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ARTICLE INFO ABSTRACT
Keywords: Background: Ischemic heart failure (IHF) is a serious complication after acute myocardial
Ischemic heart failure infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early

Acute myocardial infarction
Machine learning

Immune infiltration analysis
Bioinformatics

diagnosis and treatment.

Methods: We obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO
database, and screened overlapping genes common to both diseases through WGCNA analysis.
Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate
the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify
key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further
evaluate immune cell changes in AMI and IHF.

Results: We obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the
enrichment analysis results mainly focused on immune and inflammation-related mechanisms.
Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained
the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset
GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis
showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of
immune cells were significantly different in IHF samples.

Conclusion: We explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and
immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets
were identified by machine learning algorithms. This provides a new idea for the pathogenesis,
diagnosis, and treatment of IHF after AMI.

1. Introduction

Acute myocardial infarction (AMI) is a severe heart attack caused by coronary occlusion and characterized by myocardial necrosis
caused by exposure of the myocardium supplied by the occluded coronary artery to an ischemic environment [1]. With the devel-
opment of interventional techniques and drugs, the survival rate of patients with AMI has continuously improved, but the incidence of
complications has also increased [2]. Among them, ischemic heart failure (IHF) is the most serious complication after myocardial
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infarction, with an estimated 1-year incidence rate of 23.4% [3]. IHF after AMI has become a major public health problem because of
its morbidity, mortality, readmission rates, and medical expenditures [4].

The progression of IHF after AMI is multifactorial, mainly depending on the degree of myocardial injury, reperfusion injury,
myocardial dormancy, ventricular remodeling, and neuroendocrine stimulation [5]. A more comprehensive understanding of the
mechanisms of IHF after AMI will allow us to identify patients with acute AMI at risk for IHF and to intervene early to reduce the
socioeconomic burden. Previous studies have shown that conventional biomarkers B-type natriuretic peptide or N-terminal probrain
natriuretic peptide, as well as troponin I and C-reactive protein can aid in the detection of the development of IHF after AMI. But these
biomarkers are also elevated in other diseases, such as renal impairment or thyroid disease, which means they are less specific [6-8]. In
addition, these biomarkers cannot reflect the pathological mechanism of IHF after AMI, and cannot provide a reference for the
screening of therapeutic targets. Therefore, we still need to identify new biomarkers and potential therapeutic targets.

The rapid development of high-throughput technology and bioinformatics can help us screen for biomarkers and therapeutic
targets. Previous bioinformatics studies mainly identified available biomarkers through differential gene and PPI network analysis [9,
10]. However, these studies ignored the common high-correlation gene clusters between AMI and IHF, and the accuracy of PPI network
analysis was also questioned [11]. With the development of analysis methods, weighted gene co-expression network analysis
(WGCNA) and machine learning (ML) began to be applied to the screening of potential disease targets. WGCNA is a new bioinformatics
approach that constructs a scale-free network by linking gene expression levels with clinical features to screen for modules and genes
highly associated with disease [12]. ML algorithms such as least absolute shrinkage and selection operator (LASSO), support vector
machine recursive feature elimination (SVM-RFE), and random forest (RF) are also widely used in bioinformatics research to screen
potential targets of diseases and construct accurate diagnostic models.

This study analyzed the mRNA datasets of AMI and IHF in the GEO database and tried to find the co-expressed modules between
these two diseases using WGCNA. We used enrichment analysis to identify pathways and biological functions involved in IHF after
AML. Subsequently, we screened potential biomarkers with three machine learning algorithms: SVM-REF, LASSO, and RF. We input the
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results obtained by machine learning into the STRING database to determine the relationship between proteins, thereby obtaining the
Hub gene and verifying it in an external dataset. In addition, we performed immune cell infiltration analysis on the AMI and IHF
datasets, helping us to understand the role of immune cells in the development of IHF after AMI. Fig. 1 depicts the study flowchart.

2. Materials and methods
2.1. Data acquisition and preprocessing

We downloaded the disease dataset from the GEO database [13]. We chose GSE66360 as the dataset for AMI (circulating endo-
thelial cell samples from 49 patients with acute myocardial infarction and 50 controls) [14]. We chose GSE57338 as the dataset for
ischemic heart failure (left ventricular myocardium samples from 95 patients with ischemic heart failure and 136 controls) [15]. We
finished the preparation of the data using R program (version 4.2.0). We eliminated the probes that corresponded to several com-
pounds and changed the probe ID into a gene symbol in accordance with the platform’s annotation file. Only the probe with the highest
signal value is kept when there are several probes relating to the same molecule. Lastly, we eliminate the data’s batch effects. We chose
GSE116250 as the validation set of results. The basic information of all data sets was shown in Table 1.

2.2. Weighted gene Co-expression network analysis

We performed WGCNA on GSE66360 and GSE57338, respectively, to obtain modules closely related to AMI and IHF. Following a
filtering criterion of 0.5, the first step involved eliminating genes and samples that didn’t meet the criteria using the good-
SamplesGenes function. This was followed by the construction of a scale-free co-expression network. For the purpose of calculating
adjacencies, a soft threshold of p = 30 and a scale-free fit of R2 = 0.9 were utilized. These adjacencies were subsequently converted into
a topological overlap matrix (TOM), which was used for assessing gene ratios and dissimilarities. Genes with comparable expression
patterns were grouped into modules through the process of average linkage hierarchical clustering. Preferring larger groupings, the
threshold for module size was established at a minimum of 200. The next step involved determining the dissimilarity between the
module eigengenes. This process involved selecting a cut-off point on the module dendrogram to merge several modules for additional
analysis. Finally, the eigengene network was visualized. Lastly, to identify the key genes of IHF after AMI, the important modules of
both AMI and IHF were intersected. Finally, we took the intersection of the important modules of AMI and IHF as the key genes of IHF
after AML

2.3. Functional Enrichment Analysis

We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and visualization
utilizing the clusterProfiler package [16-18]. This analysis was applied to key genes to investigate the biological functions and
signaling pathways implicated in IHF after AMIL.

2.4. Machine learning

We employed three machine learning algorithms, namely LASSO, RF, and SVM-RFE, to perform a comprehensive screening of
candidate genes associated with IHF after AMI [19-21]. To implement the LASSO algorithm, we utilized the glmnet package,
employing ten-fold cross-validation to identify significant genes. The RF algorithm was executed using the randomForest package,
wherein we selected the top 30 genes as potential candidates. For the SVM-RFE algorithm, we leveraged the e1071 package and
determined the optimal number of genes based on their accuracy. The resultant gene list comprised the key genes, and we applied the
three machine learning algorithms separately to identify candidate genes for AMI and IHF. Finally, by intersecting the outcomes
obtained from the three distinct machine learning approaches, we derived the candidate genes associated with both AMI and IHF.

2.5. Protein-protein interaction network construction

To comprehend the progression from AMI to IHF and to uncover the interactions among protein-coding genes, we constructed a
Protein-Protein Interaction (PPI) network using the STRING database [22]. We input the candidate genes associated with AMI and IHF
into the STRING database to ascertain the interconnections among these genes. The parameters set for this analysis included: Network
type as a full STRING network, the significance of network edges defined by evidence, and a minimum interaction score set at medium
confidence (0.400). Then, we imported the results into Cytoscape3.6.1, and established a Bayesian network starting from the candidate

Table 1

The details of datasets.
Series Platforms Samples tissue Type
GSE57338 GPL11532 95 IHF and 136 Con heart left ventricle mRNA
GSE66360 GPL570 49 AMI and 50 Con CD146+Circulating Endothelial Cells mRNA

GSE116250 GPL16791 13 IHF and 14 Con left ventricle mRNA
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genes of AMI and ending with the candidate genes of IHF. Based on the network results, we completed Hub gene selection and
subsequent analysis [23].

2.6. Hub genes verification and diagnosis model construction

We chose GSE116250 as the validation set of Hub genes (left ventricular myocardium samples from 13 patients with ischemic heart
failure and 14 controls) [24]. The pROC package was employed to develop diagnostic models for individual and combined genes. The
discriminative capability of Hub genes was assessed using ROC curves. The diagnostic value was quantified by calculating the area
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Fig. 2. WGCNA analysis result. (A) Dendrograms for gene and trait clustering in AMI were created. These gene clustering trees, or dendrograms,
were derived from hierarchical clustering based on neighbor-related differences. (B) The AMI condition was characterized by 13 gene co-expression
modules. Each cell within these modules displays the correlation coefficient and the corresponding p-value. (C) Dendrograms for gene and trait
clustering were also constructed for IHF. (D) 11 gene co-expression modules of IHF. (E) The intersection of AMI and IHF. We intersected the results
to get 74 key genes.
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under the curve (AUC), with an AUC greater than 0.7 being deemed as an ideal diagnostic indicator.

2.7. Immune infiltration analysis

The CIBERSORT package was utilized to evaluate the composition of immune and stromal cells in circulating endothelial cell
samples from AMI for immune cell infiltration analysis [25]. Similarly, this package was also used to assess the content of these cells in
IHF myocardial samples, aiming to delineate the cellular heterogeneity in myocardial expression profiles. We plan to compare the
expression of immune cells in AMI and IHF to investigate their role in the progression of heart failure post-myocardial infarction. Bar
graphs will be employed to display the proportion of each immune cell type in various samples. The distribution differences in cells
between the disease and normal groups will be compared using a t-test, setting the significance threshold at p. adj<0.05.

3. Results
3.1. Construction of Co-expressed gene modules

We performed WGCNA on GSE66360 and GSE57338 to obtain modules closely related to AMI and IHF, respectively. The analysis of
GSE66360 shows that when the value of p = 9, the network is closer to the scale-free network. We identified 13 modules associated
with AMI, among which the pink module had the highest correlation with AMI (correlation coefficient = 0.64, P = 7e-13), containing a
total of 719 genes. The analysis of GSE57338 shows that when the value of p = 11, the network is closer to the scale-free network. We
identified 11 modules associated with IHF, among which the black module (correlation coefficient = 0.59), brown module (correlation
coefficient = 0.64), and magenta (correlation coefficient = 0.66) modules were highly correlated with IHF. Since the gene expression
of the black module and the magenta module both increased in the disease group (the gene expression of the pink module of AMI also
increased in the disease group), we chose the black module and the magenta module as subsequent analysis modules. The two modules
contain a total of 2214 genes. We intersected the results to get 74 key genes. The relevant results are shown in Fig. 2A-E.

3.2. Functional Enrichment Analysis

GO and KEGG enrichment analyses were conducted on 74 essential genes to decipher the shared biological mechanisms underlying
AMI and IHF. Categories of GO enrichment analysis include biological process (BP), cellular component (CC) and molecular function
(MF). Among them, BP mainly involves myeloid leukocyte activation, positive regulation of leukocyte activation, positive regulation of
cell activation, leukocyte activation involved in immune response, and leukocyte cell-cell adhesion. CC mainly involves collagen-
containing extracellular matrix, specific granule, trans-Golgi network, Golgi apparatus subcompartment, and autophagosome. MF
mainly involves receptor ligand activity, signaling receptor activator activity, cytokine activity, cytokine receptor binding, and G
protein-coupled purinergic nucleotide receptor activity. KEGG enrichment analysis showed that 74 key genes were mainly enriched in
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Fig. 4. Employing Machine Learning for Identifying Candidate Genes in AMI and IHF. (A) Lasso Model for AMI Gene Screening. We deployed Lasso
regression to pinpoint optimal feature genes in AMI, determining the best lambda value through the minimization of partial likelihood deviance. The
coefficient curves, each representing an individual gene, highlight the gene selection process. At the curve’s lowest point, 12 genes (n = 12) emerged
as the most suitable for the Lasso model, as indicated by the solid vertical lines depicting the partial likelihood deviance. (B) SVM-RFE Model in AMI.
The SVM-RFE algorithm was utilized for an in-depth identification of feature genes, selecting those with the highest accuracy and lowest error rate
as shown in the performance curves. The axes of the graph represent the number of features selected (x-axis) and the prediction accuracy (y-axis).
(C) RF Model for AMI Genes. Using the Random Forest method, we calculated the relative importance of overlapping candidate genes, focusing on
the top 20 genes in terms of their significance. (D) Venn Diagram for AMI Candidate Genes. A Venn diagram illustrates the intersection of the three
algorithms, culminating in the identification of 6 primary candidate genes for AMI. (E) Candidate genes screening in the Lasso model of IHF. (F)
Candidate genes screening in the SVM-RFE model of IHF. (G) Candidate genes screening in the RF model of IHF. (H) Venn Diagram for IHF
Candidate Genes. This diagram displays the integration of results from the three applied algorithms, leading to the determination of 12 candidate
genes for IHF.

Cytokine-cytokine receptor interaction, Lipid and atherosclerosis, Rheumatoid arthritis, Toll-like receptor signaling pathway, and TNF
signaling pathway. We will show the top five results of GO enrichment analysis and top ten results of KEGG enrichment analysis, as
shown in Fig. 3A-B. See Supplementary Table S1 for full enrichment results.

3.3. Identification of hub genes via machine learning

In this study, we employed three distinct machine learning algorithms—LASSO, Random Forest (RF), and Support Vector Machine-
Recursive Feature Elimination (SVM-RFE)—to identify key hub genes associated with Acute Myocardial Infarction (AMI) and Ischemic
Heart Failure (IHF). For AMI, the LASSO algorithm pinpointed 12 potential hub genes. The RF algorithm, which ranks genes based on
their importance scores, yielded 30 top candidate genes. Similarly, the SVM-RFE algorithm indicated optimum accuracy with a set of
39 genes, leading us to select these as candidates. Upon intersecting the results from all three algorithms, we identified six prime
candidates for AML. In the case of IHF, the LASSO algorithm revealed 27 candidate genes. Adhering to the methodology used for AMI,
the top 30 genes as per the RF algorithm were chosen. The SVM-RFE algorithm presented the highest accuracy with 38 genes, which
were subsequently selected. The intersection of results from these algorithms yielded 12 leading candidate genes for IHF. Fig. 4A-H
graphically represents these findings, elucidating the intersection and unique selections from each algorithm. All results of machine
learning are presented in Supplementary Table S2.

3.4. PPI network construction

We input 6 AMI candidate genes and 12 IHF candidate genes into the STRING database to obtain the functional relationship be-
tween protein-coding genes. Ultimately, we identified 6 nodes and 5 interactions. Among them, IL1B of AMI and TIMP2, IFIT3, P2RY2
of IHF have an interaction relationship. Therefore, we selected four genes, IL1B, TIMP2, IFIT3, and P2RY2, as Hub genes. The visu-
alization results are shown in Fig. 5.

3.5. Hub genes verification and diagnosis model construction

We completed the validation of the Hub gene at GSE116250. We established ROC curve analysis to verify the diagnostic value of
Hub gene. In the single gene diagnostic model, TIMP2 had the highest diagnostic value (AUC = 0.989). The combined gene diagnosis
model has a high diagnostic value (AUC = 0.907). The result is shown in Fig. 6A-B. The results showed that Hub gene may be an
effective index for detecting IHF after AMI.
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Fig. 5. A PPI network starting from the candidate genes of AMI and ending with the candidate genes of IHF.
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Fig. 6. Results of Diagnostic Value Assessment. (A) The ROC curve of each candidate genes in GSE116250. (B) The ROC curve of the 4-gene
diagnostic model in GSE116250.

3.6. Immune cell infiltration analysis
To investigate the involvement of immune cells in the progression of IHF after AMI, we conducted an analysis of immune cell
infiltration within both the AMI and IHF datasets using the CIBERSORT algorithm. The results of this analysis are depicted in Fig. 7A

for the AMI dataset and Fig. 7C for the IHF dataset. These bar graphs distinctly illustrate the variation in immune cell subpopulation
composition across the samples. In the AMI dataset specifically, we examined the diversity in immune cell makeup between the AMI
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Fig. 7. Immune cell infiltration analysis. (A) This bar plot illustrates the distribution of 22 distinct immune cell types across various AMI samples,
providing a comparative visual representation of their proportions. (B) The box plot depicts the expression profiles of eight immune cell types that
showed significant dysregulation in AMI samples compared to control samples. (C) Similar to AMI, the bar plot for IHF samples delineates the
proportion of 22 immune cell types, offering a visual comparison of their distribution in different IHF samples. (D) The box plot depicts the
expression profiles of six immune cell types that showed significant dysregulation in IHF samples compared to control samples.
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and control (healthy) samples. This comparison revealed significant disparities in the infiltration levels of eight distinct immune cell
types, highlighting the heterogeneity of immune response in the context of AMI. Among them, Dendritic cells activated, Eosinophils,
Mast cells activated, Monocytes, Neutrophils, and T cells focal helper were highly expressed in AMI samples. The expressions of T cells
CD4 memory resting and T cells gamma delta were higher in the control group. The expression levels of each immune cell are shown in
Fig. 7-B. In the IHF dataset, we assessed the heterogeneity of immune cell composition between IHF samples and healthy samples. The
results showed that there were 6 types of immune cell infiltration with significant differences. Among them, Macrophages M0, Mast
cells resting, T cells CD4 naive, and T cells CD8 were highly expressed in IHF samples. Neutrophils and Macrophages M2 were more
highly expressed in the control group. The expression levels of each immune cell are shown in Fig. 7-D.

4. Discussion

AMI is one of the main causes of heart failure in patients. Finding the mechanism of IHF after AMI has important clinical signif-
icance for the prevention and treatment of heart failure. Transcript profiling is a promising tool in the search for molecular mechanisms
and biomarkers. Unfortunately, for patients with AMI, although cardiac biopsy can truly reflect the pathological changes of the
damaged myocardium after AMI, cardiac biopsy is often not clinically applicable. We chose peripheral blood cells for replacement, but
they are still different from heart tissue. For IHF patients, transcriptomic analysis of cardiac tissue can more accurately describe the
physiopathological changes of IHF. However, the lack of analysis of IHF peripheral blood samples provides certain difficulties for the
development of IHF diagnostic markers. Although GSE59867 collected peripheral blood samples from 111 patients with ST-segment
elevation myocardial infarction in 4 time periods, only 17 patients had detailed disease information (whether the patient developed
heart failure within 6 months) in this dataset [26]. Therefore, the number of effective samples limits the application of this data set (it is
generally believed that the sample size should be 4 times the number of Hub genes and at least more than 20). We had to select
circulating endothelial cell samples from AMI and cardiac tissue samples from IHF for analysis.

In this study, we first identified the gene modules co-expressed by AMI and IHF through WGCNA, and a total of 74 genes were
obtained. Subsequently, we explored the common biological functions and signaling pathways involved in AMI and IHF through GO
and KEGG enrichment analysis. The results showed that the common mechanisms of AMI and IHF are mostly related to inflammation
and immunity, which may be the key mechanisms connecting these two diseases. AMI can lead to myocardial necrosis in the infarcted
area, and inflammatory cells such as monocytes and macrophages migrate to the damaged area to remove dead cells after AMI, and
participate in subsequent damage and repair [27]. Leukocytes are recruited to the damaged myocardium, but the myocardium away
from the infarct is also inflamed, which may be responsible for the remodeling of the non-infarcted myocardium [28]. At the same
time, a large number of cytokines such as TNF-a, IL-6, IL-10, and IL1 are released into the blood, which participate in physiological
processes such as inflammatory response and angiogenesis, and affect the remodeling of the heart and the establishment of collateral
circulation [29,30]. Toll-like receptor (TLR) signaling pathway and TNF signaling pathway in the KEGG enrichment results also
connect AMI and IHF. TLR signaling pathway is involved in the inflammatory response. Studies have shown that AMI is accompanied
by increased expression of TLR2 and TLR4 on circulating monocytes [31]. In animal models, blocking TLR2/4 signaling reduced
inflammatory cell influx and infarct size. Inhibition of TLR4 can reduce AMI-induced cardiomyocyte oxidative stress and apoptosis
[32]. In a mouse model, TLR2, while involved in cardiac remodeling after AMI, also promoted the inflammatory response of heart
failure myocardium [33]. Cardiomyocyte apoptosis induced by TLR4 also aggravates the degree of IHF [34]. TNF ligands can induce
multiple effects in the myocardium, including apoptosis, hypertrophy, inflammation, and extracellular matrix remodeling [35].
Therefore, inflammatory factors and chemokines such as TNF-a, IL-6, IL-1, etc. are designed as new therapeutic targets for AMI and IHF
[36]. In short, through enrichment analysis and previous studies, we believe that inflammatory factor secretion and immune cell
recruitment are common mechanisms of AMI and IHF.

Subsequently, we screened the co-expressed genes with 3 machine learning algorithms, and obtained 6 candidate genes for AMI and
12 candidate genes for IHF. We obtained the protein interaction relationship through the STRING database, and finally identified four
Hub genes, IL1B, TIMP2, IFIT3, and P2RY2. The verification results in external data sets also showed that these four Hub genes have
high diagnostic value.

Interleukin-1 Beta (IL1B) is a cytokine produced by activated macrophages that is involved in a variety of cellular activities,
including cell proliferation, differentiation, and apoptosis. Pro-inflammatory functions are activated upon binding of IL1B to its re-
ceptors, IL-1R1 and IL-1R3 [37]. Thus, IL1B plays an important role in the sterile inflammatory response and subsequent adverse
cardiac remodeling after AMI [38]. Studies have shown that the expression of IL1B after AMI is mainly concentrated in the
myocardium, spleen, and peripheral blood, especially in the myocardium [39]. The results of this study also make up for the deficiency
that we selected circulating endothelial cells for AMI samples (lack of IL1B expression results in AMI cardiomyocyte samples). In the
serum of patients with heart failure, IL1B levels are highly abnormal and remain elevated after mechanical circulatory support. This
indicates that IL1B elevation may run through the entire process of the development of IHF after AMI [40]. Targeting IL1B therapy has
also achieved good results in animal experiments. Studies have shown that after 10 weeks of monoclonal antibody treatment of IL1B in
mice with IHF after AMI, it can prevent the further deterioration of left ventricular systolic function and diastolic function of the mouse
heart, and restore the contractile reserve [41]. Although targeting IL1B did not affect inflammasome formation or caspase-1 activation
after AMI, it did reduce cardiomyocyte apoptosis and limit LV enlargement after AMI [42]. It is worth noting that although cytokine
therapy targeting IL1B appears promising in animals, clinical trials are still needed to further prove its efficacy [43].

Tissue inhibitor of metalloproteinases 2 (TIMP2) is a natural inhibitor of matrix metalloproteinases (MMPs), inhibiting MMP-
induced extracellular matrix remodeling [44]. Studies have shown that circulating levels of MMP-2 are closely related to infarct
size and left ventricular dysfunction in STEMI patients, and its expression has a complex time-dependence [45,46]. Therefore, MMP
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can be used as an early measurement index of infarct size and ventricular dysfunction after infarction. Because of this, the compen-
satory secretion of TIMP2 after AMI also makes it valuable for detection. Studies have shown that both MMP2 and TIMP2 are highly
expressed in coronary artery thrombus [47]. In conclusion, MMPs increase after myocardial infarction, leading to degradation of
extracellular matrix in the infarct area and LV remodeling [48]. The MMP inhibitory function of TIMP2 is a key factor in cardiac
remodeling after AMI. Therefore, TIMP2 not only has potential therapeutic value, but also has predictive value for cardiac dysfunction
after infarction [49].

Interferon induced protein with tetratricopeptide repeats 3 (IFIT3) is a type I interferon-induced antiviral protein but is also
involved in nonviral pathology [50]. In the previous bioinformatics studies, although the analysis methods and analysis angles were
different, it was concluded that IFIT3 was the key gene of ischemic cardiomyopathy [51-53]. In vitro experiments also proved that
knocking down IFIT3 can effectively inhibit the release of inflammatory cytokines and alleviate ischemia-reperfusion injury [54]. In a
mouse model of coronary artery ligation, silencing of IFIT3 significantly improved cardiac function and reduced infarct size,
myocardial fibrosis, and collagen content [55]. Therefore, IFIT3 may be a potential therapeutic target for AMI and IHF.

Purinergic Receptor P2Y2 (P2RY2), belonging to the P2 receptor family, is activated by extracellular nucleotides and participates in
various cellular functions such as proliferation, apoptosis, and inflammation. Early infarction, activation of P2RY2 leads to persistent,
nonspecific cation currents. This depolarizing current induces cellular automaticity, triggering arrhythmic events [56].
Ischemia-reperfusion injury will compensatory increase the expression of P2RY2 to resist apoptosis. The mechanism may be related to
inhibition of YAP phosphorylation and reduction of mitochondrial fission [57]. In addition, the mRNA level of P2RY2 was increased
4.7-fold in the left ventricular myocardium of rats with congestive heart failure [58]. Therefore, P2RY2 has potential as a therapeutic
target for AMI and IHF and deserves further study.

After an AMI occurs, Neutrophils are among the first cells to reach the infarct area, where they accumulate within the first few
hours, triggering inflammation and tissue destruction [59]. The proteases and bioactive substances contained in Neutrophils include
MMPs, neutrophil extracellular traps (NETs), and NADPH oxidase, etc. NETs will cross-link with plasma fibrinogen, leading to
thrombosis and coronary no-reflow phenomenon, and aggravating myocardial infarction [60]. Eosinophils and Monocytes peaked on
the third day after AMI [61,62]. Eosinophils mainly increase myocardial tissue damage by generating ROS through peroxidase.
However, IL-4 secreted by it can also inhibit cardiomyocyte apoptosis, prevent neutrophils from adhering to the endothelial wall, and
improve cardiac dysfunction [63]. Monocytes are not only involved in the breakdown of necrotic myocardium, but also one of the
reasons for the further recruitment of neutrophils [64]. Mast cells originate from the bone marrow and can produce a variety of in-
flammatory cytokines, including IFNG, IL-6, and TNF-a, which participate in the inflammation and fibrosis process of myocardial
infarction and heart failure [65]. The results of immunoassays showed that the status of Mast cells in AMI and IHF is different, which
may be because Mast cells are mainly involved in the regulation of fibrous tissue metabolism in the process of myocardial remodeling,
but there is still a lack of research in this area [66]. There was no similarity between AMI and IHF in terms of immune cell infiltration,
which may be explained by differences in myocardial samples and circulating endothelial cell samples. Even so, mounting evidence for
the contribution of immune-modifying therapies to cardiac repair and myocardial fibrosis has become an exciting area of research
[671.

The novelty of our study is as follows. First, we identified the co-expressed genes of AMI and IHF by WGCNA. Secondly, we
identified 4 Hub genes through 3 machine learning algorithms and the PPI network constructed by STRING, and verified them in
external datasets, which provided new ideas for our understanding of the molecular mechanism of IHF development after AMI. In
addition, our enrichment analysis and immune infiltration analysis of AMI and IHF showed that the molecular mechanisms of the two
are closely related to inflammation and immunity, which provides ideas for us to develop new treatments to reduce the development of
IHF after AMI.

Nevertheless, there are still some shortcomings in this study. Differences in sample sources may lead to bias in the results, but there
isindeed a lack of data sets with sufficient sample sizes. Second, it is unclear whether increased mRNA levels lead to a parallel increase
in protein expression, and the execution of many biological functions also relies on post-translational modifications. In future studies, if
conditions permit, we will increase the experimental design to evaluate protein levels to further verify our conclusions.

5. Conclusion

We performed bioinformatics analysis on the GEO dataset to explore the underlying molecular mechanisms, key genes, and im-
mune cell infiltration environment for the development of IHF after AMI. Through three machine learning algorithms, LASSO, RF, and
SVM-RFE, we identified four genes, IL1B, TIMP2, IFIT3, and P2RY2, as potential therapeutic targets and biomarkers for the devel-
opment of IHF after AMI. More importantly, based on the diagnostic model of these 4 genes, we have generated a new understanding of
the pathogenesis of IHF after AMI and may be an interesting target for future in-depth studies.
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