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A variety of chroman-4-ones bearing phosphine oxide motifs were conveniently synthesized from readily available diphenylphos-

phine oxides and alkenyl aldehydes via a metal-free tandem phosphinoylation/cyclization protocol. The reaction utilizes K»S,0Og as

oxidant and proceeds in DMSO/H,O0 at environmentally benign conditions with a broad substrate scope and afforded the title com-

pounds in moderate yields.

Introduction

The chroman-4-one framework is a privileged structural motif
found in numerous natural products and pharmaceuticals with
extraordinary biological and pharmaceutical activities such as
anticancer activities and anti-HIV activity among others
(Figure 1) [1-3]. Therefore, the preparation of functionalized
chroman-4-one derivatives has attracted great attention of
experts and scientists in the field of organic synthesis and phar-
maceutical sciences over the last few years [1,4,5]. In general,
chroman-4-one derivatives could be obtained via a polarity
reversal strategy enabled by the N-heterocyclic carbene (NHC)-
catalyzed intramolecular Stetter reaction [6-8]. Besides,
chroman-4-one derivatives were also constructed via intramo-
lecular oxa-Michael additions of 2’-hydroxychalcones [9,10], or

through condensation cyclization reactions of o-hydroxyace-
tophenones with ketones/aldehydes [11,12], in addition to other
alternative transformations [13,14]. Moreover, radical cascade
cyclizations of o-allyloxybenzaldehydes by employing appro-
priate radical precursors through visible-light promoted systems
[15,16], transition-metal-catalyzed systems [17,18], or transi-
tion-metal-free systems [19,20], have emerged as a powerful
strategy for the synthesis of diversely functionalized chroman-
4-one derivatives.

Organophosphorus compounds are well-known for their medici-

nal, biological, or specific material-related properties and have

found wide applications in pharmaceutical chemistry, biochem-
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Figure 1: Biologically active compounds featuring the chroman-4-one framework.

istry, and materials science [21-26]. They represent also excel-
lent ligands for many metals and have been used in catalytic
systems for a huge number of organic reactions [21-26]. Due to
the importance of the chroman-4-one scaffold on one hand and
that of organophosphorus compounds on the other, the develop-
ment of concise and efficient approaches for the synthesis of
chroman-4-one derivatives decorated with phosphorus function-
alities [27,28], thus combining the characteristics of both com-
ponents in one molecule may find useful applications. However,
there are only few ways to prepare such compounds. For exam-
ple, in 2008 Rovis et al. [27] reported an intramolecular Stetter
reaction of alkenyl aldehydes to synthesize a series of phos-
phine oxide and phosphonate-functionalized chroman-4-ones.
Unfortunately, the preparation of the substrates involved a
Rh-catalyzed hydrophosphinylation of a protected functional
alkyne, and the subsequent deprotection with Hg(O,CCF3),,
which is not environmentally benign (Scheme 1a). Besides, in
2016 Li’s group [28] reported a silver-catalyzed straightfor-
ward approach for the synthesis of phosphonate-functionalized
chroman-4-ones via a phosphoryl radical-initiated cascade
cyclization of 2-(allyloxy)arylaldehydes using K,S,Og as an
oxidant, however, diphenylphosphine oxide (DPPO) was not
suitable for the transformation (Scheme 1b). So the develop-
ment of metal-free and greener methods to approach chroman-
4-ones bearing a phosphine oxide moiety is still highly desir-
able. Herein, we present a transition-metal-free radical cascade
cyclization to access the desired chroman-4-one derivatives in
one pot under environmentally benign conditions (Scheme 1c).

Results and Discussion

Motivated by the desire to develop a metal-free and environ-
mentally benign protocol for the construction of phosphine
oxide-functionalized chroman-4-ones, we focused on the
cascade cyclization employing 2-(allyloxy)benzaldehyde (1a)
and diphenylphosphine oxide (DPPO, 2a) as the model sub-
strates with K»S,0g as the oxidant, which is a cheap, readily

available, and versatile oxidant. On the basis of literature
reports [29,30] and our continuing interest in green chemistry
[31,32], we set the temperature at 70 °C based on the fact that
K»S,0g thermally decomposes forming sulfate radicals (SO4 ™)
[29,30], which may react with the substrates to furnish such a
cascade cyclization. To our delight, the anticipated product 3aa
was obtained in 42% yield in DMSO/H,O (4:1) as reaction me-
dium in one pot (Table 1, entry 1). The structure of 3aa was un-
ambiguously confirmed by X-ray diffraction analysis of a single
crystal (Figure 2) and by NMR spectroscopy (see Supporting
Information File 1) [33]. The increase of the amount of K»S,0g
to 3 equiv resulted in the improvement of the yield of 3aa to
52% (Table 1, entry 2). However, adjusting the amount of the
oxidant K»S,0g to 4 equiv (Table 1, entry 3) did not further
improve the yield. By further screening of a few solvents, such
as MeCN/H,0, DMF/H,0, DMA/H,0, dioxane/H,O, THF/
H,0, EtOH/H,0, DCE/H,0, and NMP/H,0, it turned out that
the highest yield was achieved in the DMSO/H,0 (4:1) system
(Table 1, entries 4—13). It is notable that product 3aa was not
observed at room temperature or in the absence of K,S,0s, in-
dicating that the reaction was mainly mediated by K,S,0Og
(Table 1, entries 14 and 15). Increasing the reaction tempera-
ture to 80 °C afforded better product yields as compared with
the reactions performed at either 70 °C or 90 °C (Table 1,
entries 2, 16, and 17). Then, various oxidants such as
(NHy4)2S,0g, Na;S,0g, TBHP (tert-butyl hydroperoxide),
DTBP (di-tert-butyl peroxide), and dioxygen were tested and
the results showed that K,S,0g exhibited the best efficiency
(Table 1, entries 18-22).

With the optimal reaction conditions in hand (Table 1, entry
16), we next explored the scope and generality of this protocol
using various 2-(allyloxy)arylaldehydes 1 for the reaction with
2a. As shown in Scheme 2, substrates 1 with a range of func-
tional groups, such as electron-donating groups Me- (1b and

1c), +-Bu- (1d and 1e), and electron-withdrawing groups Cl-
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(a) NHC-catalyzed Stetter reaction to access phosphonate-functionalized chroman-4-ones

1) RhBr( PPh
HP(O)

toluene 60 °C

R\II/R

RKJ\X

Hg(COQCF3

sd

45-62% yield

X =0, Sornone; R =Ph, OEt, OMe

NHC (20 mol %)
20 mol % KHMDS

toluene, 23 °C
65-99% vyield

(b) Ag-catalyzed/K,S,0g-mediated preparation of phosphonate-functionalized chroman-4-ones

H-P-OR
OR

X=0, NTs; R = alkyl

this work

AgSbFg (20 mol %)
KgSgOg (3 equiv)
DMSO, Ar, 35 °C

(c) K2S,0g-mediated preparation of phosphine oxide functionalized chroman-4-ones
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R + |
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X=0,NTs,n=1;X=CHj,,n=0

Scheme 1: Methods to produce phosphonate-substituted chroman-4-ones.

Table 1: Optimization of the reaction conditions.2

Entry Oxidant

K28203 (2.0 equiv)
K28203 (3.0 equiv)
K28203 (4.0 equiv)
K28203 (3.0 equiv)
KngOg (3.0 equiv)
KngOg (3.0 equiv)
KngOg (3.0 equiv)

N o oA W Nh =

K>S,0g (3 equiv) WM A

DMSO/H,0 4:1 > X )nAr

80 °C

9 oxidant
H—If—Ph

Ph solvent, temperature

2a
Solvent Temp. (°C)
DMSO/H50 (4:1 viv) 70
DMSO/H50 (4:1v/v) 70
DMSO/H50 (4:1v/v) 70
MeCN/H>0 (4:1 v/v) 70
DMF/H50 (4:1 viv) 70
DMA/H50 (4:1 v/iv) 70
dioxane/H,0 (4:1 v/v) 70

P
7 Ar

O
7
R']_I N /P\R
1 / R
X
F’\
RO OR
P//
~
Ar/ Ar
metal-free

environmentally benign
one step

gram-scale

~

P
ph Ph

3aa
Yield (%)°

42
52
50
32
24
21
trace
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Table 1: Optimization of the reaction conditions.? (continued)
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8 K2S20g (3.0 equiv) THF/H20 (4:1 viv) 70 trace
9 K2S50g (3.0 equiv) EtOH/H,0 (4:1 v/v) 70 trace
10 K2S20g (3.0 equiv) DCE/H20 (4:1 v/v) 70 trace
11 K2S50g (3.0 equiv) NMP/H20 (4:1 v/v) 70 18
12 K2S50g (3.0 equiv) DMSO/H20 (1:1 v/v) 70 32
13 K2S50g (3.0 equiv) DMSO/H20 (8:1 v/v) 70 44
14 - DMSO/H20 (4:1 v/v) 70 0

15 K2S50g (3.0 equiv) DMSO/H20 (4:1 v/v) rc 0

16 K2S20g (3.0 equiv) DMSO/H20 (4:1v/v) 80 58
17 K2S20g (3.0 equiv) DMSO/H20 (4:1v/v) 90 54
18 (NH4)2S20s (3.0 equiv) DMSO/H20 (4:1 v/v) 80 40
19 NasS20g (3.0 equiv) DMSO/H20 (4:1v/v) 80 50
20 DTBP (3.0 equiv) DMSO/H20 (4:1 v/v) 80 0

21 TBHP (3.0 equiv) DMSO/H20 (4:1 v/v) 80 0

22 (o)) DMSO/H20 (4:1 viv) 80 0

aReaction conditions: 1a (0.3 mmol, 1 equiv), 2a (1.5 equiv), solvent (v/v, 5 mL), N» atmosphere, 18 h. Plsolated yields. “Room temperature.

C4
CSs

Cce

Figure 2: X-ray structure of compound 3aa (CCDC 2002878).

(1f), Br- (1g), and F- (1h) were well tolerated in this transfor-
mation, providing the desired products 3aa—ha in 48-62%
yields. Furthermore, the transformation also proceeded with
naphthyl substrate 1i giving the desired product 3ia in 45%
yield. Notably, when the substrate was 2-allylbenzaldehyde
(1j), the protocol was also compatible affording the indanone
derivative 3ja with comparable yield. This outcome is of special
interest, because indanone derivatives are also privileged struc-
tural motifs found in numerous natural products and pharma-
ceuticals with extraordinary biological and pharmaceutical ac-
tivities [34,35]. However, no desired product (3ka) was ob-

tained when there was a nitro group in the substrate (1k). Then,

N-allyl-N-(2-formylphenyl)-4-methylbenzenesulfonamide (11)
was examined in the cascade cyclization and the desired prod-
ucts 3la, 3If were obtained in 44% and 40% yield.

Next, to further demonstrate the generality of this strategy, the
scope of different diphenylphosphine oxide 2 was examined as
shown in Scheme 3. Simple diphenylphosphine oxides, such as
2-Me-DPPO (2b), 4-Me-DPPO (2c¢), and 4--Bu-DPPO (2d)
furnished the corresponding products in good yields. Also
multisubstituted diarylphosphine oxides 2e and 2f were well
tolerated under these reaction conditions. Gratifyingly,

diphenylphosphine oxides bearing fluoro-substituents (2g)

1977



Beilstein J. Org. Chem. 2020, 16, 1974-1982.

0
0
A CHO Q K,S,05 (3 equiv) X .
Rl + H-P—Ph R—- ph Ph
e Ph DMSO/H,0 4:1, 80 °C Z )
1 2a 3
o)
o} 0
0
0 HsC 0 X pL
/P\Ph /P\Ph | PH Ph
Ph Ph Z>o
0 0
CHs
3aa, 58% 3ba, 62% 3ca, 55%
0 o) 0
P//O P//O Cl P//O
~ ~ ~
Ph PN pr N pr PN
o 0 0
3da, 48% 3ea, 56% 3fa, 52%
F
% P
~ X P.
ph N | b Ph
Br (0) =
3ga, 50% 3ha, 54%

3ja, 42%
O
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Scheme 2: Scope of 2-(allyloxy)arylaldehydes. Reaction conditions: 1 (0.3 mmol, 1 equiv), 2a (1.5 equiv) [2f for product 3If], DMSO/H>0 (4:1 v/v,

5 mL), K2S20g (3.0 equiv), N2 atmosphere, 18 h. Yields are isolated yields.

reacted smoothly furnishing the anticipated product 3ag in 58%
yield. Furthermore, 1-naphthyl-DPPO (2h) was also suitable for
this transformation, and afforded the expected product 3ah in
50% yield. The reaction between diethyl phosphonate (2j)
and 1a proceeded less efficiently under the conditions and
a low yield of 3aj was obtained. Dimethylphosphine oxide (2k)
did not participate in the reaction, likely due to its high
oxidation potential and poor ability to undergo tautomerization
[36].

To demonstrate the practicability of this methodology, a gram-

scale experiment was next performed, employing 1b and 2a as

substrates under the optimized conditions (Scheme 4). The reac-
tion afforded the desired product 3ba in a good yield of 56%,
and the structure was also confirmed by X-ray diffraction (see
Supporting Information File 1) [33].

To gain an insight into the reaction mechanism, we carried out
some control experiments (Scheme 5). When the reaction was
conducted in the presence of radical scavengers such as 2,2,6,6-
tetramethyl-1-piperidinyloxyl (TEMPO) and butylated hydroxy-
toluene (BHT), the reactions were completely shut down, which
indicated that the reaction proceeds through a radical pathway

[37-41]. Also, we successfully separated a small amount of by-
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Scheme 3: Scope of diphenylphosphine oxides. Reaction conditions: 1a (0.3 mmol, 1 equiv), 2 (1.5 equiv), DMSO/H»0 (4:1 v/v, 5 mL), KoS,0g
(3.0 equiv), N> atmosphere, 18 h. Yields are isolated yields.

0
CHO % K2S,0s (3 equiv) F;?
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Scheme 4: Gram-scale reaction.
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Scheme 5: Control experiments and proposed mechanism.

product 4 which was identified by NMR spectroscopy. These
experiments clearly support a phosphorus-centered radical reac-
tion pathway. It has been reported that phosphorus-centered
radicals could be generated from phosphine oxides in the pres-
ence of potassium persulfate [42-44]. Based on literature prece-
dent [29,30,42-46] and preliminary mechanistic experiments, a
plausible mechanism was proposed in Scheme 5 which was dif-
ferent from the predominant mechanism observed in the Ag-cat-
alyzed radical cascade for the preparation of phosphonate-func-
tionalized chroman-4-ones [28]. Initially, K;S,0Og thermally
decomposes to form sulfate radical anions (SO4°7) [29,30],
which react with diphenylphosphine oxide (DPPO, 2) to give
the phosphorus-centered radical I [42-44]. Then, the phos-
phorus centered radical I added to the C—C double bond of 1 to

generate a new carbon-centered radical II, with sequential

0
o N\ A 92> @\)fpzo
: —_— | "Ph

(0]

(Iv)

p?0  12HAT @/\on
| P ~— 1 >Ph
Ph refs. [45,46] o Ph

attack on the aldehyde group. The oxygen radical III thus
formed undergoes a formal 1,2-H shift to generate the benzyl
radical IV [45,46]. Finally, hydrogen abstraction by the sulfate
radical anion (SO4"7) from the benzyl radical IV affords the
final products 3 [45,46].

Conclusion

In summary, an environmentally benign and practical radical
cascade cyclization was developed to synthesize a series of
phosphonate-functionalized chroman-4-ones from 2-(allyl-
oxy)benzaldehydes and diphenylphosphine oxides. This
protocol proceeds under metal-free conditions and uses cheap
K»S,0g as oxidant with easy handling and a broad substrate
scope. The reaction proceeds through a radical phosphinoyla-

tion—cyclization via a tandem C-P and C—C-bond formation.
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Experimental procedures, spectroscopic and X-ray data and
copies of NMR spectra.
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