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Purposes: We report the experimental use of completely autologous biomaterials

(Biosheets) made by “in-body tissue architecture” that could resolve problems in artificial

materials and autologous pericardium. Here, Biosheets were implanted into full-thickness

right ventricular outflow tract defects in a rat model. Their feasibility as a reparative

material for cardiac defects was evaluated.

Methods: As the evaluation of mechanical properties of the biosheets, the elastic

moduli of the biosheets and RVOT-free walls of rats were examined using a tensile tester.

Biosheets and expanded polytetrafluoroethylene sheet were used to repair transmural

defects surgically created in the right ventricular outflow tracts of adult rat hearts (n = 9,

each patch group). At 4 and 12 weeks after the operation, the hearts were resected and

histologically examined.

Results: The strength and elastic moduli of the biosheets were 421.3 ± 140.7 g and

2919 ± 728.9 kPa, respectively, which were significantly higher than those of the native

RVOT-free walls (93.5 ± 26.2 g and 778.6 ± 137.7 kPa, respectively; P < 0.005 and

P < 0.001, respectively). All patches were successfully implanted into the right ventricular

outflow tract-free wall of rats. Dense fibrous adhesions to the sternum on the epicardial

surface were also observed in 7 of 9 rats with ePTFE grafts, whereas 2 of 9 rats with

biosheets. Histologically, the vascular-constructing cells were infiltrated into Biosheets.

The luminal surfaces were completely endothelialized in all groups at each time point.

There was also no accumulation of inflammatory cells.

Conclusions: Biosheets can be formed easily and have sufficient strength and good

biocompatibility as a patch for right ventricular outflow tract repair in rats. Therefore,

Biosheet may be a suitable material for reconstructive surgery of the right ventricular

outflow tract.

Keywords: in-body tissue architecture, congenital heart defect, rat model, tissue engineering, autologous tissue

membrane
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INTRODUCTION

Approximately 0.3% of infants require corrective surgery for
congenital heart defects (CHDs) within their first year of life
(1). Synthetic or animal tissue-based materials, such as expanded
polytetrafluoroethylene (ePTFE), polyethylene terephthalate,
or glutaraldehyde-treated xenopericardium, have been widely
used as patch materials for repairing CHD. However, these
materials have several drawbacks. First, they are associated with
rejection, stenosis, aneurysm formation, and calcification (2–
6). Moreover, because these materials are nonliving, they do
not grow, and remodeling cannot occur. Although autologous
pericardium shows good potential as a patch for repairing CHD,
it cannot be used for multiple cardiac surgeries because of
size limitations.

We have previously developed autologous prosthetic tissues
using “in-body tissue architecture (IBTA)” technology, a novel
and practical approach for regenerative medicine based on
the tissue encapsulation phenomenon of foreign materials
in living bodies (7). This technology involves the use of
living bodies as a reactor and does not require expensive
facilities or complicated manipulations. We have reported
the construction of completely autologous tissues, such as
tri-leaflet heart valves (i.e., biovalves) (8–24), vascular grafts
(i.e., biotubes) (25–35), and membranous tissues (i.e., biosheets)
(36–41), using this technology. Tissue prostheses prepared
using the IBTA technology were reconstructed based on the
recipient tissues after implantation. For example, biotubes
implanted into the native aorta in rat and rabbit models
were reconstructed into vascular tissues and were completely
endothelialized, with multiple layers of smooth muscle cells

and dense collagen fibers exhibiting a regular, circumferential

orientation (25, 30, 31). The random orientation of collagen
fibrils in the original biosheets, which were implanted in

the rabbit corneal stroma, tended to be homogeneous,
similar to that of the native stroma (41). Therefore, tissue
prostheses prepared using the IBTA technology may represents
alternative biomaterials with high potential to overcome the

abovementioned problems encountered with synthetic or animal
tissue-based materials.

Tissue prostheses can be fabricated in various shapes and

sizes to suit the needs of individual recipients. In contrast to
autologous pericardium, biosheets can be used as patches for

multiple reconstructive cardiac surgeries. Additionally, biotubes

and biovalves have sufficient strength to withstand arterial
pressure over 1,000 mmHg and have been successfully implanted

as cardiovascular replacements without rupture. However, the

capacity for the application of biosheets in the repair of CHDs
is unknown.

This study aimed to assess the potential of biosheets as a
reparative material for cardiac defects. We partially resected
the right ventricular outflow tract (RVOT) of adult rats and
repaired the defect using either biosheets or ePTFE sheets
(control). The patches were examined histologically over a
12-week period.

MATERIALS AND METHODS

Animal Studies
Wistar rats (n = 18, approximately 300–350 g) were used in this
study performed at the National Cerebral and Cardiovascular
Center Research Institute. All animals received care according
to the Principles of Laboratory Animal Care. All animal
studies were performed in accordance with the Guide for
the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH Publication No.
85-23, revised 1996) under a protocol approved by the
National Cerebral and Cardiovascular Center Research Institute
Committee (No. 13034).

Preparation of Biosheets
Acryl plates (25mm × 25mm × 2mm) were prepared using a
3D printer (CONNEX 260, Objet, Rehovot, Israel; Figure 1A).
Anesthesia was induced and maintained by isoflurane inhalation,
and a 3-cm incision was made in the shaved dorsal skin of
anesthetized rats. A plate was placed in the dorsal subcutaneous
pouch. After 4 weeks, the implants encapsulated with connective
tissues were harvested under isoflurane anesthesia (Figure 1B).
Biosheets were obtained as connective tissue membranes
after removing the plates (Figure 1C). Circular biosheets
with a diameter of 6mm for implantation were obtained
by cutting them with a biopsy punch (Figures 1D,E). The
remaining tissues were used for histological evaluations and
mechanical tests.

Mechanical Properties
The elastic moduli of the biosheets and RVOT-free walls of
rats were examined using a tensile tester (P&M, Fukushima,
Japan) by using the same method as previously reported
(35). Tissue specimens (10mm × 10mm) were tested under
humid conditions. The load was recorded until the samples
ruptured, with a tissue extension rate of 0.05 mm/s. The elastic
modulus values were obtained from the maximum slope of the
deformation-force relationship.

RVOT-Free Wall Resection and
Replacement
The surgical procedure was performed according to previously
reported methods (42). Briefly, rats were anesthetized with
isoflurane. Intubation was performed with ventilation at 60
cycles/min under room air supplemented with oxygen (2 L/min)
and 1.5%−2.5% isoflurane. The heart was exposed through
median sternotomy. A purse-string suture was then placed
in the RVOT-free wall with 7-0 polypropylene to form a
perimeter >6mm in diameter. Both suture ends were passed
through a 22-gauge plastic venous cannula, which was used as
a tourniquet, and the tourniquet was tightened. The RVOT wall
inside the purse-string suture was distended and resected to
create a defect <6mm in diameter. The tourniquet was briefly
loosened to assess pulsatile bleeding, confirming the formation
of a transmural defect. The circular biosheet or ePTFE patch
(diameter, 6mm; thickness, 0.4mm) was sutured along the
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FIGURE 1 | (A) Acrylic plates (25mm × 25mm × 2mm) were used as a mold. (B,C) The molds were completely encapsulated with connective tissues. (D) Pieces of

the biosheets were obtained by biopsy punch (E). The obtained biosheet (F).

margin of the purse-string suture with 7-0 polypropylene to
cover the defect (Figure 1F). The biosheet was sutured with the
smooth side facing the RVOT lumen. The tourniquet was then
released, and the purse-string suture was removed. The chest
incision was closed in layers with simple continuous sutures
using 3-0 nylon. After the surgery, the rats were monitored
in a warm environment until they had completely recovered
from anesthesia. The rats were then returned to their cages.
Anticoagulation therapy was not administered.

Histological and Immunohistochemical
Analysis
At each scheduled explant period (4 and 12 weeks after
surgery, n = 3 and n = 6 in each group, respectively),
animals were administered 300 units of heparin intravenously
and were then euthanized by intravenous injection of an
overdose of pentobarbital (100 mg/kg). The heart was exposed
by repeated median sternotomy and fixed overnight with
4% paraformaldehyde. The RVOT-free wall around the patch
implantation site was resected and used for histological
evaluation. The overall appearance of the endocardial surface
was examined. The sections were stained with hematoxylin and
eosin or Masson’s trichrome or stained immunohistochemically.
Anti-CD31 monoclonal antibodies (1:100; Abcam, Cambridge,
UK) were used to identify the endothelial cells. Sections were
incubated with primary antibodies overnight at 4◦C in 1% bovine
serum albumin followed by washing with phosphate-buffered

saline (PBS). AlexaFluor secondary antibodies (1:1,000; A-11012,
Life Technologies, Carlsbad, CA, USA) were used for 2 h at
room temperature, followed by washing with PBS. Nuclei were

counterstained with DAPI (4
′

,6-diamidino-2-phenylindole).

Statistical Analysis
Statistical analysis was performed using the Mann–Whitney U
test to compare the strength and elastic moduli between those
of the native RVOT-free walls and biosheets. Statistical analyses
were performed using a commercially available software (SPSS
23.0, IBM Inc., Armonk, NY, USA). Statistical significance was
set at P < 0.05.

RESULTS

Preparation of Biosheets
After 4 weeks within the dorsal subcutaneous pouches, acrylate
plates were completely covered with a thin connective tissue
membrane, which was considered the biosheet (Figure 1C).
Although the outer surface of the biosheet was delicately
connected with subcutaneous tissues through an irregularly
shaped surface, the internal surface of the biosheet exhibited a
smooth, flat surface in contact with the plate (Figure 1E).

The strength and elastic moduli of the biosheets were 421.3
± 140.7 g and 2,919 ± 728.9 kPa, respectively, which were
significantly higher than those of the native RVOT-free walls
(93.5± 26.2 g and 778.6± 137.7 kPa, respectively; P < 0.005 and
P < 0.001, respectively; Figures 2A,B).
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FIGURE 2 | Comparison of the ultimate load (A) and elastic moduli (B) of the

biosheets and native RVOT-free wall. The strength and elastic moduli of the

biosheets were significantly higher than those of the native RVOT-free walls.

Resection and Replacement of the
RVOT-Free Wall
Biosheets were successfully implanted into the RVOT-free walls
of rats. None of the rats died from the procedure (Figure 1F), and
all rats survived until the scheduled euthanasia. Furthermore, no
animals showed signs of infection after the implantation. Dense
fibrous adhesions to the sternum on the epicardial surface were
also observed in 7 of 9 rats with ePTFE grafts, whereas 2 of 9
rats with biosheets (Figures 3A–D). The two types of patches
were surrounded by layered fibrous tissue, and no thrombi were
observed on the endocardial surface of the patches in either
group at any time point. The thickness of the biosheet measured
via microscope on a sample after staining did not decrease at
4 and 12 weeks after transplantation (284 ± 56µm and 297
± 37µm, respectively), and no aneurysm formation or rupture
was observed.

Biosheets exhibited cellular and capillary ingrowth
(Figures 4B,C, 5B,C), while there was no cellular and capillary
ingrowth into the ePTFE patches (Figures 4D,E, 5D,E).

Both patches had complete endothelialization on the
endocardial surface in the RVOT-free wall at each time
point (Figure 6).

DISCUSSION

Although various materials have been used as reconstructive
materials for congenital cardiac diseases, each type ofmaterial has
challenges, and an optimal material for the repair of CHDs has

FIGURE 3 | Representative images of biosheets (A,B) and ePTFE (C,D) at

cardiac explantation. Dense fibrous adhesions to the sternum on the epicardial

surface were also observed in 7 of 9 rats with ePTFE grafts, whereas 2 of 9

rats with biosheets.

not yet been developed. Autologous pericardium is considered
one of the more suitable materials for reconstructive surgeries
for CHDs. However, multiple surgeries are sometimes needed
to repair CHDs (43, 44), and autologous pericardium cannot be
used for multiple cardiac surgeries because of size limitations.
Artificial materials, such as Dacron or ePTFE patches, are also
used as reparative materials for congenital cardiac diseases.
These artificial materials show good results in short-term studies
and are not associated with any size limitations (45, 46). Re-
operation is sometimes necessary to remove stenosis because
nondegradable artificial materials do not have growth potential
(45). Since biosheets are generated using autologous tissues, they
are not expected to be associated with this kind of problem. This
study demonstrates the short-term application of biosheets as a
small RVOT patch in a rat model.

Our previous studies showed that biovalves and biotubes,
which are tissue prostheses prepared using IBTA, both
have higher elastic moduli and stronger maximum tensile
strength than native aortic valves and native arteries (8–35).
Additionally, these tissue prostheses showed sufficient strength
after implantation in vivo (8–35). In the present study, biosheets
showed higher elastic moduli and stronger maximum tensile
strength in vitro and were easily implanted into RVOT-free walls.
Moreover, the biosheets did not cause varicose deformity or
rupture after implantation. These results revealed that biosheets
had sufficient strength to be used as a reparative material
for RVOT.

Multiple surgical procedures are sometimes required to repair
CHD (43, 44). As described above, autologous pericardium
cannot be used for multiple surgeries because of size limitations.
In contrast, biosheets can be made as many times as needed
and can be formed into various shapes and sizes. In this
study, all acrylic plates (25mm × 25mm × 2mm) were
completely encapsulated with connective tissues in rats weighing
approximately 350 g. This size encapsulated the entire rat heart.
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FIGURE 4 | Results of histological examination (H&E staining). (A) Image before implantation of biosheet. Images at 4 and 12 weeks after implantation of biosheets

(B,C) and ePTFE (D,E) patches. Biosheets exhibited cellular and capillary ingrowth.

FIGURE 5 | Results of histological examination (Masson’s Trichrome Stain). (A) Image before implantation of biosheet. Images at 4 and 12 weeks after implantation of

biosheets (B,C) and ePTFE (D,E) patches. Biosheets had higher collagen density at explantation than at pre-implantation.
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FIGURE 6 | Results of histological examination (stained for vWF). Both

patches had complete endothelialization on the endocardial surface in the

RVOT-free wall at each time point.

A previous study confirmed that various sizes and forms of
tissue prostheses prepared using IBTA could be formed in rats,
rabbits, dogs, goats, and humans (8–41). Thus, we expect that
appropriately sized biosheets may be used as reparative materials
for cardiac diseases in humans. Furthermore, because CHD can
exhibit many morphological variations (47), biosheets, which
may be shaped and sized accordingly, may have great advantages
as a reparative material for congenital heart disease.

The ePTFE is widely used as a cardiac patch and conduit
because of its good biocompatibility (45, 46, 48). In this study,
4 weeks after implantation, endocardial surfaces of both ePTFE-
and biosheet-patched hearts were covered with collagenous tissue
and were completely endothelialized. Host cell ingrowth was also
confirmed for biosheets. Therefore, biosheets may have good
biocompatibility as well as ePTFE.

In this study, the thickness of the biosheet did not decrease at
4 and 12 weeks after transplantation, and no aneurysm formation
or rupture was observed, suggesting that the biosheet maintains
sufficient durability as a right ventricular restoration material for
at least 12 weeks. In a previous study, we confirmed a high long-
term patency rate and remodeling to an artery-like structure after
implantation (49). In the current study, we observed capillary
vascular and cellular ingrowth into the biosheets. Therefore,
biosheets are expected to maintain long-term durability as
cardiac repair materials.

Similar to previous studies that investigated the replacement
of the rat RVOT, one limitation of this study was its short
duration (50, 51). Because of the short duration of the study, we
could not assess the growth potential or cardiac function after
implantation. Additionally, we were unable to evaluate the long-
term dilation resistance. Therefore, further studies are required
to investigate these parameters.

Another limitation of this study is that we did not reproduce
in the model the hemodynamic conditions of congenital heart
disease where biosheet would be used in the real world.

Biosheets can be formed easily and have sufficient strength
and biocompatibility for use as a patch for the repair of RVOT
in a rat model. Therefore, biosheets may be suitable materials
for reconstructive surgery for RVOT in other species. Additional
long-term studies in a large animal model of myocardial patching
are required to demonstrate whether Biosheets will actually
grow with the host animal and whether myocyte ingrowth
occurs sufficiently for cardiac contraction to happen in the
patched region.
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