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The power of synthetic biology has enabled the expression of heterologous pathways in cells,

as well as genome-scale synthesis projects. The complexity of biological networks makes

rational de novo design a grand challenge. Introducing features that confer genetic flexibility

is a powerful strategy for downstream engineering. Here we develop an in vitro method of

DNA library construction based on structural variation to accomplish this goal. The “in vitro

SCRaMbLE system” uses Cre recombinase mixed in a test tube with purified DNA encoding

multiple loxPsym sites. Using a β-carotene pathway designed for expression in yeast as an

example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization

of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show

that our system provides a straightforward way to correlate phenotype and genotype and is

potentially amenable to biochemical optimization in ways that the in vivo system cannot

achieve.
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W ith the rapid development of DNA synthesis and
assembly technologies, there is an emerging use of
synthetic DNA for de novo design and construction of

heterologous pathways and synthetic genomes1,2. However, with
increasing biological complexity and the number of genes in the
designed system, a major challenge lies in the “debugging” pro-
cess to ensure that synthetic DNA carries out the intended
“designer” function(s)3–5.

Cre/loxP is a widely used site-specific DNA recombination
system derived from bacteriophage P1. Cre recombinase catalyzes
a site-specific recombination reaction between two loxP sites and
does not require accessory factors6. The loxP site is 34 bp in
length, consisting of two 13 bp inverted repeats separated by an 8
bp asymmetric spacer sequence. The Cre/loxP system can be used
to generate deletions, inversions, insertions (transpositions), or
translocations depending on the orientation and location of loxP
sites specified in a given system7. The simplicity of the Cre/loxP
system has led to its use in both in vivo and in vitro applications.
Previous in vivo applications include targeted gene knock-out,
gene replacement and more8,9, and in vitro applications comprise
high-throughput DNA cloning and adenoviral vector construc-
tion10,11. The general goal of most existing Cre/loxP applications
is to recover a single recombination event at defined positions.

If loxP sites encode a symmetric spacer region (loxPsym),
rearrangements are orientation-independent and DNA fragments
between two loxPsym sites should undergo deletions or inver-
sions with equal frequency12,13. The in vivo Synthetic Chromo-
some Rearrangement and Modification by LoxPsym-mediated
Evolution (SCRaMbLE) system, built into synthetic yeast chro-
mosomes, has been demonstrated to generate stochastic diversity
in chromosome structure, including deletions, duplications,
inversions, insertions (transpositions), or translocations in syn-
thetic chromosomes synIII and synIXR13–17. In this system, the
Cre recombinase is introduced into Sc2.0 cells genetically and
controlled both transcriptionally and chemically14,15.

Here, we report an in vitro SCRaMbLE system, driven by
recombinant Cre recombinase mixed together in a test tube with
purified DNA encoding loxPsym sites. We demonstrate two
strategies using the in vitro SCRaMbLE system for pathway
engineering and optimization. The top-down method specifies
use of a single DNA construct encoding multiple loxPsym sites
and the generation of a library of SCRaMbLEd DNA. The
bottom-up system consists of an “acceptor vector” with a pool of
donor fragments flanked by loxPsym sites. With the addition of
Cre recombinase to the reaction, donor fragments are randomly
inserted into the acceptor vector to produce a pool of diverse
constructs which add one or more donor constructs to the base
pathway. The products of both in vitro SCRaMbLE strategies can
be transferred to a host strain directly for phenotype testing and
genotyping of individual SCRaMbLE derivatives. Using the
β-carotene pathway in yeast as an example, we demonstrate how
these two in vitro SCRaMbLE strategies can be used for library
construction and pathway optimization. Our results indicate that
in vitro SCRaMbLE is a unique and straightforward method for
generating DNA libraries, and is potentially amenable to bio-
chemical optimization in ways not achievable in vivo.

Results
Top-down in vitro SCRaMbLE. The “top-down” in vitro
SCRaMbLE system specifies use of purified Cre recombinase for
rearrangement-based optimization of DNA constructs encoding
multiple loxPsym sites. The loxPsym sites flank “transcription
unit” (TU) sequences, the unit to be SCRaMbLEd in the system.
In the presence of Cre recombinase, TUs will be randomly
deleted, inverted or duplicated mediated by Cre/loxPsym

reactions. Following transformation of the population of
SCRaMbLEd molecules into cells, resultant phenotypes and
genotypes can be evaluated and linked (Fig. 1a).

To test the “chemical” feasibility of top-down in vitro
SCRaMbLE, 10 loxPsym sites were evenly distributed across a
5 kb piece of DNA and assembled into a plasmid (pYW0261) by
overlap polymerase chain reaction (PCR) (Fig. 1b). After a one
hour incubation with Cre recombinase, the DNA library was
transformed into Escherichia coli to more easily visualize
products. To test the diversity of recovered sequences, a pool of
SCRaMbLEd plasmids was extracted and then linearized for gel
electrophoresis. Nine individual bands were observed, corre-
sponding to the expected sizes for deletions between variously
spaced loxPsym sites (Fig. 1c). This is consistent with no obvious
preference of recombination between loxPsym sites in the system
of in vitro SCRaMbLE. We observed similar results using
constructs with 10 loxPsym sites spaced 100 and 1000 bp apart
(Supplementary Fig. 1).

To biologically test the system, we performed an in vitro
SCRaMbLE experiment with a yeast/E. coli centromeric shuttle
vector (pLM495) encoding four β-carotene pathway TUs flanked
by five loxPsym sites (Fig. 1d). In this pathway, three
carotenogenic genes were sourced from the carotenoid-
producing fungus Xanthophyllomyces dendrorhous (crtE, crtI,
crtYB)18 and a truncated HMG1 gene was derived from
Saccharomyces cerevisiae. Different promoters and terminators
were selected from the S. cerevisiae genome to drive expression of
each pathway gene19. In vitro SCRaMbLE with Cre recombinase
was performed on the purified plasmid for one hour and the
products were transformed to E. coli for genotypic testing. DNA
purified from E. coli was subjected to digestion and pulsed-field
gel analysis, which revealed diverse deletion events for
SCRaMbLEd pLM495 (Supplementary Fig. 2). Subsets of
plasmids bearing deletions of varied length were isolated and
evaluated by gel electrophoresis. To further determine the
efficiency of deletions and inversions, we performed PCR analysis
of individual E. coli colonies. A total of 300 colonies were
randomly picked and analyzed by PCR within individual genes to
evaluate deletion frequency. Approximately 27% of the colonies
carried at least one deletion event (Supplementary Fig. 3).
Another 100 colonies were picked and analyzed by PCR using
primers spanning loxPsym sites to evaluate inversion frequency;
colonies showing existence of individual genes by PCR but
absence of junction regions are inferred to have undergone
inversion events. Approximately 28% of the colonies had
evidence of inversion events (Supplementary Fig. 4). This result
of roughly equal efficiency of deletion and inversion for in vitro
SCRaMbLE system is consistent with a previous report for Cre/
loxPsym in vivo12,13. To test whether the efficiency of in vitro
SCRaMbLE was related to the number of loxPsym sites in the
substrate DNA, we counted and compared deletion frequencies of
in vitro SCRaMbLEd pLM495 or synIXR-BAC, a previously de
novo synthesized ~100 kb BAC which encodes 43 loxPsym sites
(Supplementary Fig. 5a)14. Using PCRTag analysis14 we observed
deletions of DNA segments after in vitro SCRaMbLE (Supple-
mentary Fig. 5b). A total of 46 synIXR-BAC colonies were
randomly picked for this analysis, which was carried out by real
time PCR20 (Supplementary Fig. 5c). The deletion frequency for
the synIXR-BAC was ~70%, which is higher than with the five
loxPsym site plasmid pLM495 (Supplementary Fig. 5d). This
suggests that the number of recombination events is positively
correlated with loxPsym site number.

We used a single molecule real time sequencing method
(Pacific BioSystems SMRT; PacBio) to analyze the diversity of
the SCRaMbLEd library recovered from E. coli. PacBio enables
PCR-free long read sequencing, which is appropriate to identify
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structural variation in the DNA library. With only four genes in
pLM495, a total of 94 unique constructs were detected in the
SCRaMbLEd pool (Fig. 1e). Recombination between multiple
loxPsym sites resulted in deletions, inversions, duplications, and
other complex combinational events. Considering the limited
read depth and low probability of longer DNA reads, we believe
that the diversity of SCRaMbLEd molecules is even higher than
observed in this experiment.

The SCRaMbLEd product of pLM495 was also directly
transformed into S. cerevisiae for phenotypic testing. β-carotene
production in yeast cells yields yellow colonies, and other
pathway intermediates such as lycopene produce other colors18.
After in vitro SCRaMbLE of pLM495, we saw various colony
colors on the yeast transformation plate, including white, yellow,

and deep yellow (Fig. 1f). A total of 100 yeast colonies with varied
colors were picked randomly and the plasmids were recovered
into E. coli for PCR analysis and DNA sequencing. Here we
identified 17 unique β-carotene pathway structures that included
deletion, inversion, and duplication events (Fig. 2 and Supple-
mentary Fig. 6). Yeast cells carrying the 17 unique constructs
were tested for β-carotene production using high-performance
liquid chromatography (HPLC) (Fig. 2 and Supplementary
Fig. 7a). The white yeast strains yYW0408, yYW0213,
yYW0410, yYW0411, and yYW0409 lost production of
β-carotene due to carotenoid gene deletions. The strains
yYW0212, yYW0400, yYW0398, and yYW0399 increased the
production of β-carotene with a 3.5–5.1 fold-change, likely the
consequence of duplication of crtI gene. This result is consistent
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Fig. 1 Top-down in vitro SCRaMbLE. a Schematic of top-down in vitro SCRaMbLE. Green diamonds represent the 34 bp loxPsym site. b Sequence
comparison between loxPsym and loxP sites. c Gel electrophoresis analysis of an in vitro SCRaMbLEd library. The parental construct encoded 10 loxPsym
sites with an inter-site distance of 500 bp. Material for linearization with NotI was extracted from a pool of E. coli colonies carrying the SCRaMbLEd DNA.
d Map of pLM495. LoxPsym sites flank the β-carotene pathway genes crtE, crtI, crtYB, and tHMG1. Transcription units for these genes are pTIP1-crtE-tACS2,
pPGK1-crtI-tASC1, pTDH3-crtYB-tCIT1, pZEO1-tHMG1-tACS2. e A total of 94 unique pathway structures were determined by PacBio sequencing of a
SCRaMbLEd pLM495 library. f Yeast colonies transformed with in vitro SCRaMbLEd pLM495. The magnified region shows different colony colors,
consistent with production of colored carotenoid intermediates. Synthetic complete medium lacking uracil (SC–Ura) medium was used to select
transformants
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with a previous report showing an additional copy of crtI in yeast
leads to the production of higher levels of β-carotene18.
Interestingly, we found that inversion of crtI in strains
yYW0401, yYW0405, and yYW0396 also correlated with higher
β-carotene production. We evaluated mRNA and DNA level by
qPCR analysis of individual genes within the pathway in these
strains (Supplementary Fig. 8). The results showed increased crtI
mRNA levels in the strains yYW0405 and yYW0396 and no
obvious changes in the DNA level. This supports the conclusion
that crtI, encoding a phytoene desaturase, catalyzes the rate-
limiting step of this heterologous β-carotene pathway in S.
cerevisiae. Of all the tested strains, yYW0399 yielded 1.7 μg per
mg (dry weight) production of β-carotene, corresponding to a
5.1-fold increase in yield compared to the original construct.

Distinct from traditional mutagenesis, which largely targets the
base pair level, in vitro SCRaMbLE provides a simple strategy to
mutagenize DNA at the level of structural variation. We
compared in vitro SCRaMbLE to two conventional methods for
generating libraries, random mutagenesis with error-prone PCR,
and atmospheric and room temperature plasma (ARTP)21,22. A
randomized mutation library of the crtI gene in pLM495 was
generated with a mutation rate of ~5–10 bp per kb. The
randomized library was transformed into S. cerevisiae for
phenotypic testing. A total of 16 colonies with varied color were
screened from 1611 colonies on the plate and then subjected to
β-carotene measurements (Supplementary Fig. 9a). Two strains
(yYW0429 and yYW0439) showed increased production of
β-carotene with 3.1 and 2.4 fold-changes. Of course, these

colonies are also predicted to contain ~10,000 new SNPs, any of
which might be deleterious to the production of β-carotene in
unanticipated ways. For ARTP, a total of 17 colonies with varied
color were screened from 2353 colonies after exposing yeast strain
yYW0257 to ARTP jet for 10 and 20 s. Among these,
yYW0420 showed a 3.9 fold-change compared with the initial
strain (Supplementary Fig. 9b). For the random mutagenesis
method, there were many white colored colonies generated
indicating a high rate of negative mutation. For ARTP, a lot of
treated cells were dead and most of the residual colonies showed
unchanged color, indicating a low mutation rate. These results
indicated better performance of in vitro SCRaMbLE over two
other methods to improve β-carotene production.

Bottom-up in vitro SCRaMbLE. “Bottom-up” in vitro SCRaM-
bLE starts with a centromeric acceptor vector and a series of
“donor fragments”; the basic goal here is to evaluate a series of
candidate genes (represented as “donor fragments”) for their
ability to boost production of the core pathway (resident in the
chromosome in a non-SCRaMbLEable format) (Fig. 3a). The
donor fragments can consist of the main pathway genes them-
selves, other genes from the host that produce starting metabo-
lites, or any candidate gene that may positively impact on
pathway flux. There are two ways to use the bottom-up system,
based on how the selectable markers are exploited. In the first
version, (left panel, Fig. 3a), the acceptor vector has two loxPsym
sites. The donor fragments are generated from a universal vector,
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Fig. 2 Genotype–phenotype analysis of top-down in vitro SCRaMbLEd strains. The colony pictures were taken after 3 days incubation on SC–Ura medium.
Strains derive from the experiment in Fig. 1f. The pathway structures of 17 SCRaMbLEd strains were verified by PCR analysis (Supplementary Fig. 6) and
Sanger sequencing of the recovered yeast plasmids. The production of β-carotene was determined by high-performance liquid chromatography (HPLC)
(Supplementary Fig. 7). Error bars represent standard deviation from three replicates
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which is an E. coli-based plasmid enabled for yeast Golden Gate
assembly and red/white E. coli colony screening23. The donor
fragments each encode a URA3 gene as a positively selectable
marker; yeast transformants that are His+ Ura+ are guaranteed to
have picked up at least one donor fragment during the in vitro
recombination reaction. In the second version, (right panel,
Fig. 3a), the acceptor vector encodes a single loxPsym site,
inserted in the URA3 coding sequence by adding two base pairs

(TG) to the 3′ end of the 34 bp loxPsym site, resulting in an in-
frame insertion of 36 bp (Supplementary Fig. 10). A functional
Ura3 protein is produced, enabling selection on medium lacking
uracil for the parental vector. Recombination of one or more
donor fragments into this site physically separates the URA3
promoter and ATG codon from the coding sequence, enabling
negative selection on 5-fluoroorotic acid (5-FOA) medium24.
Here the donor fragments can be directly amplified by PCR with
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(U). b Overview of the carotenoid biosynthetic pathway in S. cerevisiae. Genes shown in black are endogenous to S. cerevisiae. Genes shown in red are non-
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A total of 100 yeast colonies for each group were tested using long fragment PCR and restriction enzyme digestion of recovered plasmids
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primers encoding terminal loxPsym sites. The bottom-up in vitro
SCRaMbLE reaction consists of a pool of donor fragments, the
acceptor vector, and Cre recombinase. The donor fragments can
be heterologous or endogenous transcription units. When the
in vitro SCRaMbLEd pool of DNA molecules is transformed to an
appropriately engineered host strain with a resident
“unSCRaMbLEable” pathway, the addition of one or more can-
didate TUs will add new genes, and those that augment pathway
production can be selected by looking for enhanced color.

Using the β-carotene pathway as an example, we first
converted the pathway genes (crtI, crtE, and crtYB) to the
unSCRaMbLEable format (no lox sites) and integrated them into

the CAN1 locus (Fig. 3b). We generated seven candidate donor
TUs fragments from the mevalonate pathway (ERG10, ERG13,
ERG12, ERG8, MVD1, ERG20, and BTS1) and four candidate
donor TUs fragments from the exogenous pathway (crtI, crtE,
crtYB, and tHMG1) as candidates for bottom-up SCRaMbLE.
Using the strategy in the left panel of Fig. 3a, three SCRaMbLEd
TU pools (endogenous TUs, exogenous TUs, and all TUs) were
transformed into a yeast strain yYW0301 encoding the resident,
unSCRaMbLEable β-carotene pathway. After incubation for
3 days at 30 °C, brighter yellow to orange colonies grew only
on selective plates carrying SCRaMbLEd exogenous TU pools.
There were no distinct color variants on plates with the
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Fig. 4 Bottom-up in vitro SCRaMbLE for β-carotene pathway optimization. a Phenotype–genotype correlation of the β-carotene pathway after bottom-up
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SCRaMbLEd endogenous TU pool (Fig. 3c), suggesting that
varying the copy number of genes in the endogenous mevalonate
pathway has no major impact on β-carotene pathway productiv-
ity, based on visual inspection.

To test the insertion efficiency for the first version of bottom-
up SCRaMbLE, we performed the in vitro Cre reaction with
different ratios of acceptor vector and donor fragments. Reaction
products were evaluated after transformation into yeast. Most of
the SCRaMbLEd yeast strains (70–85%) carried a single insertion.
Increasing the donor fragment: acceptor vector ratio by ten-fold
nearly doubled the number of times we observed two or more
insertion events, from 12% to ~20% (Fig. 3d). In fact, we were
able to assemble the entire four-gene beta carotene pathway in a
single bottom-up in vitro SCRaMbLE experiment using this
strategy (Supplementary Fig. 11).

Single colonies of diverse colors and intensity were randomly
streaked out to interrogate the inheritance of color formation.
After yeast colony PCR analysis with TU specific primers in 100
randomly picked colonies, 17 strains showed diverse SCRaMbLEd
structures (Supplementary Fig. 12). To verify colony color was
dependent on SCRaMbLEd plasmids, the yeast plasmids were
recovered into E. coli and then re-transformed into the parental
yeast strain yYW0246. All re-transformed strains developed the
identical colony color compared with original SCRaMbLEd
isolates (Fig. 4a). Yeast colonies with diverse pathway structure
were analyzed for production of β-carotene and lycopene,
determined by HPLC (Fig. 4b).

Phenotype–genotype correlation of β-carotene pathway indi-
cated that an additional copy of crtI gene led to a deep orange
colony color and increased production of β-carotene (compare
strains yYW0306 with yYW0339, Fig. 4). On the other hand,
strain yYW0338 with two additional copies of the crtI gene did
not increase production of β-carotene beyond that observed in
yYW0306, indicating one additional copy of crtI is sufficient to
optimize the β-carotene pathway. An additional copy of tHMG1
can make the colony color bright yellow (yYW0303, yYW0320,
yYW0322) and produces an HPLC profile very similar to that of
purified β-carotene (Supplementary Fig. 13). Interestingly, an
additional copy of crtYB can make the colony color deep yellow
(yYW0304, yYW0319) but in this case two unknown peaks
appeared after the peak of β-carotene, which are presumably
caused by production of other carotenoids19 (Supplementary
Fig. 13).

In the first version of bottom-up SCRaMbLE, because each
donor fragment encodes a URA3 gene, it can lead to instability in
constructs with multiple TUs incorporated. We performed an
experiment to test the stability of in vitro SCRaMbLEd constructs
carrying two and three TUs, yeast strains yYW0320 and
yYW0322, respectively. After continuous passage for 100
generations, we identified instances of recombination, 1/159 for
yYW0322 and 5/120 for yYW0320 (Supplementary Fig. 14). This
is obviously undesirable for any kind of production application.
This problem is circumvented with the second version of bottom-
up in vitro SCRaMbLE (Fig. 3a, right panel), which yields
recombined products lacking direct repeats and additionally
enables counter-selection to remove background unmodified
acceptor vector.

Discussion
With the rapid development of DNA synthesis and assembly
technology, there are a growing number of researchers using
synthetic DNA for de novo design and construction of hetero-
logous pathways and synthetic genomes. Inserting 34 bp loxPsym
sites in the 3′untranslated region (UTR) of nonessential genes in
synthetic yeast chromosomes or at the boundary of transcription

units has shown no detectable impact on the expression of
neighboring genes3,25,26. The addition of loxPsym sites provides
genetic flexibility and enables chromosome or pathway rearran-
gements mediated by Cre recombinase13,27.

In this study, we demonstrated top-down in vitro SCRaMbLE
for construction of pathway structural variation library as applied
to pathway flux optimization. Compared with other in vitro
recombination methods, which mainly focus on single recombi-
nation events28–30, the top-down in vitro SCRaMbLE system
achieves combinatorial rearrangements precisely between care-
fully placed loxPsym sites to yield complex new genetic archi-
tecture in a loxPsym-enabled pathway or chromosome. Unlike
random mutagenesis, the SCRaMbLE system uses functional
modularity as the basic building block of variation, via copy
number variation, as well as changes to TU order and orientation.
The diversity of the SCRaMbLEd DNA pool partly relies on the
number of loxPsym sites in the initial construct. The more
building blocks that are involved, the more diverse the resulting
SCRaMbLEd pool. The top-down in vitro SCRaMbLE system is a
convenient way to generate combinatorial diversity of DNA
constructs with no need for selectable markers.

The SCRaMbLE system promotes deletion, inversion, and
duplication events, making it an interesting tool for studying
evolution, in particular duplication events could readily lead to a
gain of function31. In our 100 kb synIXR-BAC in vitro SCRaM-
bLE experiment, >70% of transformed E. coli cells showed new
combinatorial structures (Supplementary Fig. 5d). However,
because the Cre recombinase reaction goes to equilibrium, the
frequency of cells carrying SCRaMbLEd sequences may be lower
when there are fewer loxPsym sites in the initial constructs. Using
a yeast centromere plasmid encoding the β-carotene pathway
genes as an example, we demonstrate the in vitro SCRaMbLE
system can be used to optimize biosynthetic pathway flux via
rearrangement of pathway TUs. The production of β-carotene in
yeast can be increased by duplication and inversion of crtI gene in
the constructed pathway18 (Fig. 2). The top-down in vitro
SCRaMbLE method provides a high throughput way to recon-
struct pathway structures. This is particularly useful to study
genetic networks and gene interactions.

To circumvent the need to assemble a multi-TU pathway
encoding loxPsym sites for top-down in vitro SCRaMbLE, we
developed bottom-up in vitro SCRaMbLE. Using the β-carotene
pathway as an example, we observed that the recombined DNA
pool yielded diverse carotenoid production in yeast. The pro-
duction of β-carotene was increased and fewer carotenoid inter-
mediates were observed with additional copies of the crtI and
tHMG1 genes. For strategy 1 (URA3 marker in the donor frag-
ments), we observed insertion of two or three donor fragments
into the acceptor vector with a > 10% frequency. This ratio was
increased (up to ~20%) by increasing the mole ratio of donor
fragments to acceptor vector.

Together, the top-down and bottom-up in vitro SCRaMbLE
systems provide an efficient strategy to generate rearranged and
optimized genetic structures. We have demonstrated that in vitro
SCRaMbLE has several advantages over the in vivo method. 1) In
vitro SCRaMbLE is highly controllable as compared to the in vivo
reaction; while the in vitro reaction can be stopped by heat
inactivation, leaky Cre activity in vivo is a known problem and
can lead to pathway and genome instability13,14. 2) One can
isolate sub-libraries with varied numbers of deleted building
blocks by gel purification of digested SCRaMbLEd pools (Sup-
plementary Fig. 2). Here the efficiency of in vitro SCRaMbLE
could be further optimized by identifying loss of a restriction
enzyme cut site in the SCRaMbLEd construct (Supplementary
Fig. 15). 3) In vitro SCRaMbLE reactions reach equilibrium in 10
min and are stable for 16 h (Supplementary Fig. 16), whereas the
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in vivo reaction depends on ongoing expression of Cre recom-
binase. Deletion events accumulate with longer SCRaMbLE
time, which can lead to reduced library complexity. 4) The
phenotype–genotype analysis of in vitro SCRaMbLE is easier and
more straightforward than in vivo because of less noise from the
genome of host strains. 5) The in vitro SCRaMbLEd pool can be
transformed into different host strains, further expanding the
applicability of this method.

Methods
Strains and plasmids. These are described in Supplementary Tables 1 and 2.

Construction of loxPsym site plasmids. The pathway encoded in pLM495 was
initially assembled using VEGAS (versatile genetic assembly system)19, and loxP-
sym sites were subsequently introduced between each pathway gene through PCR
reactions using primers that introduced loxPsym sites and terminal, inward
pointing BsaI sites. pLM495 was then assembled by Golden Gate. The ~100 kb
synIXR-BAC was previously described14. pYW0261 was assembled from 500 bp
sectional sequences randomly chosen from β-carotene pathway genes (BTS1, crtE,
crtI, crtYB, ERG8, ERG10, ERG12, ERG13, and ERG20), respectively, and inter-
spersed with loxPsym sites.

Construction of acceptor vector and donor fragments. Acceptor vector
pYW0113 is a yeast centromere plasmid with a HIS3 gene as auxotrophic marker
and a red fluorescent protein (RFP) gene flanked by two loxPsym sites. Donor
universal vector pYW0120 was assembled using stepwise PCR to introduce “NotI-
loxPsym-BsaI-RFP-BsaI-URA-loxPsym-NotI” structure to a high copy E. coli
plasmid backbone. The donor transcription units were amplified with primers that
introduced terminal BsaI restriction sites, which were subsequently assembled into
the universal vector pYW0120 by Golden Gate assembly. All donor fragments “TU
+URA” were obtained by NotI digestion followed by gel purification.

synIXR-BAC isolation. synIXR-BAC DNA was prepared using standard alkaline
lysis and ethanol techniques32.

In vitro SCRaMbLE. The Cre recombinase reaction was set up as per the manu-
facturer’s instructions (NEB, M0298L) and incubated at 37 °C for 1 h. The Cre
enzyme was heat inactivated for 10 min at 70 °C. For top-down in vitro SCRaM-
bLE, 100 ng of DNA was added in a total reaction volume of 10 μl with 1 μl of Cre
recombinase. For bottom-up in vitro SCRaMbLE, 200 ng acceptor vector was
mixed with the donor fragments pool (1000 ng in total) in a reaction volume of 50
μl with 1 μl of high concentration Cre recombinase (NEB, M0298M). Both
SCRaMbLEd pools were transformed to hosts for genotype and phenotype testing.
For bottom-up in vitro SCRaMbLE, SC–Ura–His medium or SC–His+ 5-FOA
medium are used to select for recombined constructs, depending whether the first
or second version is used.

Yeast plasmid recovery. SCRaMbLEd plasmids were recovered from yeast using
the following method. A volume of 1.5 ml overnight cultured yeast cells were
collected and resuspended in 250 μl of P1 (Qiagen) with 10 mg per ml RNase and
200 μl glass beads followed by shaking for 10 mins to mechanically break open the
cells. Then plasmids were isolated using with the standard alkaline lysis and a
Qiagen miniprep spin column to isolate the DNA. The plasmids were eluted with
30 μl of elution buffer. 15 μl of the elution was transformed to 100 μl of E. coli
competent cells.

Plasmid structure determination. Methods to analyze recovered plasmids
included restriction digestion analysis, PCR analysis with gene specific primers,
Sanger sequencing, and PacBio sequencing. The top-down SCRaMbLEd plasmid
pYW0108 with duplicated genes was initially analyzed using restriction digestion
and then sent for PacBio sequencing. Other top-down SCRaMbLEd plasmids were
initially analyzed using restriction digestion and subsequently analyzed using a
primer walking sequencing method. All bottom-up SCRaMbLEd plasmids were
initially analyzed by restriction digestion to check the number of insertions and
PCR analysis to identify the inserted gene. Primer walking sequencing was applied
to verify all the recovered bottom-up SCRaMbLEd plasmids.

ARTP of yeast strains. The yeast strain yYW0257 with OD600 value at 2 was
selected to undergo ARTP. The RF power input was set to 120W and the tem-
perature of the plasma jet was set to 25–35 °C. Ten microlitres of the cell culture
was dipped onto the stainless steel minidisc and then exposed to ARTP jet for 0 s
(control), 10 s, 20 s, 30 s, respectively. Then the treated yeast cells were diluted in
the selective medium. This was done on ARTP-II device from Wuxi Research
Institute of Applied Technologies (Wuxi, China).

PacBio sequencing of SCRaMbLEd library. The analyzed library was derived
from a DNA pool of in vitro SCRaMbLEd pLM495 by linearizing with NotI and
SalI. The library was sequenced on an RSII sequencer from Pacific Biosystems
(Menlo Park, CA, USA). The alignment was performed with software BLAST.

HPLC measurement of carotenoid production. SCRaMbLEd yeast strains and
control yeast strains were cultured in 5 ml of SC–Ura liquid medium at 250 r.p.m.,
30 °C in a shaking incubator. The saturated cultures were diluted to an initial
OD600 of 0.1 in 50 ml of SC–Ura liquid medium and grown for 48 h with the same
condition. An aliquot of the culture was centrifuged for 5 min at 4000 g. Cells were
resuspended in 1 ml of 3 M HCl. The resuspended cells were heated in a boiled
water bath for 3 min, and then cooled in an ice-bath for 3 min, repeating twice. Cell
pellets were then washed twice with double-distilled water and harvested by cen-
trifugation. After removal of the supernatant, the cells were resuspended in 1 ml
acetone and vortexed for 10 min. The acetone extracts were centrifuged and filtered
with a 0.22 μm filter for subsequent analysis. A portion of each sample was har-
vested and dried at 70 °C for measurement of the dry cell weight. The analysis of
carotenoids was performed by HPLC (Waters 2695) equipped with SUPELCO C18
column (33 cm × 4.6 mm) and UV detection at 450 nm and 470 nm. The mobile
phase consisted of acetonitrile-methanol-dichloromethane (18:90:2 v/v) with a flow
rate of 0.3 ml per min at 25 °C. The content of the carotenoids was expressed as µg
per mg dry cell weight . Each samples were performed on technical triplicates.

Data availability. The PacBio sequencing data has been deposited at BIG Data
Center (http://bigd.big.ac.cn/) with accession code ‘CRA000752’.
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