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Genetically modified (GM) crops currently constitute a significant and growing part of agriculture. An
important aspect of GM crop adoption is to demonstrate safety and equivalence with respect to conventional
crops. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an
adjunct for GM crop substantial equivalence assessment. To account for environmental effects and
introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop
metabolic composition should be understood within the context of the natural variation for the crop. Using
a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges
from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We
further demonstrated that the metabolome of a GM line had no significant deviation from natural variation
within the soybean metabolome, with the exception of changes in the targeted engineered pathway.

G
M crops were first introduced to the market in 1994. Their adoption, especially in North and South
America, has been steadily accelerating, now accounting for the majority of acreage in several major
crops, including corn, soybean, cotton, and canola1,2. Transgenic herbicide tolerance and insect resistance

have become the most widely applied trait types, providing the benefits of higher yield, lower input costs, and
improved environmental profiles2–4. From the outset the most important aspect of GM crop adoption, and often
the most controversial, has been whether they are as safe as conventional crops with respect to human and animal
food consumption, as well as in their environmental impact. Extensive compositional and performance testing
has always been required in order to gain regulatory approval for commercial release, and to date this concept has
proven successful; despite more than a decade of widespread use of GM crops, and their extensive penetration
into the food and feed chains, no case of deleterious effect on humans or animals has been found2. Of course,
continued success requires case-by-case evidence that any new GM product meets similar or more refined
standards.

The most common testing approach has been to compare the GM line to its nearest isogenic version, that is, the
same line lacking only the transgenic insertion. Experience has shown that for traits in widespread use today
effects of the transgene on the plant tend to be small, with the exception of parameters relating to the intended
engineered trait. Indeed, testing over multiple years at multiple sites has shown that environmental effects on
general metabolic variation within a particular line can be much greater than the variation due to the transgene
itself 5–8. In addition, genetic variability within the commercial germplasm bearing an engineered trait can be quite
diverse. In practice, conventional commercial crop lines have been individually optimized for performance in a
wide variety of locations and environments, and a single GM line bearing a herbicide- or insect-resistance trait
would not be economically viable outside the optimal agronomic region for that genetic background. As a result,
the GM trait must be introgressed into a wide range of conventional backgrounds, and thus it is important to
consider the variation of transgenic crops within the context of the entire range of germplasm expression.

A broad variety of methods have been used in the assessment of safety and equivalence for GM crops, and
regulatory agencies rightly demand that the most advanced and accurate available technologies be applied. The
most common approaches in the first decade of GM regulation involved extensive compositional and perform-
ance analysis for such characteristics as (in the case of animal feed) digestibility, gross levels of total protein,
starch, fiber, fat, etc., as well as targeted analysis of specific amino acids, fatty acids, secondary metabolites, and
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known toxins and anti-nutritive compounds9–11. As analytical tech-
nologies advanced it was suggested to expand the repertoire of ana-
lysis to include non-targeted ‘‘profiling’’ techniques12, with the
reasoning that such analysis might give insight into unpredictable
pleiotropic effects and potentially deleterious consequences of trans-
gene expression7. In one example of the later case, negative altera-
tions in expression might be related to the site of gene insertion,
which in most cases is at a random site in the genome. Soon these
profiling methods were being applied, including proteomics13, NMR-
based metabolite fingerprinting5,14, HPLC or GC/MS metabolite ana-
lysis5,8, and global gene expression profiling7.

Because the trend for GM plant analysis has been toward more
advanced and informative technologies, we have applied non-tar-
geted global metabolomic analysis to the assessment of GM crops.
Metabolomics, which is the global analysis of small molecule meta-
bolites, is proving a powerful and sensitive technology for revealing
perturbations in plant metabolic composition. We analyzed seeds
from 49 conventional soybean lines and profiled 169 metabolites
covering diverse biochemical pathways and classes. The relative
levels of the metabolites across these lines provided a representation
of the dynamic ranges of the natural soybean seed metabolome. As an
example, we further analyzed a soybean GM line and found its meta-
bolome resided well within the natural variation with the exception
of the engineered pathway.

Results
The metabolomics platform used in this analysis consists of three
independent methods: ultrahigh performance liquid chromato-
graphy/tandem mass spectrometry (UHLC/MS/MS2) optimized for
basic species, UHLC/MS/MS2 optimized for acidic species, and gas
chromatography/mass spectrometry (GC/MS). The metabolites are
identified by comparison of the ion features in the experimental
samples to a reference library of chemical standard entries that
include retention time, molecular weight (m/z), preferred adducts,
and in-source fragments, as well as their associated MS/MS2 spectra.

We analyzed seeds in eight biological replications from 49 conven-
tional soybean accessions (Supplemental Table 1), which well repre-
sented the genetic diversity found in current commercial lines,
and identified a total of 169 compounds of known structures, cover-
ing 51 biochemical pathways and compound types (Supplemental
Figure 1). Interestingly, it was found that individual metabolites
exhibited a considerable range of variation among the 49 conven-
tional soybean lines (Figure 1). For each metabolite, we defined the
natural dynamic range as the lines with the highest and lowest mean
values. For individual metabolites the ratios of mean values for the
line exhibiting the highest level to that having the lowest level ranged
from 1.4-fold (stachyose) to .200-fold (allantoin) (Supplemental
Table 2). This suggested that a portion of the soybean metabolome
was tightly regulated across these lines, while the levels of many other
metabolites could be dramatically altered by the combination of
genetic and environmental impacts. Collectively, these data gave a
representation of the natural variation range of the commercial soy-
bean seed metabolome.

To test the effects of a genetically engineered trait on the soybean
metabolome, we analyzed a soybean GM line resistant to the herbi-
cide Mesotrione, and assessed the results in the context of metabo-
lomic variation within a wide range of soybean germplasm.
Mesotrione is a triketone herbicide which was developed based on
the structure of a natural phytotoxin from Callistemon citrinus, the
California bottlebrush plant, and acts as a competitive inhibitor of
hydroxyphenylpyruvate dioxygenase (HPPD)15. Inhibition of HPPD
leads to disruption of the carotenoid pathway, which is important in
the production of photosynthetic electron transport compounds and
anti-oxidant molecules in the tocopherol family. Blockage of this
pathway allows runaway production of reactive oxygen species
(ROS), which rapidly leads to light-induced chlorophyll damage
and plant death. The GM trait was constructed in the soybean cul-
tivar ‘‘Jack’’ by over-expressing a mutated oat HPPD gene, which
conferred an ability to tolerate levels of mesotrione which are norm-
ally efficacious for control of dicot weeds.

Figure 1 | Metabolomic profiles and hierarchial clustering of 169 metabolites across the 49 soy conventional lines and one GM line. The mean values for

8 biological replications per line were shown. Red and green indicate high and low levels, respectively, respectively, relative to the median value for all

samples (median 5 1.0).
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We are not aware of established standards to judge the importance
of potential metabolic perturbations which might result from trans-
gene introduction, especially in the case of a large number of out-
come variables. We thus propose different statistical methods to
show what types of boundaries or comparisons might be considered,
the goal being to develop hypotheses about the biological importance
of any observed differences in transgenic lines relative to conven-
tional germplasm. While it is not possible to establish ‘‘equivalence’’
by such methods, perturbations outside the normal ranges of con-
ventional germplasm would certainly be a cause for concern and
signal a need for further scrutiny.

In one approach we sought to establish if compound expression in
the GM line differed from the various conventional lines, also termed
‘‘wild type’’ (WT) lines. The analysis used all of the conventional lines
except for ‘‘Jack’’ as the baseline. Significance testing and prediction
intervals were computed (Supplemental Table 3) comparing ‘‘Jack’’
vs. the other conventional WT lines, and then comparing the trans-
genic HPPD line (GM) vs. the WT lines (excluding ‘‘Jack’’). A ran-
dom effects model was fitted to the conventional lines with ‘‘LINE’’
treated as a random effect. The method of moments was used to
estimate each variance component. Then prediction intervals for
the average of a new line (with 8 seeds) were computed (first to
compare the GM value, the second for ‘‘Jack’’). The prediction inter-
vals can be inverted to compute a p-value, which is equivalent to
using the t-test with the pooled estimates of the variances (estimated
from the 48 conventional lines). The histogram of the p-values for
‘‘Jack’’ vs. WT (Figure 2A) showed a uniform distribution, which was
consistent with the case when there are no differences. By compar-
ison, the GM p-value distribution (Figure 2B) shows a few potential

metabolites that are different, in particular, the lowest two p-values
were achieved by delta-tocopherol (Figure 3), and gamma-tocoph-
erol, both products of the engineered pathway. A few other com-
pounds showed higher but still relatively low p-values, e.g. AMP and
phytate (myo-inositol-hexakisphosphate), which might flag them as
compounds of interest. However, it is not possible to know if these
result from some effect of the engineered gene, or if they represent
false discoveries, several of which might be expected when perform-
ing 169 tests. We note that only delta-tocopherol meets the stricter
multiple testing criterion of q , 0.1 for false discovery rate.

A minor drawback of the random effects model is that it can yield
inaccurate estimates of confidence intervals and p-values for com-
pounds which have significant missing data points, e.g. .50% nulls
(see Supplemental Table 4). These compounds typically are repre-
sented by very small peaks, and can fall below the detectable limit in
many of the lines tested. For instance, compounds such as N-carba-
moylaspartate, in which all values were null for the GM line (as well
as for 14 other lines), the low variance in the imputed data for the GM
group would tend to underestimate p-values. However, because none
of these approached real significance in the overall analysis, we feel
this methodological shortcoming is not problematic for the question
posed here.

To avoid the issues related to multiple testing, we fitted a Principal
Component Analysis (PCA) to the log-transformed data for the 48
lines, then the values for GM and ‘‘Jack’’ were predicted from this
PCA. For simplicity, only the first component was used, but the
results could be generalized to higher dimensions. The distributions
of the predicted values for the first component are shown in the box
plot diagrams in Figure 4. Next, the 95% prediction interval was

Figure 2 | Histograms of p-value distributions for Jack (A) or the GM line (B) compared to 48 conventional (WT) soybean lines.
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computed for the mean of a new line (8 seeds), the result being
(29.17, 9.17). Both ‘‘Jack’’ (1.44) and the GM line (0.35) fell well
within the prediction interval.

These analyses suggest that with the exception of the intended
engineered trait, the overall metabolomic expression of the GM
herbicide tolerant line could not readily be distinguished from con-
ventional germplasm. Box plots for all biochemicals, comparing the
GM line to the conventional line pool and to the parental line ‘‘Jack’’
and arranged by biochemical pathway group, are shown in
Supplemental Figure 1.

Discussion
Genes which encode genetically modified (GM) traits in crop plants
for improved agronomic properties, such as tolerance to herbicides
or resistance to insect attack, must be shown not to adversely affect

the performance of the crop, nor to introduce unsafe alterations in
food or feed products produced from these plants. Methods used to
demonstrate the safety of GM crops have improved and expanded
over the approximately 18 years since their introduction, with a trend
toward inclusion of more global ‘‘-omics’’ technologies to gain a
broad picture of plant biochemistry and physiology. Furthermore,
the utility of any new method requires that it bring additional under-
standing of any potentially negative impacts that the engineered trait
may have on the overall biochemical makeup or physiological
performance of the target plant. Metabolomics, which is the global
analysis of small molecule metabolites, is proving a powerful and
sensitive technology for revealing perturbations, whether envir-
onmental or genetic, in plant metabolic compositions.

We propose that comparing a GM line to the range of performance
in a crop’s native germplasm pool by metabolomic analysis could be a
useful and proper standard as part of a safety and equivalence assess-
ment program. It should be emphasized that the goal would be to
uncover metabolic perturbations that should be further investigated
in the context of performance and safety; of course, the absence of
perturbations would not be sufficient to guarantee safety, but would
only be part of the wider evaluation, including safety and envir-
onmental impacts of agronomic practices associated with the trait’s
application, such as herbicide safety, resistance, etc. We have now
applied metabolomics to the question of equivalence assessment in
the context of a genetically engineered crop plant, specifically to the
effects of a herbicide tolerance gene in soybean. The metabolomic
dataset here encompassed all the major pathways, including 44
compounds of the amino acid class, 42 carbohydrates, 24 lipids, 13
compounds in the cofactor/electron carrier class, 18 nucleotide deri-
vatives, 14 peptides, and 14 compounds from secondary metabolism.
The wide distribution of the metabolites measured, and the monitor-
ing of multiple metabolites in key pathways such as glycolysis, the
TCA cycle, nitrogen utilization, amino acid synthesis and catabolism,
lipid oxidation, anti-oxidant utilization, and secondary metabolite
production allowed many points of observation for any potential
negative effects on metabolism caused by a transgene. It is interesting
to consider the overall line-to-line metabolomic variation in com-
mercial germplasm, and how a significant pleiotropic perturbation
might express itself. More than half of the compounds showed ,10-
fold variation between the highest and lowest expressing lines
(Supplemental Table 2), while some compounds showed a wide

Figure 3 | Box plot display the levels of delta-tocopherol of the GM line (pink) to its non-transgenic conventional parent Jack (green), and 48 other
conventional soybean accessions (gray). The box represents the middle 50% of the distribution, and upper and lower ‘‘whiskers’’ represent the entire

spread of the data. The hyphen refers to the line mean (n 5 8) and circles represent outliers. The y-axis references the median scaled relative value.

Figure 4 | Predicted Values of the First Principal Component. The

baseline was determined using the average value for each line (assuming

the line is the experimental unit) for all the WT lines except ‘‘Jack’’. The

data were log-transformed, then each metabolite was centered and scaled

by subtracting the mean of the transformed values and then dividing by the

standard deviation of the transformed values. The first component

accounted for approximately 27% of the total variance. The 95%

Prediction Interval was (29.17, 9.17), with means for GM and Jack equal

to 0.35 and 1.44, respectively.
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range of genotypic variation. As shown in Figure 5, energy metabo-
lites, free fatty acids, and most amino acid metabolites were least
variable, as might be expected in a metabolically quiescent tissue like
seed, and negative effects on these pathways should be relatively easy
to detect in a metabolomic screen. Compounds reflecting nutrient
storage, environmental stress, and secondary metabolism were the
most variable. For instance, citrulline, asparagine, and allantoin are
all involved in nitrogen utilization and storage, while phytate is the
storage sink for phosphate. These may vary strongly either from
genetic factors, or because of nutrient availability during develop-
ment. The compatible solutes ribitol, galactinol, and ectoine, as well
as gulano-1,4-lactone (a precursor of ascorbate), are generated dur-
ing seed desiccation, and may reflect environmental variation during
seed maturation and desiccation. Accumulation of isoflavonoids in
seeds (e.g. genistin, diadzin, glycitin) are also known to be subject to
both genetic and environmental control16–18. Good pathway cov-
erage, and a knowledge of expected natural metabolomic diversity
demonstrates the usefulness of the method for monitoring metabolic
consequences of an engineered trait, and the present case provides
strong evidence that the seed’s physiology was not disturbed in a
significant manner by the presence of the transgene. As more com-
plex traits are developed to impact more general crop performance,
such as yield, drought tolerance, nitrogen utilization, etc., and which
will likely involve engineered regulatory genes, it will be increasingly
important to understand a trait’s impacts on a broad range of bio-
chemical pathways. Metabolomic analysis is ideally suited for such a
task.

Methods
Materials. Seeds from 49 conventional soybean lines (Supplemental Table 1) were
obtained from the USDA National Soybean Research Center at University of Illinois
and Syngenta Biotechnology, Inc. Seed for the herbicide-tolerant GM line (event
SYHT06W) was obtained from Syngenta. Eight individual mature seeds for each
soybean line were subjected to metabolomic analysis.

Metabolomic profiling. The metabolomic platforms consisted of three independent
platforms: ultrahigh performance liquid chromatography/tandem mass spectrometry
(UHLC/MS/MS2) optimized for basic species, UHLC/MS/MS2 optimized for acidic

species, and gas chromatography/mass spectrometry (GC/MS). The detailed
descriptions of these platforms, including instrument, data acquisition and
processing, and compound identification and quantitation, were published
previously19,20. Essentially, the samples were extracted and split into three equal
aliquots for analysis on the three platforms. For the two LC platforms,
chromatographic separation followed by full scan mass spectra was carried out to
record retention time, molecular weight (m/z) and MS/MS2 of all detectable ions
presented in the samples. For the GC platform, the samples were derivatized using
bistrimethyl-silyl-triflouroacetamide (BSTFA). The retention time and molecular
weight (m/z) for all detectable ions were measured. The metabolites were identified by
comparison of the ion features in the experimental samples to a reference library of
chemical standard entries that included retention time, molecular weight (m/z),
preferred adducts, and in-source fragments as well as their associated MS/MS2

spectra.

Data imputation and statistical analysis. Integrated peak ion counts were used to
compare relative levels of a compound in each sample. For statistical analysis, the
missing values for a given metabolite were imputed with the observed minimum
detected value based on the assumption that they were below the limits of instrument
detection sensitivity. Supplemental Table 4 shows the frequency of present/missing
data; values represent the percentage of the eight samples for each line in which the
compound was detected. Statistical analysis of the data was performed using ‘‘R’’
(http://cran.r-project.org/). For graphical display in heat maps data for each
biochemical were scaled to the median observed value for that compound, then
missing values were imputed as described above. For box plot displays the data were
further transformed to log2 values. Multiple comparisons were accounted for using
the q-value method of Storey and Tibshirani21 (Supplemental Table 3).
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