. In the analysis set excluding one outlier, geometric mean (coefficient of variation [%CV, 95%
confidence interval {CI}]) AUClast was significantly higher for BAY 94-9027 versus rFVIIIFc (2940 [37.8, 2440–3550] IU h/dL
versus 2360 [31.8, 2010–2770] IU h/dL, p = 0.0001). A population PK model was developed to simulate time to reach FVIII
threshold levels; median time to 1 IU/dL was approximately 13 h longer for BAY 94-9027 versus rFVIIIFc after a single infusion of
60 IU/kg. In conclusion, BAY 94-9027 had a superior PK profile versus rFVIIIFc. ClinicalTrials.gov: NCT03364998.

Keywords Pharmacokinetics . Extended half-life . Hemophilia A . PEGylated . Head-to-head study . Population
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Introduction

Prophylaxis with factor VIII (FVIII) is the standard treatment
for patients with severe hemophilia A (FVIII < 1%) [1]. It

aims to reduce bleeding frequency and, ultimately, prevent
the development of chronic arthropathy [2–4]. However, pro-
phylaxis regimens typically require frequent intravenous infu-
sions, which can lead to suboptimal adherence and
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breakthrough bleeding [5]. Although the appropriate level of
FVIII to prevent bleeding in individual patients varies depend-
ing on the individual’s pharmacokinetics (PK), bleeding phe-
notype, activity level, and other variables [6–8], an increased
time with low FVIII levels is considered an important deter-
minant of breakthrough bleeding during prophylaxis [9].

Extended-half-life (EHL) recombinant FVIII (rFVIII)
products with improved PK profiles compared with
standard-half-life (SHL) products have the potential to main-
tain FVIII levels above threshold levels for longer periods of
time, which may result in better bleed protection and, conse-
quently, less joint damage [10]. PK parameters, including in-
cremental recovery, half-life (t½), area under the curve (AUC),
and clearance (CL) are considered important surrogate effica-
cy endpoints for new FVIII products [11, 12]. EHL rFVIII
products should have a minimum t½ extension ratio of 1.3 to
provide a reduction in dosing frequency from three times per
week to two times per week compared with SHL rFVIII prod-
ucts while maintaining the same minimum FVIII threshold
level [13]. Such prophylaxis regimens that allow for less fre-
quent infusions may also improve adherence [14].

BAY 94-9027 (Jivi®, Bayer AG, Germany) is a B-domain-
deleted rFVIII product that has been site-specifically PEGylated
with a single 60-kDa (dual-branched) polyethylene glycol
(PEG) molecule to improve its PK [15]. In previously treated
adults with severe hemophilia A, BAY 94-9027 demonstrated a
longer t½ and greater dose-normalized area under the curve from
time 0 to infinity (AUCnorm) compared with sucrose-formulated
rFVIII (Online Resource: Supplementary Table 1) [16, 17].
Subsequently, in the PROTECT VIII study and its extension,
BAY 94-9027 was efficacious in the prevention of bleeds in
previously treated adults and adolescents [18, 19]. These posi-
tive results led to the approval of BAY 94-9027 by the U.S.
Food and Drug Administration (FDA), the European
Medicines Agency (EMA) and the Pharmaceuticals and
Medical Devices Agency (PMDA) in Japan for use in previous-
ly treated adults and adolescents (aged ≥ 12 years) with hemo-
philia A at dosing intervals of up to every 5 days (FDA) and
every 7 days (EMA and PMDA) [20–22]. Population PK
(popPK) evaluation of FVIII activity–time profiles following
BAY 94-9027 dosing have shown that the PK of BAY 94-
9027 is adequately described by a one-compartment model with
linear elimination [23].

Recombinant FVIII Fc fusion protein (rFVIIIFc; Elocta®/
Eloctate®; Biogen, Cambridge, MA, USA) is another EHL
rFVIII product approved for routine prophylaxis for all age
groups with dosing intervals of up to every 5 days [24]. In the
A-LONG study, rFVIIIFc demonstrated a longer t½ and
AUCnorm compared with conventional rFVIII (Advate®;
Baxter, Deerfield, IL, USA) in previously treated patients
aged ≥ 12 years with severe hemophilia A (Online Resource:
Supplementary Table 1) [25]. The safety and efficacy of re-
combinant FVIIIFc has also been demonstrated for the

prevention and treatment of bleeding episodes in studies of
patients with severe hemophilia A [25, 26]. A two-
compartment model with linear elimination has been reported
to adequately describe the popPK of rFVIIIFc [27].

To date, no head-to-head comparison of the PK of EHL
rFVIII products in patients with hemophilia A has been per-
formed. The objective of the current study was to directly
compare the PK profiles of BAY 94-9027 and rFVIIIFc.
Concentration data collected using the one-stage assay were
used to develop a popPK model for BAY 94-9027 and
rFVIIIFc to simulate time to reach FVIII threshold levels.

Methods

Study design

This was a single-center, randomized, open-label, single-dose,
two-way crossover study (ClinicalTrials.gov identifier:
NCT03364998) (Fig. 1). The primary objective was to
compare the PK of BAY 94-9027 and rFVIIIFc. After a
wash-out period (specified as ≥ 3 days or ≥ 5 days for SHL
or EHL FVIII products, respectively), patients were random-
ized 1:1 to receive a single infusion of 60 IU/kg BAY 94-9027
or 60 IU/kg rFVIIIFc, followed by crossover to a single infu-
sion of the other treatment, with ≥ 7-day wash-out between
doses. The maximum wash-out time between treatments was
28 days. Both products were administered as 10-min intrave-
nous infusions.

Vial strength was not determined in this study. One batch
was used for each study drug. Study drug doses were based on
the nominal value on the label of the vial. The exact volume
needed for the administration of 60 IU/kg was calculated by
multiplying the weight of the patient by 60. This total amount
(IU) was withdrawn in a single pooling syringe using the
required number of vials. The excess vial content was
discarded to ensure that all subjects received a 60 IU/kg dose.

The study was approved by the institutional review board
at the single site and was carried out in compliance with the
protocol, the principles of the Declaration of Helsinki, and
Good Clinical Practice guidelines. All patients gave written
informed consent before initiation of any study-related
procedures.

Patients

Eligible patients were men aged 18–65 years with severe he-
mophilia A (FVIII <1 IU/dL) previously treated with any
FVIII product for ≥ 150 exposure days (EDs). Patients also
had to have a body mass index of 18–29.9 kg/m2 and have
been able to stop FVIII treatment to complete the wash-out
period before study entry and between treatments. Key exclu-
sion criteria included the presence or history of an FVIII
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inhibitor (≥ 0.6 Bethesda units/mL), diagnosis of any bleeding
disorder other than hemophilia A, platelet count < 75,000/
mm3, HIV positive with a CD4 count of < 200/mm3, creati-
nine > 2 times the upper limit of normal (ULN) or alanine
aminotransferase or aspartate aminotransferase > 5 times the
ULN.

PK assessments

Plasma samples were collected pre-dose and 0.25, 0.5, 1, 3, 6,
8, 24, 48, 72, 96, and 120 h after infusion of each drug. FVIII
coagulant activity (FVIII:C) was measured using the same
one-stage clotting assay as follows. Plasma concentrations of
BAY 94-9027 and rFVIIIFc were determined by a turbidimet-
ric assay with the SynthaSil reagent and activated partial
thromboplastin time (APTT) measured on the ACL Advance
System against a calibration curve of standard human plasma.
The calibration range of the procedure for both BAY 94-9027
and rFVIIIFc was 1 IU/dL (lower limit of quantitation
[LLOQ]) to 80 IU/dL (upper limit of quantitation [ULOQ]).
Samples above the calibration range were diluted with FVIII-
deficient plasma from human donors with congenital FVIII
deficiency.

The following PK parameters were assessed using non-
compartmental analysis (NCA) (WinNonlin® software, ver-
sion 5.3; Pharsight, Mountain View, CA, USA): AUC from
time 0 to the last data point (AUClast; primary parameter);
AUC; maximum concentration (Cmax); t½; CL; mean resi-
dence time (MRT); volume of distribution at steady state
(Vss); and incremental recovery.

Population PK model

To evaluate differences in the PK of both EHL products in
the specific study population, a single integrated PopPK
model for BAY 94-9027 and rFVIIIFc was developed with
product as the covariate. The analysis was conducted using
the nonlinear mixed-effect modeling approach, as imple-
mented in NONMEM® (version 7.4.1; ICON, Hanover,
MD, USA). As a starting point, a structural model for each
product was selected based on standard diagnostic tools,
such as raw-data inspection, goodness of fit, and precision
of parameter estimates. Potential candidates as suggested
by previous analysis were one- or two-compartment
models parameterized in terms of CL, central volume
(Vc) and, for the two-compartment model, peripheral vol-
ume (Vp) and intercompartmental clearance (Q), with

covariate effects of von Willebrand factor (VWF) and lean
body weight (LBW) on CL and LBW on Vc. Residual
(unexplained) variability was described using a combined
(proportional and additive) error model. Data below the
LLOQ were accounted for using the M3 method [28]. In
the next step, an integrated model was developed by com-
bining the two structural models and subsequently refining
the model by testing whether BAY 94-9027 and rFVIIIFc
have statistically significant differences in PK parameters
(e.g., CL) using the likelihood ratio test (LRT) and a p
value of 0.01. Because of the small study size, no addition-
al covariate search was conducted. Additional model re-
finement consisted of an iterative outlier removal proce-
dure and optimization of the inter-individual variability
components of the model. The model was qualified using
standard model diagnostic tools, such as uncertainty in
parameter estimates, plausibility of estimates (comparison
with published information), goodness-of-fit plots, and vi-
sual predictive checks.

The popPK model was used to determine individual PK
estimates and simulate the time to reach FVIII threshold levels
of 1, 3, 5, and 10 IU/dL after a single dose of 60 IU/kg BAY
94-9027 or rFVIIIFc for the study population.

Safety

Safety was assessed by means of clinical and laboratory eval-
uation at study visits and the recording of adverse events.

Statistical analysis

For statistical analysis of the PK parameters obtained by
NCA, a log-normal distribution of the parameters was as-
sumed [29]. Log-transformed parameters were analyzed
using analysis of variance (ANOVA), including sequence,
patient (sequence), period, and treatment effects. Based on
these analyses, point estimates (least square means) and
confidence intervals (CIs, 90% and 95%) for the BAY
94-9027:rFVIIIFc ratio were calculated by retransforma-
tion of the logarithmic data using intra-individual SD of
the ANOVA. The lower limit of the 90% CI for the ratio
exceeding 0.8 would indicate that BAY 94–9027 is non-
inferior to rFVIIIFc; the lower limit of the 95% CI for the
ratio exceeding 1.0 would indicate that BAY 94-9027 is
superior to rFVIIIFc. Safety analyses were descriptive.

Fig. 1 Study design
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Results

A total of 18 patients were randomized and received single
doses of BAY 94-9027 and rFVIIIFc; the demographics and
baseline characteristics of the patients are provided in Table 1.
The mean age of patients was 36.0 years, all were white, and
none had previously received EHL products.

Using data from all 18 patients (analysis set A), the geomet-
ric mean (%CV) for AUClast was 2660 (60.6) IU h/dL for BAY
94-9027 and 2410 (32.1) IU h/dL for rFVIIIFc. The least
square mean (90% CIs) for the BAY 94-9027:rFVIIIFc ratio
was 1.10 (0.88–1.39), meeting the prespecified criteria for non-
inferiority of BAY 94-9027 versus rFVIIIFc; superiority criteria
were not met (95% CI 0.84–1.46; p = 0.46). Fifteen patients
had a least square mean BAY 94-9027:rFVIIIFc ratio of > 1.0.

Examination of the individual patient AUClast values after a
single infusion of 60 IU/kg BAY 94-9027 or 60 IU/kg
rFVIIIFc (Fig. 2), however, showed that one 34-year-old pa-
tient had an AUClast of 470 IU h/dL for BAY 94-9027, con-
siderably lower than the geometric mean of 2660 IU h/dL for
BAY 94-9027 for all patients. This patient was the only one in

the study to have pre-existing anti-PEG IgM (low titer 1:8)
prior to administration of BAY 94-9027. For these reasons,
this patient was determined to be an outlier and was therefore
excluded from further analyses of the PK results (performed
on the remaining 17 patients [analysis set B]).

Using analysis set B, the geometric mean (%CV, 95% CI)
for AUClast was significantly higher for BAY 94-9027 (2940
[37.8, 2440–3550] IU h/dL) versus rFVIIIFc (2360 [31.8,
2010–2770] IU h/dL, p = 0.0001, Table 2). Similar results
were obtained for AUC (Table 2). CL was significantly re-
duced for BAY 94-9027 versus rFVIIIFc (0.0200 [38.3,
0.0165–0.0241] dL/h/kg versus 0.0250 [32.2, 0.0213–
0.0294] dL/h/kg, p = 0.0001, Table 2). The geometric mean
[%CV, 95% CI] t½ was significantly longer for BAY 94-9027
versus rFVIIIFc (16.3 [34.1, 13.7–19.3] versus 15.2 [33.1,
12.9–17.9] h, p < 0.05, Table 2). Additional PK parameters
are shown in Table 2.

The PK profile for BAY 94-9027 for the outlier patient was
excluded from the development of the popPK model. No pe-
ripheral distribution compartment could be identified for BAY
94-9027 (relative standard error [RSE] of Q > 180%) and PK of
BAY 94-9027 was described by a one-compartment model
(technically, the PK of BAY 94-9027 was described by a
two-compartment model fixing Q to a very small value
[0.001]), while a two-compartment model was used for
rFVIIIFc. Further, to minimize the potential bias introduced
by implausible values (e.g., due to uncertainty of the assay or
deviations in the sampling timepoint), single data points (ten
measurements for BAY 94-9027 and 16 measurements for
rFVIIIFc) were determined to be outliers and removed during
model development. These single data points had a conditional
weighted residual value (CWRES) of < −2.5 or > 2.5 (obtained
using individual Bayesian post hoc parameter estimates) corre-
sponding to a probability of occurrence under the respective
model of < 1%. During this process, the estimate of the residual

Table 1 Patient demographics and baseline characteristics

Characteristic Analysis set A (N = 18) Analysis set B (N = 17)

Age, years

Median (range) 34 (22–65) 34 (22–65)

Mean (SD) 36.0 (11.7) 36.1 (12.1)

Race, n (%)

White 18 (100) 17 (100)

BMI, kg/m2

Median (range) 25.5 (18.6–29.7) 25.0 (18.6–29.7)

Mean (SD) 24.8 (3.7) 24.7 (3.8)

BMI, body mass index; SD, standard deviation
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Fig. 2 Individual patient AUClast

values after a single infusion of
60 IU/kg BAY 94-9027 or 60 IU/
kg rFVIIIFc (N = 18). One patient
(dashed line) had an AUClast of
470 IU h/dL for BAY 94-9027,
considerably lower than the geo-
metric mean of 2660 IU h/dL for
BAY 94-9027 for all patients
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error was nearly halved to 29.7 %CV; this indicated that these
data points were influential outliers and should be removed
from the analysis. Compared with rFVIIIFc, the CL of BAY
94-9027 was significantly reduced by approximately 20%
(95% CI, − 14.2 to − 26.9%). While all patients (excluding
the outlier) had a lower CL for BAY 94-9027 compared with
rFVIIIFc, the magnitude varied considerably between the sub-
jects (%CV, 46%). The parameter estimates of the popPK

model are shown in Table 3. Visual predictive checks showed
good agreement between the popPK model and the observed
data in that a statistically significant difference in CL could be
detected between treatments (Fig. 3). The model parameters
and results are consistent with previous popPK analyses [23,
27].

The popPK model was used to derive individual PK esti-
mates and simulate time to reach FVIII threshold levels of 1,

Table 2 PK parameters following single-dose administrations of BAY 94-9027 and rFVIIIFc (analysis set B, excluding outlier; N = 17)

Parameter Geometric mean (%CV) (95% CI) Geometric least square
mean ratioa (95% CI)

p value

BAY 94-9027 rFVIIIFc

AUC (IU h/dL) 3010 (38.3)
(2490–3640)

2400 (32.2)
(2040–2820)

1.26
(1.14–1.38)

0.0001

AUClast (IU h/dL) 2940 (37.8)
(2440–3550)

2360 (31.8)
(2010–2770)

1.25
(1.14–1.37)

0.0001

CL (dL/h/kg) 0.0200 (38.3)
(0.0165–0.0241)

0.0250 (32.2)
(0.0213–0.0294)

0.80
(0.72–0.87)

0.0001

Cmax (IU/dL) 150 (26.0)
(131–171)

194 (64.1)
(143–262)

0.76
(0.60–0.97)

< 0.05

MRTIV (h) 23.2 (35.3)
(19.4–27.6)

19.9 (38.4)
(16.4–24.1)

1.17
(1.08–1.26)

< 0.001

t½ (h) 16.3 (34.1)
(13.7–19.3)

15.2 (33.1)
(12.9–17.9)

1.07
(1.00–1.15)

< 0.05

VSS (dL/kg) 0.462 (15.2)
(0.428–0.500)

0.497 (22.5)
(0.444–0.558)

0.93
(0.86–1.00)

0.06

Incremental recovery (kg/dL) 2.26 (16.5)
(2.08–2.46)

3.09 (66.0)
(2.27–4.20)

0.72
(0.55–0.94)

< 0.05

a Ratio of BAY 94-9027:rFVIIIFc

AUC, area under the curve from time 0 to infinity; AUClast, AUC from time 0 to the last data point;CL, clearance;Cmax, maximum concentration;MRTIV,
mean residence time after intravenous injection; t½, half-life; Vss, volume of distribution at steady state

Table 3 Parameter estimates of the popPK model

Parameter Value RSE (%) 5% CI 95% CI

CL (dL/h) 1.57 10.5 1.25 1.89

Vc of distribution (dL) 28.3 3.59 26.3 30.3

Q (dL/h)a 0.69 20.2 0.42 0.96

Vp of distribution (dL)a 6.02 14.5 4.31 7.72

Effect of LBWon CL 1.03 32.9 0.364 1.69

Effect of LBWon Vc of distribution 1.10 15.5 0.765 1.43

Relative reduction of CL for BAY 94-9027 compared with rFVIIIFcb − 0.21 14.0 − 0.26 − 0.15
Inter-individual variability in CL (variance [%CV]) 0.11 (33.3) 28.5 0.05 0.16

Inter-individual variability in Vc of distribution (variance [%CV]) 0.01 (11.1) 34.2 0.004 0.02

Inter-individual variability in change in CL for BAY 94-9027
compared with rFVIIIFc (variance [%CV])

0.20 (46.4) 51.4 − 0.002 0.39

Residual error, additive component (variance) 0.296 18.2 0.190 0.40

Residual error, proportional component (variance [%CV]) 0.09 (29.7) 6.63 0.08 0.10

a Only applies for rFVIIIFc
b CL (BAY 94-9027) = CL (rFVIIIFc) × (1+ relative reduction in CL)

CL, clearance; %CV, coefficient of variation; LBW, low body weight; Q, intercompartmental CL; RSE, relative standard error; Vc, central volume; Vp,
peripheral volume
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3, 5, and 10 IU/dL after a single infusion of 60 IU/kg BAY 94-
9027 or 60 IU/kg rFVIIIFc. For analysis set B (N = 17), me-
dian time to an FVIII level of 1 IU/dL was 13 h longer for
BAY 94-9027 versus rFVIIIFc (approximately 12.5%). Times
to reach 3, 5, and 10 IU/dL thresholds were 12.5, 11.7, and
10.9 h longer, respectively, for BAY 94-9027 versus rFVIIIFc
(Fig. 4).

No adverse events were reported during the study.

Discussion

This is the first randomized head-to-head study per-
formed to directly compare the PK of BAY 94-9027
and rFVIIIFc following a single 60 IU/kg infusion in
patients with hemophilia A. The results demonstrated
that BAY 94-9027 has improved PK parameters com-
pared with rFVIIIFc; the mean AUClast was 25% higher

a

b

Fig. 3 Visual predictive checks on FVIII level–time profiles in the integrated popPKmodel for BAY 94-9027 (a) and rFVIIIFc (b) BLQ, below the limit
of quantification; LLOQ, lower limit of quantitation
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and CL was 20% lower for BAY 94-9027 compared with
rFVIIIFc.

The main strength of our study was the crossover design.
Both products have previously been shown to have improved
PK versus SHL rFVIII products [16, 17, 25]. The reported
half-lives of the products based on registrational studies are
17.4 h for BAY 94-9027 [21] and 19.0 h for rFVIIIFc [30].
Supplementary Table 1 also describes PK parameters for these
products based on published data. However, indirect compar-
isons of PK data from registrational studies do not allow for an
accurate assessment of how the products compare owing to
variation in the type of assay and calibration standard used and
the characteristics of the patient populations. For example, one
factor that influences PK is FVIII CL, which is highly inverse-
ly correlated with VWF levels in individual patients [31].
These issues reinforce the importance of our comparative
crossover methodology, in which PK parameters were evalu-
ated using the same assay in the same population of patients,
allowing for direct comparison of the two products.

The clinical implication of our study is related to the con-
cept that EHL rFVIII products can be used to extend the dos-
ing interval [32] or provide higher FVIII levels for longer
periods [33]. In this context, simulations using the popPK
model showed that median time to a threshold level of 1 IU/
dL FVIII was 13 h longer for BAY 94-9027 versus rFVIIIFc
after a single infusion of 60 IU/kg. This increase in the time
above threshold may thereby provide improved bleeding pro-
tection [9, 12]. However, only prospective studies can precise-
ly assess the effects of improved PK on bleeding and individ-
ualized PK-based prophylaxis with BAY 94-9027.

One patient exhibited a lower AUClast value for BAY 94-
9027 than the other patients and was the only one found to
have pre-existing anti-PEG IgM; he was therefore determined
to be an outlier and was excluded from subsequent PK anal-
yses. Pre-existing anti-PEG and anti-drug IgM have also been
reported with BAX 855 and N8-GP, two other PEGylated

FVIII products, and non-PEG therapeutics, such as biologic
tumor necrosis factor (TNF) inhibitors [34–38]. Increased
clearance, resulting in a reduced AUClast, of a drug secondary
to pre-existing anti-PEG antibodies has been reported with
other PEGylated therapeutics (e.g., PEG-asparaginase) [39].

Our study has some potential limitations. First, as a single
chromogenic (two-stage) assay that could accurately measure
FVIII activity of both BAY 94-9027 and FVIIIFc could not be
identified, the same one-stage assay was used to assess FVIII
activity for both products. The one-stage assay has been
shown to give consistent results between PEGylated and
non-PEGylated rFVIII [40], and it was found to accurately
measure both products in the current study, with values within
20% for both products when analyzed against a plasma stan-
dard. However, the chromogenic assay measured values 40–
60% higher than expected for rFVIIIFc and could not be val-
idated. Therefore, the chromogenic assay was not used in the
study. Second, NCA methods were used to compare the PK
parameters, thereby providing a comparison that was unaffect-
ed by assumptions regarding the distribution of FVIII [41].
The popPK-model-based analysis, however, showed that a
one-compartment model adequately described BAY 94-9027
but not rFVIIIFc, which was taken into account when simu-
lating individual time-to-threshold values. Last, only patients
aged 18–65 years were enrolled in this study. However, no
major differences in the PK characteristics of BAY 94-9027
have been seen between adults and adolescents [17]. By con-
trast, the t½ of rFVIIIFc is decreased in adolescents aged 12–
17 years compared with adults (aged ≥ 18 years) [42]. Taken
together, these data suggest that the improved PK characteris-
tics of BAY 94-9027 versus rFVIIIFc observed in adults in
this study are likely to be seen also in adolescents.

In conclusion, BAY 94-9027 had an extended t½, a higher
AUC (based on direct measurement), and longer median time
to > 1 IU/dL FVIII (based on popPK modeling) compared
with rFVIIIFc following a single infusion in patients with

Fig. 4 Modeled median time to FVIII threshold level after a single infusion of 60 IU/kg BAY 94-9027 or 60 IU/kg rFVIIIFc (analysis set B, excluding
outlier; N = 17)
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severe hemophilia A. Real-world data may provide an insight
into whether these PK advantages provide additional bleeding
protection.
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